Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32694
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李百祺(Pai-Chi Li)
dc.contributor.authorChih-Wei Hsuen
dc.contributor.author許智威zh_TW
dc.date.accessioned2021-06-13T04:13:38Z-
dc.date.available2006-07-29
dc.date.copyright2006-07-29
dc.date.issued2006
dc.date.submitted2006-07-25
dc.identifier.citation[1] 台北榮民總醫院Taipei Veterans General Hospital ,http://www.vghtpe.gov.tw
[2] http://ceiba3.cc.ntu.edu.tw/course/4f786b/paper/nutr04.htm
[3]General Life Biotechnology Co., Ltd 勤立生物科技股份有限公司
[4]五鼎生物技術股份有限公司http://www.apexbio.com.tw/
[5] 'Continuous Glucose Monitoring: Innovation in the Management of Diabetes', NEHI Innovation Series, March 2005.
[6]Glucowatch.com
[7]Y. T. Kamal, V. A. Saptari, “Noninvasive Blood Glucose Analysis using Near Infrared Absorption Spectroscopy”, MIT Home Automation and Healthcare Consortium ,Progress Report, no.2–5, March 2000.
[8]Y. T. Kamal, V. A. Saptari, “Noninvasive Blood Glucose Analysis using Near Infrared Absorption Spectroscopy”, MIT Home Automation and Healthcare Consortium ,Progress Report, no.2–3, March 1999.
[9]A. Ergin, G. A. Thomas, “Noninvasive Detection of Glucose in Porcine Eyes”, IEEE Bioengineering , April 2005, pp. 246–247.
[10]Y. C. Shen, A. G. Davies, E. H. Linfield, T. S. Elsey, P. F. Taday and D. D. Arnone, “The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood”, Phys. Med. Biol., vol. 48 ,pp. 2023–2032, July 2003.
[11]V. E. Gusev and A. A. Karabutove, “Laser Optoacoustics”, American institude of physics, New York, 1992.
[12]I. V. Larina, K.V. Larin and R. O. Esenaliev, ”Real-time optoacoustic monitoring of temperature in tissues ” J. Phys. D Appl. Phys, vol.38, pp. 2633–2639, Aug. 2005.
[13] R. P.Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi,and D. S. Prough, ”Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study”, Appl. Optics, vol. 41, no. 22, pp. 4722–4731, Augustus 2002.
[14]L. V. Wang,”Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of brain”, Nature Bio., vol. 21, no. 7, pp. 803–806 , July 2003.
[15] J. A. Viator, L. O. Svaasand, G. Aguilar, B. Choi, and J. S. Nelson, “Photoacoustic measurement of epidermal melan”, Proc. Of SPIE, vol. 4960, pp. 14–20, 2003.
[16] P. C. Li, S. W. Huang, and C. W. Wei, Y. C. Chiou, C. D. Chen, and C. R. C. Wang,'Photoacoustic flow measurements by use of laserinduced shape transitions of gold nanorods', Opt. Lett., vol. 30, no. 24 , pp. 3341–3343, December 2005.
[17] G. Ku, X. Wang, X. Xie, G. Stoica, and L. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography”, Appl. Optics, vol.44, no.5, pp. 770–775, February 2005.
[18] R. O. Esenalive, A. A. Karabutove,and A. A. Oraevsky. ”Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors”, IEEE Journal of quantum electronics, vol. 5, no. 4, pp. 981–988, July 1999.
[19]A. A. Karabutove, ”Backward mode detection of laser–induced wide-band ultrasonic transirnts with optoacoustic transducer”, Appl. Phy., vol. 87, no. 4, February 2000.
[20] T. L. Troy, S. N. Thennadil, “Optical properties of human skin in the near infraredwavelength range of 1000 to 2200 nm”, Biomedical Optics, no. 6, pp. 167–176 , April 2001.
[21] 中國國家標準,雷射安全使用標準,總號 11640,類號Z 1043(CNS 11640, Z 1043).
[22] American National Standard for Safe Use of Lasers (ANSI Z136.1)
[23]Zhao, Zuomin, “Pulsed photoacoustic techniques and glucose determination in humanblood and tissue”, University of Oulu, Finland, 2002.
[24] H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, 'Advances in Photoacoustic Noninvasive Glucose Testing', Clin. Chem., vol.45, no. 9, pp. 1587–1595, 1999.
[25] D.H. Huang et al, “ Simulation of optoacoustic wave propagation in light-absorbing media using a finite-difference time-domain method,” J. Acoust. Am., vol.117, no.5, May 2005.
[26] A. A. Karabutov, N. B. Podymova, V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media”, Appl. Phys. B, vol.63, pp 545–563, 1996.
[27] K. M. Quan, G. B. Cbristison, H. A. MacKenzie and P. Hodgson,'Glucose determination by a pulsed photoacoustic technique: an experimental study using a gelatin-based tissue phantom', Physics Department, Heriot-Watt University, Riccarlon, Edinburgh EH14 4AS. UK, 1993.
[28] K. Maruo, M. Tsurugi, J. Chin, T. Ota, H. Arimoto, Y. Yamada, M. Tamura, M. Ishii, and Y. Ozaki, “Noninvasive Blood Glucose Assay Using a Newly Developed Near-Infrared System”, IEEE Journal of Quantum Electronics, vol. 9, no. 2,pp. 323–330, 2003.
[29]http://www.animascorp.com/products/pr_glucosesensor.shtml.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32694-
dc.description.abstract在本研究中我們探討利用光聲效應來量測葡萄糖溶液的濃度之可行性。利用光聲效應最大的優點是:一、非侵入式,二、同時利用物質的光學特性以及聲學特性來判斷葡萄糖的濃度。目前發展中的非侵入式量測方法主要是利用血糖對近紅外光的吸收會隨濃度變化之特性。由於在人體血糖濃度變化範圍內的吸收係數的變化程度僅在0.2%左右,使得純光學血糖量測易受光散射影響而無法縮小誤差。另一方面,光聲效應產生訊號的機制是物質吸收光學能量後產生熱膨脹效應。因此利用光聲波可以獲得聲學參數用來修正光散射所造成的干擾。由於聲速亦隨葡萄糖濃度變化故此若能有效運用將可進一步提升濃度量測之準確度。本論文主要研究統合聲速與振幅變化量測葡萄糖濃度之方法,實驗架構主要以Ti:sapphire作為雷射之光源,發出波長在800到1000nm的近紅外光照射葡萄糖溶液並且以正向、側向兩種不同模式進行光聲波測量。在正向測量實驗中,使用中心頻率為1MHz聚焦深度為1.8公分之點聚焦超音波探頭作正向量測。用中心頻率為1MHz聚焦深度為1.27公分之線聚焦超音波探頭作側向量測。將所得訊號用以計算光聲訊號的振幅以及聲速變化來分辨葡萄糖水溶液濃度。目前實驗結果濃度每上升0.1%訊號增加約2%,標準差大約是4.2%,可以分辨濃度差在0.3%,實驗主要的誤差來自於系統端的穩定性,包括了雷射能量的穩定度以及各系統間的同步。未來工作將著重於進行血漿以及全血的in vitro,以及最後in vivo的實驗,靈敏度的提升、血球引起散射的影響以及利用多波長判別血液中其他物質的影響,也將是未來工作的重點。zh_TW
dc.description.abstractFeasibility of glucose concentration measurements utilizing photoacoustic (PA) approach is explored in this research. Estimating glucose concentration by means of PA measurements has the advantages of non-invasiveness and concentration level evaluation based on both optical and acoustic characteristics of glucose molecules. Most current measurements methods make use of the dependence of blood glucose molecules absorption in NIR range. However, the variation of the absorption within human body is merely 0.2%, which in turn causes measurement in optical manner vulnerable to scattering, an important phenomenon in skin tissues. Photoacoustic signal is induced through thermal expansion of the locally heated area by incident laser pulse. By means of PA measurements, not only scattering interference can be reduced, but also the acoustic parameters, such as sound velocity, are able to be used to enhance the accuracy. In this thesis, glucose concentration measurements via PA signal amplitude and acoustic velocity variations are combined. Experiments are set up with a Ti:sapphire laser, a single-crystal ultrasound transducer, and a 100MHz ADC card. The PA signals from the glucose solution are received sidewardly and forwardly. Transducers operating at 1MHz but at different focus depths are used for different receiving modes, where a 1.8cm focal depth, point-focusing transducer is aligned along the laser beam as the forward receiving mode, and a focal depth of 1.27cm, line-focusing one is arranged perpendicularly with the direction of the incident beam for the sideward receiving one. Two glucose-concentration measurement approaches are carried out, including variation evaluation of the PA signal amplitude and sound velocity. Our experiment results reveal that a 0.3% concentration variation is detectable. The error is mostly due to the instability of laser output energy and asynchronization between laser, photodiode detector, and ADC. Future work includes detection in plasma both in vitro and in vivo, improvement in system sensitivity, further understanding of light scattering by red blood cell and discrimination of other molecules in blood utilizing PA absorption spectra.en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:13:38Z (GMT). No. of bitstreams: 1
ntu-95-R93921051-1.pdf: 5400284 bytes, checksum: 50aa6e84e618bca6eb085f62ed5be297 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents第一章 緒論
1.1 研究動機 7
1.1.1 血糖恆定 7
1.1.2 葡萄糖 9
1.2 血糖量測 11
1.2.1 單次量測 11
1.2.2 連續量測 12
1.2.3 量測準確度 14
1.2.4 光學量測 15
1.3光聲效應簡介 18
1.3.1光聲效應 18
1.3.2 光聲訊號目前之相關研究領域 19
1.3.3光聲效應接收方式 20
1.4 研究目標 23
1.5 論文架構 24
第二章 光聲效應原理 25
2.1 光聲產生 25
2.2 光熱聲源 27
2.3 聲波傳遞 30
2.4 雷射規範 33
第三章 葡萄糖溶液光聲特性 36
3.1葡萄糖溶液的光聲效應 36
3.1.1 近紅外光雷射產生之光聲訊號 36
3.1.2 不同波長近紅外光產生之雷射光聲訊號 37
3.2模擬葡萄糖溶液之光聲效應 39
第四章 實驗架構 42
4.1接收方式探討 42
4.2 45度接收 42
4.3 側向接收 45
第五章 結果與分析 46
5.1振幅-濃度變化 46
5.1.1 45度接收結果 46
5.1.2 側向接收結果 48
5.2 聲速-濃度變化 54
第六章 討論與結論 57
6.1 光聲訊號振幅的變化 57
6.2 溫度的影響 59
6.3 雷射能量的變化 60
6.4 聲速 61
6.5 光聲訊號聲學參數修正 62
6.6 回歸分析 66
6.6.1線性回歸 66
6.6.2二次回歸 66
6.7 結論 69
6.8 未來工作 70
參考文獻 73
dc.language.isozh-TW
dc.subject血糖zh_TW
dc.subject光聲效應zh_TW
dc.subject非侵入式zh_TW
dc.subject葡萄糖濃度zh_TW
dc.subject聲速zh_TW
dc.subject近紅外光zh_TW
dc.subjectnoninvasiveen
dc.subjectblood glucoseen
dc.subjectnear infrareden
dc.subjectsound velocityen
dc.subjectphotoacousticen
dc.subjectglucose concentrationen
dc.title使用光聲效應量測葡萄糖濃度zh_TW
dc.titleGlucose Concentration Measurements Utilizing a Photoacoustic Techniqueen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳中明,沈哲州,郭益源
dc.subject.keyword光聲效應,非侵入式,葡萄糖濃度,聲速,近紅外光,血糖,zh_TW
dc.subject.keywordphotoacoustic,noninvasive,glucose concentration,sound velocity,near infrared,blood glucose,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2006-07-25
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
5.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved