Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32663
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳光禎(Kwang-Cheng Chen)
dc.contributor.authorPin-Yu Chenen
dc.contributor.author陳品諭zh_TW
dc.date.accessioned2021-06-13T04:13:06Z-
dc.date.available2011-08-09
dc.date.copyright2011-08-09
dc.date.issued2011
dc.date.submitted2011-07-28
dc.identifier.citation[1] S. H. Strogatz, “Exploring complex networks,” Nature, vol. 410, no. 6825, pp.268–276, Mar. 2001.
[2] R. Albert and A.-L. Barab’asi, “Statistical mechanics of complex networks,” Reviews of Modern Physics, vol. 74, no. 1, pp. 47–97, Jan. 2002.
[3] M. E. J. Newman, “The structure and function of complex networks,” SIAM Review, vol. 45, no. 2, pp. 167–256, Mar. 2003.
[4] A. L. Barabasi and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286, no. 5439, pp. 509–512, Oct. 1999.
[5] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relationships of the Internet topology,” in Proc. ACM SIGCOMM, Oct. 1999, pp. 251–262.
[6] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’ networks,” Nature, vol. 393, no. 6684, pp. 440–442, June 1998.
[7] H. Jeong, S. P. Mason, A. L. Barabasi, and Z. N. Oltvai, “Lethality and centrality in protein networks,” Nature, vol. 411, no. 6833, pp. 41–42, May 2001.
110[8] S. Meyn, Control Techniques for Complex Networks. Cambridge University Press, Dec. 2007.
[9] L. Cui, S. Kumara, and R. Albert, “Complex networks: An engineering view,” IEEE Circuits Syst. Mag., vol. 10, no. 3, pp. 10–25, third quarter 2010.
[10] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barab’asi, “Controllability of complex networks,” Nature, vol. 473, no. 7346, pp. 167–173, May 2011.
[11] P. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulie, “Epidemic information dissemination in distributed systems,” IEEE Computer, vol. 37, no. 5,
pp. 60–67, May 2004.
[12] D. E. Kirk, Optimal Control Theory: An Intorduction. Dover Publications, Inc. Mineola, New York, 2004.
[13] D. P. Bertsekas, Dynamic Programming and Optimal Control (2 Vol Set), 3rd ed. Athena Scientific, Jan. 2007.
[14] R. Albert, H. Jeong, and A.-L. Barab’asi, “Error and attack tolerance of complex networks,” Nature, vol. 406, no. 6794, pp. 378–382, July 2000.
[15] R. Cohen, K. Erez, D. ben Avraham, and S. Havlin, “Breakdown of the Internet under intentional attack,” Phys. Rev. Lett., vol. 86, no. 16, pp. 3682–3685, Apr. 2001.
[16] K.-C. Chen, B. K. Cetin, Y.-C. Peng, N. Prasad, J. Wang, and S. Lee, “Routing for cognitive radio networks consisting of opportunistic links,” Wireless
Communications and Mobile Computing, vol. 10, no. 4, pp. 451–466, 2010.
[17] W. Kermack and A. McKendrick, “A contribution to the mathematical theory of epidemics,” in Proc. Roy. Soc., vol. A, no. 115, 1927, pp. 700–721.
[18] P. Erd‥os and A. Renyi, “On random graphs, I,” Publicationes Mathematicae (Debrecen), vol. 6, pp. 290–297, 1959.
[19] M. Molloy and B. Reed, “A critical point for random graphs with a given degree sequence,” Random Structures and Algorithms, vol. 6, no. 2-3, pp. 161–180, 1995.
[20] H. Kesten, “The critical probability of bond percolation on the square lattice equals 1/2,” in Commun. Math. Phys., no. 74, 1980, pp. 41–59.
[21] R. Pastor-Satorras and A. Vespignani, “Epidemic spreading in scale-free networks,” Phys. Rev. Lett., vol. 86, no. 14, pp. 3200–3203, Apr. 2001.
[22] P. De, Y. Liu, and S. Das, “An epidemic theoretic framework for vulnerability analysis of broadcast protocols in wireless sensor networks,” IEEE Trans. Mobile Comput., vol. 8, no. 3, pp. 413–425, Mar. 2009.
[23] Networking Research Lab, Department of Computer Science, North Carolina State University. [Online]. Available: http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/WebHome.html
[24] S. Kim, C.-H. Lee, and D. Y. Eun, “Superdiffusive behavior of mobile nodes and its impact on routing protocol performance,” IEEE Trans. Mobile Comput., vol. 9, no. 2, pp. 288–304, Feb. 2010.
[25] T. Chen and J.-M. Robert, “Worm epidemics in high-speed networks,” IEEE Computer, vol. 37, no. 6, pp. 48–53, June 2004.
[26] P.-Y. Chen and K.-C. Chen, “Information epidemics in complex networks with opportunistic links and dynamic topology,” in Proc. IEEE GLOBECOM, Dec. 2010, pp. 1–6.
[27] H. W. Hethcote, “The mathematics of infectious diseases,” SIAM Rev., vol. 42, pp. 599–653, Dec. 2000.
[28] D. J. Daley and J. Gani, Epidemic Modelling: An Introduction. Cambridge University Press, 2001.
[29] S.-M. Cheng, W. C. Ao, P.-Y. Chen, and K.-C. Chen, “On modeling malware propagation in generalized social networks,” IEEE Commun. Lett., vol. 15, no. 1, pp. 25–27, Jan. 2011.
[30] E. Filiol, M. Helenius, and S. Zanero, “Open problems in computer virology,” Journal in Computer Virology, vol. 1, pp. 55–66, 2006.
[31] D. Chandler, Introduction to Modern Statistical Mechanics. Oxford University Press, USA, Sept. 1987.
[32] C. Zou, W. Gong, D. Towsley, and L. Gao, “The monitoring and early detection of Internet worms,” IEEE/ACM Trans. Netw., vol. 13, no. 5, pp. 961–974, Oct. 2005.
[33] A. L. Lloyd and R. M. May, “How viruses spread among computers and people,” Science, vol. 292, no. 5520, pp. 1316–1317, May 2001.
[34] A. Ganesh, L. Massoulie, and D. Towsley, “The effect of network topology on the spread of epidemics,” in Proc. IEEE INFOCOM, vol. 2, Mar. 2005, pp. 1455–1466.
[35] J. Kephart and S. White, “Directed-graph epidemiological models of computer viruses,” in IEEE Computer Society Symposium on Research in Security and
Privacy, May 1991, pp. 343–359.
[36] S. Staniford, V. Paxson, and N. Weaver, “How to own the Internet in your spare time,” in Proceedings of the 11th USENIX Security Symposium, 2002, pp. 149–167.
[37] C. Castellano and R. Pastor-Satorras, “Thresholds for epidemic spreading in networks,” Phys. Rev. Lett., vol. 105, no. 21, p. 218701, Nov. 2010.
[38] C. Zou, D. Towsley, and W. Gong, “On the performance of Internet worm scanning strategies,” Perform. Eval., vol. 63, pp. 700–723, July 2006.
[39] R. Thommes and M. Coates, “Epidemiological modelling of peer-to-peer viruses and pollution,” in Proc. IEEE INFOCOM, Apr. 2006, pp. 1–12.
[40] C. Zou, D. Towsley, and W. Gong, “Modeling and simulation study of the propagation and defense of Internet e-mail worms,” IEEE Trans. Dependable Secure Comput., vol. 4, no. 2, pp. 105–118, Apr.-Jun. 2007.
[41] S. Sellke, N. Shroff, and S. Bagchi, “Modeling and automated containment of worms,” IEEE Trans. Dependable Secure Comput., vol. 5, no. 2, pp. 71–86,
Apr.-Jun. 2008.
[42] W. Yu, X. Wang, P. Calyam, D. Xuan, and W. Zhao, “Modeling and detection of camouflaging worm,” IEEE Trans. Dependable Secure Comput., vol. 8, no. 3, pp. 377–390, May-Jun. 2011.
[43] H. Hu, S. Myers, V. Colizza, and A. Vespignani, “WiFi networks and malware epidemiology,” Proceedings of the National Academy of Sciences, vol. 106, no. 5, pp. 1318–1323, Feb. 2009.
[44] S. Tanachaiwiwat and A. Helmy, “Encounter-based worms: analysis and defense,” Ad Hoc Netw., vol. 7, pp. 1414–1430, Sept. 2009.
[45] M. Khouzani, S. Sarkar, and E. Altman, “Maximum damage malware attack in mobile wireless networks,” in Proc. IEEE INFOCOM, Mar. 2010, pp. 1–9.
[46] P. Wang, M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi, “Understanding the spreading patterns of mobile phone viruses,” Science, vol. 324, no. 5930, pp. 1071–1076, May 2009.
[47] K. Ramachandran and B. Sikdar, “Modeling malware propagation in networks of smart cell phones with spatial dynamics,” in IEEE INFOCOM, May 2007, pp. 2516–2520.
[48] Y. Moreno, M. Nekovee, and A. F. Pacheco, “Dynamics of rumor spreading in complex networks,” Phys. Rev. E, vol. 69, no. 6, p. 066130, June 2004.
[49] Z. Zhang, “Routing in intermittently connected mobile ad hoc networks and delay tolerant networks: overview and challenges,” IEEE Commun. Surveys Tuts., vol. 8, no. 1, pp. 24–37, Jan./Mar. 2006.
[50] A. Khelil, C. Becker, J. Tian, and K. Rothermel, “An epidemic model for information diffusion in manets,” in Proc. ACM MSWiM, 2002, pp. 54–60.
[51] A. Vahdat and D. Becker, “Epidemic routing for partially-connected ad hoc networks,” Duke Univ., Tech. Rep. CS-2000-06, July 2000.
[52] R. Darling and J. Norris, “Differential equation approximations for markov chains,” Probab. Surveys, vol. 5, pp. 37–79, 2008.
[53] Z. J. Haas and T. Small, “A new networking model for biological applications of ad hoc sensor networks,” IEEE/ACM Trans. Netw., vol. 14, no. 1, pp. 27–40, Feb. 2006.
[54] X. Zhang, G. Negli, J. Kurose, and D. Towsley, “Performance modeling of epidemic routing,” Comput. Netw., vol. 51, no. 8, pp. 2867–2891, July 2007.
[55] E. Altman, T. Basar, and F. De Pellegrini, “Optimal monotone forwarding policies in delay tolerant mobile ad-hoc networks,” Perform. Eval., vol. 67, pp. 299–317, Apr. 2010.
[56] ——, “Optimal control in two-hop relay routing,” IEEE Trans. Autom. Control, vol. 56, no. 3, pp. 670–675, Mar. 2011.
[57] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. Mishchenko, The mathematical theory of optimal processes (International series of monographs
in pure and applied mathematics). Interscience Publishers, 1962.
[58] I. Rhee, M. Shin, S. Hong, K. Lee, S. J. Kim, and S. Chong, “On the levy-walk nature of human mobility,” IEEE/ACM Trans. Netw., vol. 19, no. 3, pp. 630–643, June 2011.
[59] T. Small and Z. J. Haas, “The shared wireless infostation model: a new ad hoc networking paradigm,” in Proc. ACM MobiHoc, 2003, pp. 233–244.
[60] R. Groenevelt, P. Nain, and G. Koole, “The message delay in mobile ad hoc networks,” Perform. Eval., vol. 62, no. 1-4, pp. 210–228, Oct. 2005.
[61] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature, vol. 393, no. 6684, pp. 440–442, June 1998.
[62] A.-L. Barab’asi and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286, no. 5439, pp. 509–512, Oct. 1999.
[63] A.-L. Barab’asi, “The architecture of complexity,” IEEE Control Syst. Mag., vol. 27, no. 4, pp. 33–42, Aug. 2007.
[64] H. Ebel, L.-I. Mielsch, and S. Bornholdt, “Scale-free topology of e-mail networks,” Phys. Rev. E, vol. 66, no. 3, p. 035103, Sept. 2002.
[65] A.-L. Barab’asi, “Scale-free networks: A decade and beyond,” Science, vol. 325, no. 5939, pp. 412–413, July 2009.
[66] S. Xiao, G. Xiao, and T. H. Cheng, “Tolerance of intentional attacks in complex communication networks,” IEEE Commun. Mag., vol. 46, no. 1, pp. 146–152,
Jan. 2008.
117[67] B. Mukherjee, L. Heberlein, and K. Levitt, “Network intrusion detection,” IEEE Netw., vol. 8, no. 3, pp. 26–41, May-Jun. 1994.
[68] T. Bass, “Intrusion detection systems and multisensor data fusion,” Commun. ACM, vol. 43, pp. 99–105, Apr. 2000.
[69] A. Patcha and J.-M. Park, “An overview of anomaly detection techniques: Existing solutions and latest technological trends,” Comput. Netw., vol. 51, pp.
3448–3470, Aug. 2007.
[70] G. Androulidakis, V. Chatzigiannakis, and S. Papavassiliou, “Network anomaly detection and classification via opportunistic sampling,” IEEE Netw., vol. 23,
no. 1, pp. 6–12, Jan.-Feb. 2009.
[71] M. Osborne and A. Rubinstein, A Course in Game Theory. MIT press, Cambridge, MA, 1999.
[72] R. Cohen, K. Erez, D. ben Avraham, and S. Havlin, “Resilience of the Internet to random breakdowns,” Phys. Rev. Lett., vol. 85, no. 21, pp. 4626–4628, Nov.
2000.
[73] Z. Chair and P. Varshney, “Optimal data fusion in multiple sensor detection systems,” IEEE Trans. Aerosp. Electron. Syst., vol. 22, no. 1, pp. 98–101, Jan. 1986.
[74] S. Thomopoulos, R. Viswanathan, and D. Bougoulias, “Optimal decision fusion in multiple sensor systems,” IEEE Trans. Aerosp. Electron. Syst., vol. 23, no. 5, pp. 644–653, Sept. 1987.
[75] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, Mar. 2004.
[76] J. Q. Hu, “Diverse routing in optical mesh networks,” IEEE Trans. Commun., vol. 51, no. 3, pp. 489–494, Mar. 2003.
[77] R. Irmer, H. Droste, P. Marsch, M. Grieger, G. Fettweis, S. Brueck, H.-P. Mayer, L. Thiele, and V. Jungnickel, “Coordinated multipoint: Concepts, performance,
and field trial results,” IEEE Commun. Mag., vol. 49, no. 2, pp. 102–111, Feb. 2011.
[78] P.-Y. Chen, S.-M. Cheng, W. C. Ao, and K.-C. Chen, “Multi-path routing with end-to-end statistical QoS provisioning in underlay cognitive radio networks,”
in Proc. IEEE INFOCOM Workshops, Apr. 2011, pp. 7–12.
[79] M. K. Marina and S. R. Das, “On-demand multipath distance vector routing in ad hoc networks,” in Proc. IEEE ICNP, Nov. 2001, pp. 14–23.
[80] P. Djukic and S. Valaee, “Reliable packet transmissions in multipath routed wireless networks,” IEEE Trans. Mobile Comput., vol. 5, no. 5, pp. 548–559,
May 2006.
[81] S. Fashandi, S. Gharan, and A. Khandani, “Path diversity over packet switched networks: Performance analysis and rate allocation,” IEEE/ACM Trans. Netw.,
vol. 18, no. 5, pp. 1373–1386, Oct. 2010.
[82] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, July 2000.
119[83] R. Koetter and M. Medard, “An algebraic approach to network coding,” IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, Oct. 2003.
[84] O. Al-Kofahi and A. Kamal, “Network coding-based protection of many-to-one wireless flows,” IEEE J. Sel. Areas Commun., vol. 27, no. 5, pp. 797–813, June 2009.
[85] A. Kamal, “1+N network protection for mesh networks: Network coding-based protection using p-cycles,” IEEE/ACM Trans. Netw., vol. 18, no. 1, pp. 67–80, Feb. 2010.
[86] S. Gharan, S. Fashandi, and A. Khandani, “Diversity-rate trade-off in erasure
networks,” in Proc. IEEE INFOCOM, Mar. 2010, pp. 1–9.
[87] O. Trullols-Cruces, J. Barcelo-Ordinas, and M. Fiore, “Exact decoding probability under random linear network coding,” IEEE Commun. Lett., vol. 15, no. 1, pp. 67–69, Jan. 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32663-
dc.description.abstract節點間的通訊一直是網路中不可或缺的重要功能。為了實現資料傳遞於當今的通訊網路與社群網路,網路中的資訊動態扮演了一個非常關鍵的角色。尤有甚者,不同網路間複雜的鏈結使得整體網路趨向於一個更為龐大的複雜網路。雖然當今的通訊技術得利於複雜網路中的多元鏈結,但同時這些異質且具有相互影響性的鏈結也為資訊傳遞帶來了新的挑戰,例如資訊散佈的動態建模與控制、網路節點的攻擊與防禦及系統資訊傳輸效能的最佳化等。
在此論文中,我們運用統計物理的特性及疾病學的原理建立資訊傳播動態的數學模型。此數學模型提供了理論基礎以利於制定複雜網路中訊息傳輸的最佳控制方式。除此之外,考量複雜網路的網路拓樸特性,本論文分析了複雜網路的可靠度並提出了有效的網路防禦機制以提升網路的整體穩定性。基於我們對於複雜網路的建模以及分析,我們運用網路編碼設計一種嶄新的多路徑傳輸方式於多重跳躍式網路以提供傳輸速率與延遲的權衡與最佳化。本研究因此奠定了資訊動態於複雜網路中之理論分析基礎,並可應用於系統資訊傳輸效能提升、訊息傳遞控制與網路可靠性評估等研究領域。
zh_TW
dc.description.abstractInformation dynamics play an essential role to facilitate data transportation in modern communication networks as well as social networks. The complicated connections between these networks render them a complex communication network. Although modern technologies benefit from the diverse links in the complex network, in the meanwhile the heterogeneous and interdependent links incur new and challenging issues regarding information dissemination in the complex communication network, such as the information propagation process, the control of information dissemination, the attack and defense in the network and the optimization of rate-delay tradeoffs, to name a few.
In this thesis, we provide a primer on the information dissemination dynamics with the aid of epidemiology, which offers analytically tractable model to determine the optimal control policy for message passing in complex communication networks. Considering the topological attributes of the complex communication network, we analyze the network vulnerability and propose an efficient defense mechanism to enhance the network robustness. Based on the knowledge of complex network, we devise a novel multipath transmission scheme via network coding for rate-delay optimization in multihop networks. This research therefore lays the foundation of information dynamics in complex communication networks for system throughput enhancement, message passing control and network robustness assessment.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:13:06Z (GMT). No. of bitstreams: 1
ntu-100-R98942052-1.pdf: 7322563 bytes, checksum: 38327a728851b64d10c2035dacd3af99 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsAbstract - i
Contents - iii
List of Figures - vi
1 Introduction - 1
2 Information Epidemics in Complex Networks with Opportunistic Links and Dynamic Topology - 6
2.1 Introduction - 7
2.2 System Model Network Categories -12
2.3.1 Homogeneous Mixing and Partially Connectible (HoMPC) Network - 14
2.3.2 Homogeneous Mixing and Equally Connectible (HoMEC) Network - 14
2.3.3 Homogeneous Mixing and Unequally Connectible (HoMUC) network - 15
2.3.4 Heterogeneous Mixing and Unequally Connectible (HeMUC) Network - 15
2.4 Static Networks - 17
2.5 Dynamic Networks - 22
2.6 Applications - 26
2.7 Summary - 27
3 Optimal Control of Epidemic Information Dissemination over Networks - 29
3.1 Introduction - 30
3.2 Related Work - 35
3.3 Problem Formulation - 37
3.3.1 Epidemic Information Dissemination and SIR model - 37
3.3.2 Self Healing and Vaccine Spreading - 38
3.3.3 Fluid Analysis of SIR model - 39
3.3.4 Optimal Control - 40
3.3.5 Early-stage Analysis - 42
3.4 Information Dissemination in Mobile Networks - 43
3.4.1 Optimal Control - 45
3.4.2 Early-stage Analysis - 47
3.4.3 Performance Evaluation - 49
3.5 Information Dissemination in Generalized Social Networks - 54
3.5.1 Optimal Control - 58
3.5.2 Early-stage Analysis - 59
3.5.3 Performance Evaluation - 61
3.6 Traffic and Reliability Tradeoffs for Epidemic Routing - 66
3.6.1 Global Timeout Scheme - 70
3.6.2 Antipacket Dissemination Scheme - 72
3.6.3 Performance Evaluation - 75
3.7 Summary - 78
4 Intentional Attack and Fusion-based Defense Strategy in ComplexNetworks - 79
4.1 Introduction - 80
4.2 System Model - 83
4.2.1 Intentional Attack - 83
4.2.2 Node Level Defense: Local Detection - 83
4.2.3 Network Level Defense: Surveillance and Quarantine - 84
4.2.4 Network Resilience - 84
4.3 Fusion-based Defense Analysis - 85
4.4 Game-theoretic Analysis - 89
4.5 Performance Evaluation - 92
4.6 Summary - 95
5 Rate-Delay Enhanced Multipath Transmission Scheme via Network
Coding in Multihop Networks - 96
5.1 Introduction - 96
5.2 System Model - 98
5.3 Rate-delay Tradeoffs - 101
5.4 Performance Evaluation - 104
5.5 Summary - 106
6 Conclusion - 108
Bibliography - 110
dc.language.isoen
dc.subject疾病學zh_TW
dc.subject資料傳輸zh_TW
dc.subject動態拓樸zh_TW
dc.subject複雜網路zh_TW
dc.subject資訊散佈zh_TW
dc.subject免疫學zh_TW
dc.subject信息傳遞zh_TW
dc.subject有害軟體散播zh_TW
dc.subject多路徑傳輸zh_TW
dc.subject網路編碼zh_TW
dc.subject最佳控制zh_TW
dc.subject機會連結zh_TW
dc.subject蓄意攻擊zh_TW
dc.subject傳送速率與延遲權衡zh_TW
dc.subject資料融合式防禦zh_TW
dc.subjectintentional attacken
dc.subjectcomplex networken
dc.subjectdynamic topologyen
dc.subjectdata transportationen
dc.subjectepidemicen
dc.subjectfusion-based defenceen
dc.subjectinformation disseminationen
dc.subjectimmunityen
dc.subjectmessage passingen
dc.subjectmalware propagationen
dc.subjectmultipath transmissionen
dc.subjectnetwork codingen
dc.subjectoptimal controlen
dc.subjectopportunistic linken
dc.subjectrate-delay tradeoffsen
dc.title資訊動態於複雜網路之分析zh_TW
dc.titleInformation Dynamics in Complex Networksen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇育德(Yu T. Su),張寶基(Pao-Chi Chang),林嘉慶(Jia-Chin Lin),鄭士康(Shyh-Kang Jeng)
dc.subject.keyword複雜網路,動態拓樸,資料傳輸,疾病學,資料融合式防禦,蓄意攻擊,資訊散佈,免疫學,信息傳遞,有害軟體散播,多路徑傳輸,網路編碼,最佳控制,機會連結,傳送速率與延遲權衡,zh_TW
dc.subject.keywordcomplex network,dynamic topology,data transportation,epidemic,fusion-based defence,intentional attack,information dissemination,immunity,message passing,malware propagation,multipath transmission,network coding,optimal control,opportunistic link,rate-delay tradeoffs,en
dc.relation.page120
dc.rights.note有償授權
dc.date.accepted2011-07-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
7.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved