Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32661
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃漢邦(Han-Pang Huang)
dc.contributor.authorShu-Wen Yuen
dc.contributor.author俞舒文zh_TW
dc.date.accessioned2021-06-13T04:13:04Z-
dc.date.available2006-07-28
dc.date.copyright2006-07-28
dc.date.issued2006
dc.date.submitted2006-07-24
dc.identifier.citation[1] S. Aoi and K. Tsuchiya, “Stability Analysis of a Simple Walking Model Driven by an Oscillator With a Phase Reset Using Sensory Feedback,” IEEE Trans. On Robotics and Automationl, vol. 22, pp. 391-397, April 2006.
[2] E. Ayyappa, “Normal Human Locomotion, Part 1: Basic Concepts and Terminology,” Journal of Prosthetics and Orthotics, vol. 9, no. 1, pp. 10-17, 1997.
[3] E. Ayyappa, “Normal Human Locomotion, Part 2: Motion, Ground Reaction Force and Muscle Activity,” Journal of Prosthetics and Orthotics, vol. 9, no. 2, pp. 42-57, 1997.
[4] J. S. Bay and H. Hemami, “Modeling of a Neural Pattern Generator with Coupled Nonlinear Oscillators,” IEEE Transactions on Biomedical Engineering, vol. BME-34, no. 4, pp. 279-306, April 1987.
[5] H. Benbrahim, “Biped Dynamic Walking Using Reinforcement Learning,” Ph.D Dissertation, Department of Electrical Engineering, University of New Hampshire, 1996.
[6] T. F. Chan and R. V. Dubey, “A Weighted Least-Norm Solution Based Scheme for Avoiding Joint Limits for Redundant Joint Manipulators,” IEEE Trans. On Robotics and Automation, vol. 11, no. 2, pp. 286-292, April 1995.
[7] C.M. Chew and G.A. Pratt, “A General Control Architecture for Dynamic Bipedal Walking,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 3989–3995, 2000.
[8]Y. Choi, B. J. You, and S. R. Oh, “On the Stability of Indirect ZMP Controller for Biped Robot Systems,” IEEE/RSJ Int. Conf. on Intelligent Robots and System, pp. 1966-1971, 2004.
[9] J. M. Donelan, D. W. Shipman, R. Kram, and A. D. Kuo, “Mechanical and Metabolic requirements for Active Lateral Stabilization in Human walking,” Journal of Biomechanics, pp. 827-835, 2004.
[10] E.R. Dunn and R.D. Howe, “Foot Placement and Velocity Control in Smooth Bipedal Walking,” Proc. IEEE Int. Conf. on Robotics and Automation, vol. 1, pp. 578-583, April 1996.
[11] K. Erbatur, A. Okazaki, and K. Obiya, “A Study on the Zero Moment Point Measurement for Biped Walking Robots,” 7th Int Workshop on Advanced Motion Control, pp. 431 – 436, July 2002.
[12] Y. Fujimoto, S. Obata, and A. Kawamura, “Robust Biped Walking with Active Interaction Control between Foot and Ground,” Proc. IEEE Int. Conf. on Robotics and Automation, vol. 3, pp. 2030-2035, May 1998.
[13] A. Goswami, “Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point,” Int. Journal of Robotics Research, vol. 18, no. 6, pp. 523-533, 1999.
[14] D. H. Gottlieb, “Robots and Topology,” Proc. IEEE Int. Conf. on Robotics and Automation, San Francisco, California, 1986, pp. 1689-1691.
[15] T. Hirano, T. Sueyoshi, and A. Kawamura, “Development of ROCOS (Robot Control Simulator)-Jump of Human-type Biped Robot by the Adaptive Impedance Control,” 6th Int. Workshop on Advanced Motion Control, pp. 606 - 611, 2000.
[16] E. T. Hsiao and S. N. Robinovitch, “Biomechanical Influences on Balance Recovery by Stepping,” Journal of Biomechanics, pp. 1099-1106, 1999.
[17] Q. Huang, S. Sugano, and K. Tanie, “Stability Compensation of a Mobile Manipulator by Manipulator Motion: Feasibility and planning,” Advanced Robotics, vol. 13, no. 1, pp. 25–40, 1999.
[18] Q. Huang and K. Yokoi, “Balance Control of a Biped Robot Combining Off-line Pattern with Real-time Modification,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 3346-3352, 2000.
[19] Q. Huang and K. Yokoi, “Planning Walking Patterns for a Biped Robot,” IEEE Trans. on Robotics and Automation, vol. 17, no. 3, pp. 280-289, June 2001.
[20] S. Kagami, “A Fast Dynamically Equilibrated Walking Trajectory Generation Method of Humanoid Robot,” Autonomous Robots, vol. 12, no. 1, pp. 71-82, 2002.
[21] S. Kagami, M. Mochimaru, Y. Ehara, N. Miyata, K. Nishiwaki, T. Kanade, and H. Inoue, “Measurement and Comparison of Human and Humanoid Walking,” Proc. IEEE Int. Conf. Symposium on Computational Intelligence in Robotics and Automation, vol.2, pp. 918- 922, 2003.
[22] S. Kajita, F. Kanehiro, and K. Kaneko, “Resolved Momentum Control: Humanoid Motion Planning based on the Linear and Angular Momentum,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, vol. 2, pp. 1644-1650, July 1993.
[23] S. Kajita and K. Tani, “Experimental Study of Biped Dynamic Walking in the Linear Inverted Pendulum Mode,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 2885-2819, 1995.
[24] S. Kajita, O. Matsumoto, and M. Saigo, “Real-time 3D Walking Pattern Generation for a Biped Robot with Telescopic Legs,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 2299-2306, May 2001.
[25] S. Kajita, F. Kanehiro, and K. Kaneko, “A Realtime Pattern Generation for Biped Walking, ” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 31-37, May 2002.
[26] S. Kajita, F. Kanehiro, and K. Kaneko, “Biped Walking Pattern Generation by Using Preview Control of Zero-Moment Point,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 1620-1626, Sep. 2003.
[27] F. Kanehiro, Y. Tamiya, M. Inaba, and H. Inoue, “Developmental Methodology for Building Whole Body Humanoid System,” Proc. IROS’99 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, vol.2, pp. 1210 - 1215, 1999.
[28] S. Kitamura, Y. Kurematsu, and M. Iwata, “Motion Generation of a Biped Locomotive Robot Using an Inverted Pendulum Model and Neural Networks,” Proc. IEEE Int. Conf. on Decision and Control, vol.6, pp. 3308 – 3312, Dec. 1990.
[29] C. A. Klein, C. J. Caroline, and S. Ahmed, “A New Formulation of the Extended Jacobian Method and its Use in Mapping Algorithmic Singularities for Kinematically Redundant Manipulators,” IEEE Trans. on Robotics and Automation, vol. 11, no. 1, pp. 50-55, February 1995.
[30] C. A. Klein and C.H. Huang, “Review of Pseudoinverse Control for Use with Kinematically Redundant Manipulators,” IEEE Trans. systems, Man, and Cybernetics, vol. 13, pp. 245-250, 1983.
[31] A.L. Kun and T.W. Miller, “Adaptive Dynamic Balance of a Biped Robot Using Neural Networks,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 240–245, 1996.
[32] O. Kurt and K. Erbatur, “Biped Robot Reference Generation with Natural ZMP Trajectories,” 9th Int. Workshop on Advanced Motion Control, pp. 403-410, 2006.
[33] J. Y. Lee, M. S. Kim, and J. J. Lee, “Multi-Objective Walking Trajectories Generation for a Biped Robot,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3853-3858, Oct. 2004.
[34] Q. Li, A. Takanishi, and I. Kato, “Learning Control Compensative Trunk Motion for a Biped Walking Robot Based on ZMP Stability Criterion,” IEEE/RSJ Int. Conf. on Intelligent Robots and System, pp. 597–603, 1992.
[35] A. Liegeois, “Automatic Supervisory Control of the Configuration and Behavior of Multibody Mechanisms,” IEEE Trans. systems, Man, and Cybernetics, vol. 7, no. 12, 1997.
[36] C.S. Lin, P. R. Chang, and J.Y. Luh, “Formulation and Optimization of Cubic Polynomial Joint Trajectories for Industrial Robots,” IEEE Trans. On Automatic Control, vol. AC-28m, no. 12, pp. 1066-1073, Dec. 1983.
[37] T. McGeer, “Passive Walking with Knees,” Proc. IEEE Int. Conf. on Robotics and Automation, vol.3, pp. 1640–1645, 1990.
[38] H. Minakataand Y. Hori, “Realtime Speed-changeable Biped Walking by Controlling the Parameter of Virtual Inverted Pendulum,” IEEE IECON’94, Bologna, pp. 1009-1014, 1994.
[39] M. Morisawa, S. Kajita, and K. Kaneko, “Pattern Generation of Biped Walking Constrained on Parametric Surface, ”Proc. IEEE Int. Conf. on Robotics and Automation, pp. 2416-2421, April 2005.
[40] A. Morishima, Hun-ok Lin, and A. Takanishi, “Development of a Humanoid Robot Having 2-DOF Waist and 2-DOF Trunk,” Proc. IEEE-RAS Int. Conf. on Humanoid Robots, pp. 333 – 338, Dec. 2005.
[41] K. Nagasaka, H. Inoue, and M. Inaba, “Dynamic Walking Pattern Generation for a Humanoid Robot Based on Optimal Gradient Method,” Proc. IEEE Int. Conf. on System Cybern, vol. 6, pp. 908- 913, 1999.
[42] K. Nagasaka, Y. Kuroki, S. Suzuki, and Y. Itoh, “Integrated Motion Control for Walking, Jumping and Running On a Small Bipedal Entertainment Robot,” Proc. ICRA’04 IEEE Int. Conf. on Robotics and Automation, vol.4, pp. 3189 - 3194, 2004.
[43] Y. Nakamura and H. Hanafusa, “Inverse Kinematics Solutions with Singularity Robustness for Robot Manipulator Control,” ASME Journal of Dynamic Systems, Measurement and Control, 108, pp. 163-171, 1986.
[44] D. N. Nenchev, “Redundancy Resolution through Local Optimization: a Review,” Journal of Robotic Systems, pp. 769-798, 1989.
[45] J. H. Park, “Impedance Control for Biped Robot Locomotion,” IEEE Trans. On Robotics and Automation, vol. 17, no. 6, pp. 870-882, Dec. 2001.
[46] J. H. Park and H. C. Cho, “An On-line Trajectory Modifier for the Base Link of Biped Robots to Enhance Locomotion Stability,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 3353-3358, 2000.
[47] F. Pfeiffer, K. Lőffler, and M. Gienger, “Computer System and Control of Biped Johnnie,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 4222-4227, April 2004.
[48] M. Rostami and G. Bessonnet, “Impactless Sagittal Gait of a Biped Robot During the Single Support Phase, ” Proc. IEEE Int. Conf. on Robotics and Automation, vol.2, pp. 1385–1391,1998.
[49] J. Rose and J. G. Gamble, “Human Walking,” Wlliams & Wikins, 2e, pp. 3-43, 1993.
[50] L. Roussel, C. Canudas-de-Wit, and A. Goswami, “Generation of Energy Optimal Complete Gait Cycles for Biped Robots,” Proc. IEEE Int. Conf. on Robotics and Automation, vol.3, pp. 2036–2041, 1998.
[51] F. M. Silva and J. A. T. Machado, “Energy Analysis During Biped Walking,” Proc. IEEE Int. Conf. on Robotics and Automation, vol.1, pp.59–64,1999.
[52] T. Sugihara, and Y. Nakamura, “Whole-body Cooperative Balancing of Humanoid Robot Using COG Jacobian,” IEEE/RSJ Int. Conf. on Intelligent Robots and System, vol. 3, pp. 2575 - 2580, 2002.
[53] T. Sugihara, “Mobility Enhancement Control of Humanoid Robot based on Reaction Force Manipulation via Whole Body Motion,” Ph.D Dissertation, Department of Mechano-Engineering, University of Tokyo, 2003.
[54] G. Tevatia and S. Schaal, “Inverse Kinematics for Humanoid Robots,” in Proc. IEEE Int. Conf. Robotics and Automation, pp. 294-299, April 2000.
[55] Y. Umetani, K Yoshida, “Resolved Motion Rate Control of Space Manipulators with Generalized Jacobian Matrix,” IEEE Trans. On Robotics and Automation, vol. 5, pp. 303 - 314, June 1989.
[56] M. Vukobratovic and O. Timcenko, “Contributions to the Synthesis of Biped Gait,” IEEE Trans. Biomed. Eng. BME-16, pp. 1-6, 1969.
[57] M. Vukobratovic, “Zreo-Moment Point – Thirty Five Years of Its Life,” Int. Journal of Humanoid Robotics, vol. 1, no. 1, pp. 157-173, 2004.
[58] M. Vukobratovic, D. Andric, and B. Borovac, “How to Archieve various Gait Patterns from Single Nominal,” Int. Journal of Advanced Robotic Systems, vol. 1, no. 2, pp. 99-108, 2004.
[59] M. Xie, “Fundamentals of Robotics: Linking Perception to Action,” World Scientific, Series in Machine Perception Artificial Intelligence, vol.54, 2003.
[60] J. Yamaguchi, A. Takanishi, and I. Kato, “Development of a Biped Walking Robot Compensating for Three-Axis Moment by Trunk Motion,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 561-566, July 1993.
[61] J. Yamaguchi, E. Soga, S. Inoue, and A. Takanishi, “Development of a Bipedal Humanoid Robot- Control Method of Whole Body Cooperative Dynamic Biped Walking,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 361-367, 1999.
[62] H. Zghal, R. V. Dubey, and Euler, “Efficient Gradient Projection Optimization for Manipulators with Multiple Degree of Redundancy,” Proc. IEEE Int. Conf. on Robotics and Automation, vol. 2, pp. 1006-1011, 1990.
[63] C. Zhu, Y. Tomizawa, X. Luo, and A. Kawamura, “Biped Walking with Variable ZMP, Frictional Constraint, and Inverted Pendulum Model,” Proc. IEEE Int. Conf. on Robotics and Biomimetics, pp. 425-430, Aug. 2004.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32661-
dc.description.abstract本文之主要目的為增強人型機器人在行走時的穩定性。透過結合ADAMS/Control和MATLAB/Simulink的動態模擬器,進而模擬和分析人型機器人的行走狀態以及其穩定性。並類比於人類步行的模式,分析影響機器人行走的各個因素,做一整合性的探討。
在機器人步伐行走方面,首先藉由分析機器人行走在不同環境下的步伐參數,以及透過零矩點(ZMP)的軌跡規劃來達到平滑的行走模式。模擬的結果顯示,適當的步伐參數以及零矩點規劃能大幅降低能量的耗損並增加機器人在行走時的穩定性。
在機器人行走的即時控制上,藉由模仿人類的運動模式,進而發展關聯性控制(correlation-based control),透過所發展的控制方法可依據零矩點的回授訊號,即時改善人形機器人在行走時的穩定性。本文另發展一套RWLS(Robust Weighted Least-Squares)的演算法,以求得穩定的逆運動學(inverse kinematics)之解。最後透過動態模擬器的模擬結果加以驗證。
zh_TW
dc.description.abstractThis thesis aims at the mobility enhancement of a humanoid robot. Through co-simulation method implemented by using ADAMS/Controls and MATLAB/Simulink, we analyze the kinematics and dynamics of a humanoid robot. Moreover, the analysis of the walking factors on different environment and the walking pattern generation analog to human locomotion will be thoroughly discussed.
In this thesis, we developed a simple method to generate the foot trajectory even in different environment. And a brief investigation of foot parameters is made. In order to achieve smooth walking pattern generation, the Zero-Moment Point (ZMP) trajectory planning is proposed in this thesis. With simulation results, we can tell the energy consumption decreases and the robot walks more stably with planning ZMP trajectory and suitable foot parameters.
We also develop a correlation-based control (CBC) to realize on-line COG trajectory planning. The correlation-based control is designed by the correlation of those factors which can inference the walking stability. Moreover, the RWLS (Robust Weighted Least-Squares) is also developed for the reliable inverse kinematics solution. Finally, the simulation results display that our algorithms can efficiently enhance the stability of the humanoid robot.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:13:04Z (GMT). No. of bitstreams: 1
ntu-95-R94522814-1.pdf: 1973850 bytes, checksum: 427f8f3c2bad9d1b19074bbbbcdff454 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsContent iii
List of Tables v
List of Figures vi
Nomenclature viii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Related Works 2
1.2.1 Referential Trajectory Generation 3
1.2.2 Controller Design 4
1.3 Thesis Organization 6
1.4 Contributions 8
Chapter 2 Background Knowledge 10
2.1 Human Locomotion 11
2.2 Walking Stability 12
2.2.1 Static Walking 12
2.2.2 Zero-Moment Point (ZMP) 13
2.3 Forward Kinematics 15
2.4 Inverse Kinematics 15
2.4.1 Singularity Avoidance 16
2.4.2 Joint Limit Avoidance 19
2.4.3 Summary 22
Chapter 3 Humanoid Robot System Model 23
3.1 Modeling 24
3.2 RWLS Inverse Kinematics 26
3.3 Whole Body Motion Jacobian Construction 30
3.3.1 COG Jacobian 31
3.3.2 Universal Jacobian 37
3.3.3 Summary 39
Chapter 4 ZMP Trajectory Planning 41
4.1 Foot Trajectory 43
4.1.1 Foot Trajectory Generation 43
4.1.2 Analysis of Foot Parameters 46
4.1.3 Summary 51
4.2 ZMP Trajectory Planning 52
4.3 Simulation Results 55
4.4 Summary 59
Chapter 5 COG Trajectory Generation via Correlation-based Control 60
5.1 Correlation-based Control 61
5.1.1 Sampling Stage 63
5.1.2 Learning Stage 69
5.2 Vertical COG Motion 74
5.3 Simulation Results 75
5.4 Summary 84
Chapter 6 Conclusions 89
6.1 Conclusions 89
6.2 Future Works 90
References 92
Appendix 98
A. The Kinematics of The Humanoid Robot 98
dc.language.isoen
dc.subject人型機器人zh_TW
dc.subject步態zh_TW
dc.subjectWalking Patternen
dc.subjectHumanoid Roboten
dc.title人型機器人步態分析及控制zh_TW
dc.titleWalking Pattern Analysis and Control of a Humanoid Roboten
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee施慶隆(Ching-Long, Shih),蔡清元(Tsing-Iuan Tsay)
dc.subject.keyword人型機器人,步態,zh_TW
dc.subject.keywordHumanoid Robot,Walking Pattern,en
dc.relation.page99
dc.rights.note有償授權
dc.date.accepted2006-07-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved