請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32648
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李慧梅 | |
dc.contributor.author | Haw-Jen Sun | en |
dc.contributor.author | 孫浩仁 | zh_TW |
dc.date.accessioned | 2021-06-13T04:12:51Z | - |
dc.date.available | 2006-07-28 | |
dc.date.copyright | 2006-07-28 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-24 | |
dc.identifier.citation | 參考文獻
1.ANSI/AHAM AC-1-1-2002 Association of Home Appliance Manufacturers Method for Measuring Performance of Portable Household Electric Cord-Connected Room Air Cleaners 2. Bohgard, M. ,Eklund, P., “Effect of an ionizer on sub-micron particles in indoor air,” J. Aerosol Science, 29, S1313-S1314(1998) 3. Brown, R. C. “Aerosol filtration: An Integrated Approach to the Theory and Applications of Fibrous Filters,” Oxford: Pergamon Press(1993) 4. Chen, B. T., Namenyi, J., Yeh, H. C., Mauderly, J. L., Cuddihy, R. G.., “Physical characterization of cigarette smoke aerosol generated from a Walton smoke machine,” Aerosol Science and Technology, 12, 364-375(1990) 5. Chen, C. C., Huang, S. H., “The effects of particle charge on the performance of a filtering facepiece,” American Industrial Hygiene Association Journal, 59, 227-233(1998) 6. Dawson, D. A., Trass, O., “Mass transfer at rough surfaces,” Int. J. Heat Mass Transfer, 15, 1317-1336(1972) 7. Eduard, W., Sandven, P., Levy, F., “Serum IgG antiboidies to mold spores in two Norwegian populations: relationhip to respiratory and worked-related symptoms,” American Journal of Industrial Medicine, 24, 207-222(1993) 8. Godish, T., Indoor air pollution control, Lewis Publishers, INC(1989) 9. Grabarczyk, Z., “Effectiveness of indoor air cleaning with corona ionizers,” Journal of Electrostatics, 51-52, 278-283(2001) 10. Hinds, W. C., Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd Ed., John Wiley & Sons, INC.(1999) 11. Hines, Anthony L., Ghosh, Tushar K., Loyalka, Sudarshan K., Warder Jr, Richard C., Indoor Air Quality and Control, Prentice-Hall, INC. (1993) 12. Jones, A. P., “Indoor Air Quality and Health,” Atmospheric Environment, 33, 4535- 4564(1999) 13. Kamens, R., Lee, C. T., Weiner, R., Leith, D., “A study to characterize indoor particles in three non-smoking homes,” Atmospheric Environment, 25, 939-948(1991) 14. Lai, A. C. K. and Nazaroff, W. W., “ Modeling indoor particle deposition from turbulent flow onto smooth surfaces,” J. Aerosol Science, 31, 463-476(2000) 15. Lai, A. C. K., Byrne, M. A., Goddard, A. J. H., “Aerosol deposition in turbulent channel flow on a regular array of three-dimensional roughness elements,” J. Aerosol Science, 32, 121-137(2001) 16. Lai , A. C. K., Nazaroff, W.W., “Supermicron particle deposition from turbulent chamber flow onto smooth and rough vertical surfaces,” Atmospheric Environment, 39, 4893-4900(2005) 17. Lance, W., “Indoor particles: A Review,” Journal of the Air and Waste Management Association, 46, 98-126(1996) 18. Lathrache, R., Fissan, H., “Enhancement of particle deposition in filters due to electrostatic effects,” Filtration & Separation, 24, 418-422(1987) 19. Lee, B. U., Yermakov, M., Sergey, A. G., “Removal of fine and ultrafine particles from indoor air environments by the unipolar ion emission,” Atmospheric Environment, 38, 4815-4823(2004) 20. Martinac, I., “Small air ions in mechanically ventilated environments,” Ph.D. Thesis, A4-serien 142, Techniska Hgskolan, Falu Bokproduktion, Falun,(1993) 21. Mayya, Y.S., Sapra, B.K., Khan, A., & Sunny, F., “Aerosol removal by unipolar ionization in indoor environments,” J. Aerosol Science, 35, 923-941(2004) 22. Melbostad, E., Eduard, W., Skogstad, A., Sandven, P., Lassen, J., Sostrand, P., Heldal, K., “Exposure to bacterial aerosols and worked-related symptoms in sewage workers,” American Journal of Industrial Medicine, 25, 59-63(1994) 23. Monn, Ch., Fuchs ,A., Hogger, D., Junker, M., Kogelschat, D., Roth, N., Wanner, H. U., “Particle matter less than 10μm(PM10)and fine particles less than 2.5μm(PM2.5): relationships between indoor, outdoor and personal concentrations,” The Science of the Total Environment , 208, 15-21(1997) 24. Offermann, F. J., Sextro, R. G.., Fisk, W. J., Grimsrud, D. T., Nazaroff, W. W., Nero, A. V., Revzan, K. L., Yater, J., “Control of respirable particles in indoor air with portable air cleaners,” Atmospheric Environment, 19, 1761-1771(1985) 25. Shimada, M., Okuyama, K., Kousaka, Y., “Deposition of aerosol particles onto dielectric walls having uniform or nonuniform surface charge distribution,” 3rd International Aerosol Conference Part 2, 801-804(1990) 26. Siegmann , K., Sattler, K., “Aerosol from hot cooking oil, A possible health hazard,” J. Aerosol Science, 27, S493-S494(1996) 27. Su, W. H., “Indoor air pollution,” Resources, Conservation and Recycling, 16, n1-4, 77-91(1996) 28. TSI Model 3025, Ultrafine Condensation Particles Counter Instrument Manual,(1992) 29. TSI Model 3071, Electrostatic Classifier Instrument Manual ,(1990) 30. TSI Model 3076, Constant Output Atomizer Instrument Manual,(1986) 31. 劉美娟,“電蚊香片釋放物之探討”,碩士論文,台大職業醫學與工業衛生研究所,1996 32. 李建坤,“拜香及蚊香燃燒產生之多環芳香烴化合物”,碩士論文,台大公共衛生學研究所,1996 33. 高玫鍾、龍世俊,“燒香對居家室內PM10濃度影響之研究”,氣膠科技國際研討會論文集,280-286,1999 34. 楊心豪,“噴霧劑室內氣膠吸濕成長之研究”,碩士論文,台大環境工程學研究所, 2000 35. 楊慈定、王秋森,“台北都會區室內外細粒徑氣懸微粒特性及污染源之探討”,國科會研究計畫,2000 36. 黃聖修,“小型靜電集塵器之過濾及負載特性之研究”,博士論文,台大職業醫學與工業衛生研究所,2001 37. 鄭博仁,“空氣負離子對室內懸浮微粒去除效率之研究”,碩士論文,台大環境工程學研究所,2004 38. 楊心豪,“帶電濾材對室內懸浮微粒去除效能之研究”,博士論文,台大環境工程學研究所,2005 39. 楊思廉、甘炳陽、戴瑞益、賴義成、王東源,新材料:塑膠,中國化工研究所編印,1969 40. 廖明隆,合成橡膠,台灣文源書局,1982 41. 王松永,木材物理學,國立編譯館,1986 42. 王志方,材料表面測定技術,復漢出版社,1988 43. Brydson, J. A., 范啟明譯,塑膠材料,大中國圖書公司,1989 44. 王秋森、陳時欣,氣膠技術學,新文京開發出版有限公司,2002 45. 維基百科http://zh.wikipedia.org/wiki/ 46. 環保生活資訊網 http://gaia.org.tw/index.htm 李灝銘 國立中央大學 環境工程研究所 博士研究生 室內生物氣膠回顧 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32648 | - |
dc.description.abstract | 目前已知懸浮微粒為室內空氣主要污染物之一,而其控制技術一般可分為過濾移除與靜電去除兩類。本研究的目的為評估在不同的室內材質表面下,材質表面特性對使用空氣負離子(Negative Air Ion, NAI)去除懸浮微粒效率的影響。
NAI為一種帶有電荷,低污染性的物質,本研究利用針尖放電的原理來產生實驗所需的NAI(300000∼500000 ions/cm3)。本研究以硬酯酸為氣膠物種,選取0.3μm與0.03μm二種粒徑分別注入不銹鋼製成的環境模擬箱中進行實驗,再選取七種常見的室內表面材質(三種木材材質(夾板、貼皮、亮面板)、三種塑膠材質(PVC、PP、PE)和橡膠,貼附於模擬箱內壁進行室內環境模擬,探討表面粗糙度和介電常數對ECR值的影響。 在材質表面粗糙度部分,以三種木類材質做比較,其平均表面粗糙度(μm)分別為夾板材質(2.52∼N. D.)、貼皮材質(2.36∼4.67)、亮面材質(0.27∼0.48)。在0.03 μm的情況下,三類木材的ECR分別為夾板材質(158 Lpm)、貼皮材質(140 Lpm)、亮面材質(106 Lpm);而在0.3 μm的情況下,三類木材的ECR分別為木材夾板材質(124 Lpm)、木材貼皮材質(71.7 Lpm)、木材亮面材質(79.9 Lpm)。 在材質介電常數部份,以三種塑膠類材質做比較,其介電常數分別為PVC(2.61∼2.66)、PE(2.26∼2.28)、PP(2.11∼2.13),在0.03 μm的情況下,三類塑膠材質的ECR分別為PVC材質(329 Lpm)、PE材質(361 Lpm)、PP材質(224 Lpm);而在0.3 μm的情況下,三種塑膠材質的ECR分別為PVC材質(245 Lpm)、PE材質(217 Lpm)、PP材質(184 Lpm)。 實驗結果中,材質部分以三種塑膠材質的效果最佳,不銹鋼最差。在粒徑部分,空氣負離子對0.03μm的去除效率大於0.3μm。T50部分則是以粒徑0.03μm較0.3μm快,其中又以塑膠類的T50最短,不銹鋼最長。 | zh_TW |
dc.description.abstract | The suspended particulate is one of the main indoor air pollutants. Generally, the removal methods of the suspended particulate can be classified to filtration and electrostatic collection technologies. The purpose of this work is evaluating that under different indoor textures, how the surface characteristics influence the removal efficiency of indoor suspended particulate with aids of NAI.
In this work, we used negative electric discharge to produce NAI (300000-500000 ions/cm3). Two sizes (0.3 and 0.03 μm) of Stearic acid were selected as the test aerosol to inject into the chamber which was manufactured form stainless steel to imitate indoor environment. We select seven kinds of common indoor materials (three kinds of wood, three kinds of plastics, and rubber) to adhere to the surface of the wall inside the chamber, and evaluate that how dielectric constant and surface roughness influence the ECR value. Regard to texture surface roughness, we compare of three kinds of wood materials, its surface roughness (μm) for splint material is 2.52 – N. D., for stick to leather material is 2.36 - 4.6, and for bright surface material is 0.27 - 0.4 on average. In case of 0.03 μm, the ECR for three kind of wood for splint material is 158 Lpm, for stick to leather material is 140 Lpm, for bright surface material is 106 Lpm; In case of 0.3 μm, the ECR for three kinds of wood for splint material is 124 Lpm, for stick to leather material is 71.7 Lpm , and for bright surface material is 79.9 Lpm, respectively. As regard to material dielectric constant, we compare three kinds of plastics materials, its dielectric constant are 2.61 - 2.6 for PVC, 2.26 - 2.2 for PE, and 2.11 - 2.1 for PP. In case of 0.03 μm, the ECR of three kinds of plastic materials are329 Lpm for PVC material, 361 Lpm for PE material, 224 Lpm for PP material. In case of 0.3 μm, the ECR of three kinds of plastic materials is 245 Lpm for PVC, 217 Lpm for PE, 184 Lpm for PP. The experimental result shows that the three kinds of plastic materials have the best removal efficiency with aid of NAI, while the stainless steel has the lowest one. As regard the particle diameter, the removal efficiency of 0.03 μm-particle is better than that of 0.3 μm-particle with the aid of NAI. Regard to T50, the T50 of 0.03 μm -particle is shortest than that of 0.3μm-particle and that of the three plastic material is shortest, as well as that of the stainless steel is longest. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T04:12:51Z (GMT). No. of bitstreams: 1 ntu-95-R93541103-1.pdf: 941157 bytes, checksum: 407e7f41574d68a80e26715cf99bf579 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 目錄
第一章 前言 1 1-1 研究緣起 1 1-2 研究目的 2 1-3 研究內容與方法 2 第二章 文獻回顧 4 2-1 室內懸浮微粒 4 2-1-1 非生物氣膠 4 2-1-2 生物氣膠 8 2-2 室內懸浮微粒清淨技術 9 2-2-1 過濾移除 9 2-2-2 靜電移除 13 2-2-2-1 靜電吸引理論 13 2-2-2-2 靜電集塵器 16 2-2-2-3 空氣負離子清淨技術 18 2-2-3 可移動式空氣清靜機標準規範 23 2-3 與微粒附著相關之材質表面特性 23 2-3-1 表面粗糙度 23 2-3-2 介電常數 24 2-4 室內環境材質 25 2-4-1 木材材質 25 2-4-2 塑膠材質 28 2-4-3 不銹鋼材質 30 2-4-4 橡膠材質 30 第三章 實驗原理與實驗設備 31 3-1 實驗系統 31 3-1-1 懸浮微粒產生系統 31 3-1-2 室內環境模擬系統 31 3-1-3 微粒沉降計數系統 32 3-2 實驗設備之原理與方法 35 3-2-1 實驗物種與配製 35 3-2-2 實驗條件與數據處理 35 3-2-3 懸浮微粒產生系統 36 3-2-4 室內環境模擬系統 42 3-2-5 微粒沉降計數系統 43 3-2-6 材質表面特性量測系統 44 3-3 操作條件與流程 45 3-4 實驗計算方法與指標參數 47 第四章 結果與討論 49 4-1 實驗物種 49 4-2 室內環境模擬箱測試 51 4-3 實驗結果與分析 53 4-3-1 有機氣膠和無機氣膠濃度衰減和效率差異 53 4-3-1-1 濃度衰減速率 53 4-3-1-2 效率分析 54 4-3-2 不同材質間濃度衰減和效率差異 63 4-3-2-1 濃度衰減速率 63 4-3-2-2 效率分析 65 4-3-2-3 表面粗糙度和ECR 99 4-3-2-4 介電常數和ECR 102 4-4 實驗誤差 104 4-4-1 流量的誤差 104 4-4-2 懸浮微粒產生源的誤差 104 4-4-3 空氣負離子產生源的誤差 104 4-4-4 離子偵測器的誤差 105 4-4-5 UCPC採樣的誤差 105 第五章 結論 107 5-1 結論 107 5-1-1 去除效率 107 5-1-2 有效清淨速率(ECR) 108 5-1-3 表面粗糙度和有效清淨速率(ECR) 108 5-1-4 介電常數和有效清淨速率(ECR) 109 5-1-5 造成各材質結果差異之原因 109 5-2 建議 109 參考文獻 111 | |
dc.language.iso | zh-TW | |
dc.title | 室內材質表面特性對空氣負離子去除懸浮微粒效率之影響 | zh_TW |
dc.title | The influence of surface characteristics of indoor materials on the removal efficiency of suspended particles with the aid of negative air ion | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊心豪,李家偉 | |
dc.subject.keyword | 懸浮微粒,空氣負離子(NAI),T50,ECR, | zh_TW |
dc.subject.keyword | Suspended particulate,,negative air ion( NAI),T50,ECR, | en |
dc.relation.page | 114 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-26 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 919.1 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。