請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32636完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃天偉(Tian-Wei Huang) | |
| dc.contributor.author | Yi-Lin Lee | en |
| dc.contributor.author | 李易霖 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:12:40Z | - |
| dc.date.available | 2006-07-28 | |
| dc.date.copyright | 2006-07-28 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-24 | |
| dc.identifier.citation | References
[1] J. C. Sarker, and J. E. Purviance, “Yield sensitivity of HEMT circuits to process parameter variations,” IEEE Trans. Microwave Theory Tech., vol. 40, no. 7, pp. 1572-1576, July 1992. [2] S. Krupenin, R. R. Blanchard, M. H. Somerville, J. A. Del Alamo, K. G. Duh, and P. C. Chao, “Physical mechanisms limiting the manufacturing uniformly of millimeter-wave In-P HEMT,” IEEE Trans. Electron Devices, vol. 47, no. 8, pp. 1560-1565, Aug. 2000. [3] A. MacFarland, J. Purviance, D. Loescher, K. Diegert, and T. Ferguson, “Centering and tolerancing the components of microwave amplifiers,” in IEEE MTT-S Int. Microwave Symp. Dig., 1987, vol. 87, no. 2, pp. 633-636. [4] J. Carroll, and K. Chang, “Statistical computer-aided design for microwave circuits,” IEEE Trans. Microwave Theory Tech., vol. 44, no. 1, pp. 24-32, Jan. 1996. [5] S. W. Director, P. Feldmann, and K. Krishna, “Statistical integrated circuit design,” IEEE J. Solid-State Circuits, vol. 28, no. 3, pp. 193-202, Mar. 1993. [6] R. Cooke, and J. Purviance, “Statistical design for microwave systems,” in IEEE MTT-S Int. Microwave Symp. Dig., 1991, vol. 2, pp. 679-682. [7] G. Scotti, P. Tommasino, and A. Trifiletti, “MMIC yield optimization by design centring and off-chip controllers,” IEE Proc.-Circuits Devices Syst., vol. 152, no. 1, pp. 54-60, Feb. 2005. [8] J. Purviance, W. Brakensiek, D. Monteith, and T. Ferguson, “Matching structures for high yield amplifier design,” in IEEE MTT-S Int. Microwave Symp. Dig., 1988, vol. 1, no. 25-27, pp. 375-378. [9] D. H. Monteith, and J. E. Purviance, “High-yield narrow-band matching structures,” IEEE Trans. Microwave Theory Tech., vol. 36, no. 12, pp. 1621-1628, Dec. 1988. [10] W. Brakensiek, J. Purviance, and T. Ferguson, “High yield matching structures for 20% bandwidth microwave amplifiers,” in IEEE MTT-S Int. Microwave Symp. Dig., 1989, vol. 1, pp. 431-434. [11] C. Sheng, and Y. Wang, ”High yield microwave matching network design and application,” in Proc. Int. Circuits and Systems, 1991, China, vol. 2, pp. 655-658, Jun. 1991. [12] G. V. Petrov, “Statistical analysis of microwave balanced amplifiers,” in IEEE MTT-S Int. Microwave Symp. Dig., 1983, vol. 83 no. 1, pp. 206-208. [13] Vertex42, http://www.vertex42.com/. [14] 黃益群 “具高度可測試性之射頻放大器分析 The analysis of high testability RF amplifiers” 國立台灣大學電信工程研究所碩士論文, 民國94年 [2005]. [15] 忻士傑 “應用於K頻段與超寬頻之矽基低雜訊放大器的研製 Design of silicon-based low noise amplifier for K-Band and ultra-wideband applications” 國立台灣大學電信工程研究所碩士論文, 民國94年 [2005]. [16] K. Kurokawa, “Power waves and the scattering matrix,” IEEE Trans. Microwave Theory Tech., vol. 13, no. 2, pp. 194-202, Mar. 1965. [17] G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design, 2nd ed: Prentice-Hall, Inc., 1997. [18] D. M. Pozar, Microwave Engineering, 2nd ed: John Wiley & Sons, Inc., 1998. [19] G. D. Vendelin, A. M. Pavio, and U. L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques, John Wiley & Sons, Inc., 1990. [20] B. Razavi, RF Microelectronics, Prentice-Hall, Inc., 1998 [21] R. S. Engelbrecht, and K. Kurokawa, “A wide-band low noise L-Band balanced transistor amplifier,” IEEE Proc., vol. 53, no. 3, pp. 237-247, Mar. 1965. [22] B. Razavi, “A 60-GHz CMOS receiver front-end,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 17-22, Jan. 2006. [23] S. C. Cripps, RF Power Amplifiers for Wireless Communications. Norwood, MA: Artech House, Inc., 1999. [24] C. Potter, “System analysis of a W-CDMA base-station PA employing adaptive digital predistortion,” in IEEE MTT-S Int. Microwave Symp. Dig., 2002, vol. 1, no. 2-7, pp. 21-24. [25] J. Shumaker, R. Basset, and A. Skuratov, “High-power GaAs FET amplifiers: push-pull versus balanced configurations,” Applied Microwave & Wireless, vol. 14, no. 5 pp. 26-32, May 2002. [26] A. R. Kerr, “On the noise properties of balanced amplifiers,” IEEE Microwave and Guided Wave Lett., vol. 8, no. 11, pp. 390-392, Nov. 1998. [27] H. Wang, R. Lai, S. Y. Chen, and J. Berenz, “A monolithic 75-110 GHz balanced IN-P-based HEMT amplifier,” IEEE Microwave and Wireless Components Lett., vol. 3, no. 10, pp. 381-383, Oct. 1993. [28] M. Aust, H. Wang, M. Biedenbender, R. Lai, D. C. Streit, P. H. Liu, G. S. Dow, and B. R. Allen, “A 94-GHz monolithic balanced power amplifier using 0.1- | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32636 | - |
| dc.description.abstract | 當大量生產時,良率是一個十分重要的考量要素,而製造良率的提升也意味著生產成本的降低。對於射頻電路而言,匹配網路是一個影響電路效能的重要關鍵,而匹配網路會對良率帶來巨大的影響已被證實[8]。然而,僅靠匹配電路架構的選擇無法確保高良率的設計。
本論文的第一個部份著眼於兩階無損耗集總元件的匹配網路之良率分析。我們使用蒙地卡羅方法畫出每一種匹配架構於史密斯圖上的良率分佈,這些結果給電路設計者一個導引去選擇匹配網路。此外,我們提出了一個以計算史密斯圖上匹配路徑長度的方法來估計良率,這使得設計者可以在電路設計之初時加入良率的考量。 第二部份我們設計了一顆應用於Q頻段的平衡式放大器,而此放大器使用標準90奈米CMOS(金氧半互補式)製程。平衡式放大器擁有絕佳的輸入及輸出回返損耗(return loss),以良率的觀點看來是一種良好的電路架構。量測結果顯示此放大器在Q頻段有非常寬頻的增益響應和良好的輸入/輸出回返損耗。同時,其中的單端放大器良測結果顯示其擁有極平坦且寬頻的增益響應及不錯的輸出功率。藉著使用薄膜微帶線(thin-film microstrip)的技術,這兩個放大器大幅的縮小了晶片面積。就我們目前所知,這是第一顆以標準CMOS製程所設計的平衡式放大器,而這也展示了CMOS製程可適用於毫米波元件設計的能力。 | zh_TW |
| dc.description.abstract | Yield is an essential consideration while volume production and the improvement of fabrication yield means that the production cost can be reduced. For radio frequency (RF) circuits, matching network is the key of circuit performance, and it has been proved that the matching network has strong relationship with yield [8]. However, only selecting matching topology cannot guarantee a high-yield design.
The first part of this thesis is focused on the yield analysis of two-element-lossless- lumped matching networks. We use the Monte Carlo method to plot the yield distributions in Smith chart for each matching topology. These provide the circuit designer a guideline to select matching network. Moreover, we propose a method to estimate yield from the calculation of matching path length in Smith chart. By this approach, the designer can choose the matching points with yield consideration at the initial design stage. The second part is a Q-band balanced amplifier design with the standard bulk 90-nm CMOS process. Balanced amplifier has excellent input and output return losses, and it is a good structure from the perspective of yield. The measured results show this balanced amplifier has a very broadband gain response and good return losses at Q-band. A single-ended amplifier is fabricated as well for verification, and it shows a very flat and broadband gain response with reasonable output power. With the thin-film microstrip technique, both amplifiers have very compact sizes. To our best knowledge, this is the first balanced amplifier employing the standard bulk CMOS technology. Our work shows that the standard bulk CMOS process is another candidate for MMW bands front-end component design. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:12:40Z (GMT). No. of bitstreams: 1 ntu-95-R93942009-1.pdf: 7217458 bytes, checksum: 8b4d3db33f24537583df6a8b785cc293 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
1.1 Motivation………………………………………………………..1 1.2 Literature Survey....…………..……………………...…………...3 1.3 Contributions …......……………………………………………...9 1.4 Thesis Organization .....................................................................10 Chapter 2 Fundamentals 11 2.1 Fundamentals of Yield................................................................11 2.1.1 Basic Concept of Monte Carlo Method ............................11 2.1.2 Factors of Yield and Optimization Design........................13 2.2 Fundamentals of Microwave Amplifier………………………..15 2.2.1 Stability ………………………………………………….16 2.2.2 Power Gains ……………………………………………..19 2.2.3 Linearity …………………………………………………23 2.2.4 Noise……………………………………………………..26 2.3 Fundamentals of Balanced Amplifier...………………………...28 2.3.1 Balanced Amplifier Overview…………..……………….28 2.3.2 Fundamentals of 3-dB Quadrature Coupler …….……….31 2.3.3 Operational Principle of Balanced Amplifier..………..…34 Chapter 3 Yield Distributions and Estimation for Two-Element- Lossless-Lumped Matching Networks in Smith Chart 39 3.1 Overview……………………………………………………….39 3.2 Yield Distributions on Smith Chart ……………………………42 3.3 A Smith Chart Based Method to Estimate Yield………….……47 3.3.1 Calculation of Matching Path Length …………………...48 3.3.2 Matching Path Length versus Yield inside Unit Conductance Circle ....................................................…...50 3.3.3 Matching Path Length versus Yield outside Unit Conductance Circle ……………………………………...52 3.3.4 Yield Estimations in Other Regions of Smith Chart …….53 3.4 Application……………………………………………………..57 3.5 Summary……………………………………………………….59 Chapter 4 Q-band Balanced Amplifier using 90-nm Bulk CMOS Technology 61 4.1 Overview……………………………………………………….61 4.2 Introduction of Bulk CMOS 90-nm Technology..……………..62 4.2.1 CMOS Process Overview..…...……………………....….62 4.2.2 Thin-Film Microstrip Line on CMOS Process ……..…...63 4.2.3 Device Modeling………………………………………...66 4.3 Q-Band Single-ended Amplifier………..……………………...68 4.3.1 Circuit Design.………………………..…………...……..68 4.3.2 Simulation Results.………………………………………71 4.3.3 Measurement Results ……………………………………76 4.4 Q-band Balanced Amplifier……………………………………81 4.4.1 3-dB Quadrature Coupler Design……………….……….81 4.4.2 Simulation Results.………………………………………85 4.4.3 Measurement Results ……………………………………89 4.5 Discussion……………………………………………………...94 4.6 Summary……………………………………………………….98 Chapter 5 Conclusions 101 References 105 | |
| dc.language.iso | en | |
| dc.subject | 平衡式放大器 | zh_TW |
| dc.subject | 集總元件匹配 | zh_TW |
| dc.subject | 良率 | zh_TW |
| dc.subject | 金氧半互補式電晶體 | zh_TW |
| dc.subject | Yield | en |
| dc.subject | CMOS | en |
| dc.subject | Balanced Amplifier | en |
| dc.subject | Lumped-Element Matching Networks | en |
| dc.title | 以集總元件為匹配架構之良率分析與應用於Q頻段之CMOS平衡式放大器研製 | zh_TW |
| dc.title | Yield Analysis of Lumped-Element Matching Networks and A Q-Band CMOS Balanced Amplifier Design | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王暉(Huei Wang),陳怡然(Yi-Jan Chen) | |
| dc.subject.keyword | 集總元件匹配,良率,金氧半互補式電晶體,平衡式放大器, | zh_TW |
| dc.subject.keyword | Lumped-Element Matching Networks,Yield,CMOS,Balanced Amplifier, | en |
| dc.relation.page | 109 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-26 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 7.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
