請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32615完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顏家鈺(Jia-Yush Yen) | |
| dc.contributor.author | Yi-Lin Lee | en |
| dc.contributor.author | 李宜霖 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:12:21Z | - |
| dc.date.available | 2006-07-28 | |
| dc.date.copyright | 2006-07-28 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-24 | |
| dc.identifier.citation | [1] Ronald, E.P., Magnetically Levitated Micro-Robotics. 1988, The University of Texas at Austin.
[2] Earnshaw, S., On the Nature of the Molecular Forces which Regulate the Constitution of the Luminferous Ether. Vol. 7. 1842: Trans. Camb. Phil. Soc. 97-112. [3] Simon, M.D., L.O. Heflinger, and A.K. Geim, Diamagnetical ly stabilized magnet levitation. 2001. [4] Lee, M.G., S.Q. Lee, and D.-G. Gweon, Analysis of Halbach magnet array and its application to linear motor. Mechatronics, 2004. 14(1): p. 115-128. [5] Han, Q., C. Ham, and R. Phillips, Four- and eight-piece Halbach array analysis and geometry optimisation for maglev. Electric Power Applications, IEE Proceedings-, 2005. 152(3): p. 535-542. [6] Kim, W.-J., D.L. Trumper, and J.H. Lang, Modeling and vector control of planar magnetic levitator. Industry Applications, IEEE Transactions on, 1998. 34(6): p. 1254-1262. [7] Bonivento, C., L. Gentili, and L. Marconi, Balanced robust regulation of a magnetic levitation system. Control Systems Technology, IEEE Transactions on, 2005. 13(6): p. 1036-1044. [8] Cheng, D.K., Field and Wave Electromagnetics. Second ed. 1989: Addison-Wesley publishing company. [9] Trumper, D.L., S.M. Olson, and P.K. Subrahmanyan, Linearizing control of magnetic suspension systems. Control Systems Technology, IEEE Transactions on, 1997. 5(4): p. 427-438. [10] Lai, Y.C. and J.Y. Yen, A Research in the Application of Permanent Magnets and Solenoids to the Planar MAGLEV System Design, in INTERMAG 2003 Conference. 2003: Boston, USA. [11] Lai, Y.C. and J.Y. Yen, Design and implementation of a novel 6-DOF planar maglev positioning system, in International Magnetics Conference 2005 (INTERMAG 2005). 2005. [12] Chen, M.Y., Analysis, Modeling and Controller Design of a High-Precision Magnetically Levitated Positioning System. 2003, National Taiwan University. [13] Franklin, G.F., J.D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems. Fourth Edition ed. 2002: Prentice Hall. p215-p224. [14] 張道弘, PID控制理論與實務. 1995: 全華科技圖書股份有限公司. [15] Astrom, K.J., Computer-Controlled Systems. Third Edition ed. Theory and Design. 1997: Prentice Hall. p306-p320. [16] Khalil, H.K., Nonlinear Systems. Third Edition ed. Theory and Design. 2000: Prentice Hall. p552-p575. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32615 | - |
| dc.description.abstract | 本篇論文提出一種新式的六個自由度磁浮平台系統與其控制方法。基本的設計概念是藉由螺線管排列而成的陣列(定子)創造出一個穩定的區域,使得其上的磁鐵平台(轉子)可以達成二維長行程的移動。當此平台離開所設定的平衡位置時,螺線管會分別被電流驅動產生恢復力,使得平台回到平衡位置,我們可以藉由移動此穩定區域使得平台也跟著移動。透過有限元素分析軟體ANSOFT模擬螺線管力量的結果,我們設計出新式磁浮平台系統硬體的部分,包括機構和如何排列螺線管,接著,我們建立了磁浮平台系統的數學模型,藉由電腦模擬的結果,我們得到了控制的參數。最後,我們成功地達成磁浮平台三維的控制,包括位移和高度,此外,在本篇論文的章節中也介紹了伺服控制器的設計。 | zh_TW |
| dc.description.abstract | This thesis addresses the control issue in a novel single-deck six degree-of-freedom (DOF) magnetic levitation (maglev) stage. The basic design concept for the single-deck platform is to achieve long range 2-DOF movement by creating a stable trap region for the rotor stage above the stator array of solenoid coils. The solenoids are excited separately to generate restoring forces when the platform with permanent magnets is displaced from its equilibrium position. One can then switch the coils to move the trap region and hence move the stage around. This research uses the ANSOFT finite element analysis simulation results to analyze the solenoid forces and to help us come up with the hardware design of the novel maglev system including the mechanism and the arrangement of the solenoids. Then, we establish the mathematical model of the novel maglev system with 6-DOF and to simulate this system by means of computers and get the control parameters. Besides much skepticism, previous efforts from the NTU PSCL laboratory have demonstrated that the concept should be feasible. In this thesis, we have successfully achieved stable three-dimensional position and attitude control. The thesis describes the mechanical design aspect of the stage. The chapters also describe the process of active servo control design that achieves the stable attitude control. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:12:21Z (GMT). No. of bitstreams: 1 ntu-95-R93522819-1.pdf: 3444986 bytes, checksum: aa39e79d6edb21ee77608236487ae262 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Abstract I
Table of Contents III List of Figures VI List of Tables X Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Maglev Technology Survey 2 1.2.1 Diamagnetism 2 1.2.2 Rotating Field 4 1.2.3 Oscillating Field 4 1.2.4 Feedback Control 6 1.3 Contribution 7 1.4 Overview of the Thesis 8 Chapter 2 Fundamental Issues 9 2.1 Basics of Electromagnetic Field Theory 9 2.1.1 Vector Magnetic Potential 9 2.1.2 Biot-Savart Law 11 2.2 Properties of Permanent Magnets 12 2.3 Interaction between permanent magnets and coils 14 Chapter 3 Design Concepts 17 3.1 Simulations and Analyses 17 3.1.1 The Procedure of Simulation 17 3.1.2 Simulation of the Circular Magnet 19 3.2 Basic Design Concept of Planar Maglev System 25 3.2.1 Conception of the Novel Planar Maglev System 25 3.2.2 Design of the stable region 27 Chapter 4 Experiments 33 4.1 The Maglev Planar Motion System 33 4.1.1 Hardware 33 4.1.2 Permanent Magnets 37 4.1.3 Implementation 39 4.2 Force Experiments 44 Chapter 5 Modeling and Controller Design 52 5.1 Modeling 53 5.2 PID Control 56 5.2.1 Introduction 56 5.2.2 Digital PID Control 58 5.3 Tracking Sliding Mode Control 59 5.3.1 Introduction 59 5.3.2 Control Algorithm 60 5.3.3 Digital Tracking Sliding Mode Control 61 Chapter 6 Numerical Simulations and Experimental Results 63 6.1 Numerical Simulations 63 6.1.1 PID Control 63 6.1.2 Combination of Tracking Sliding Mode and PID Control 69 6.2 Experimental Results 74 6.2.1 PID Control 74 6.2.2 Combination of T-SMC and PID control 82 Chapter 7 Conclusions 88 Reference 90 | |
| dc.language.iso | en | |
| dc.subject | 螺線管 | zh_TW |
| dc.subject | 平面磁浮 | zh_TW |
| dc.subject | 磁浮系統 | zh_TW |
| dc.subject | 滑動模式控制器 | zh_TW |
| dc.subject | PID控制器 | zh_TW |
| dc.subject | 永久磁鐵 | zh_TW |
| dc.subject | solenoids | en |
| dc.subject | sliding mode control | en |
| dc.subject | PID control | en |
| dc.subject | magnetic levitation | en |
| dc.subject | planar maglev | en |
| dc.subject | permanent magnets | en |
| dc.title | 二維磁浮平台驅動伺服設計 | zh_TW |
| dc.title | The Active Servo Control of a Single-Deck Planar Maglev Stage | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳永耀(Yung-Yaw Chen),胡竹生(Jwu-Sheng Hu) | |
| dc.subject.keyword | 永久磁鐵,平面磁浮,磁浮系統,螺線管,PID控制器,滑動模式控制器, | zh_TW |
| dc.subject.keyword | permanent magnets,planar maglev,magnetic levitation,solenoids,PID control,sliding mode control, | en |
| dc.relation.page | 91 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-26 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 3.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
