請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32601完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐爾烈 | |
| dc.contributor.author | Yin-Hsin Lee | en |
| dc.contributor.author | 李盈辛 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:12:09Z | - |
| dc.date.available | 2006-07-28 | |
| dc.date.copyright | 2006-07-28 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2006-07-24 | |
| dc.identifier.citation | Audino, P. G., S. Barrios, C. Vassena, G. M. Cueto, E. Zerba, and M. I. Picollo. 2005. Increased monooxygenase activity associated with resistance to permethrin in Pediculus humanus capitis (Anoplura: Pediculidae) from Argentina. J. Med. Entomol. 42: 342-345.
Braga, I. A., C. B. Mello, I. R. Montella, J. B. Pereira Lima, A. D. J. M. Junior, P. F. Viana Medeiros, and D. Valle. 2005. Effectiveness of methoprene, an insect growth regulator, against temephos-resistant Aedes aegypti populations from different Brazilian localities, under laboratory conditions. J. Med. Entomol. 42: 830-837. Brattsten, L. B., C. W. J. R.Holyoke, J. R. Leeper, and K. F. Raffa. 1986. Insecticide resistance: challenge to pest management and basic research. Science 231: 1255-1260. Chareonviriyaphap, T., P. Rongnoparut, and P. Juntarumporn. 2002. Selection for pyrethroid resistance in a colony of Anopheles minimus species A, a malaria vector in Thailand. J. Vector Ecol. 27: 222-229. Chen, S., Y. Yang, Y. Yang, and Y. Wu. 2005. Correlation between fenvalerate resistance and cytochrome P450-mediated O-demethylation activity in Helicoverpa armigera (Lepidoptera: Noctuidae). J. Econ. Entomol. 93: 943-946. Chitra, S., and M. K. K. Pillai. 1984. Development of organophosphorus and carbamate resistance in India strains of Anopheles stephensi Liston. Proc. Ind. Acad. Sci. 93: 159-170. Choi, J., R. L. Rose, R. L. Rose, and E. Hodgson. 2002. In vitro human metabolism of permethrin: the role of human alcohol and aldehyde dehydrogenases. Pestic. Biochem. Physiol. 73: 117-128. Cole, L. M., R. A. Nicholson, and J. E. Casida. 1993. Action of phenylpyrazole insecticides at the GABA-gated chloride channel. Pestic. Biochem. Physiol. 46: 47-54. Elliott, M., N. F. Janes, and C. Poter. 1978. The future of pyrethroids in insect control. Annu. Rev. Entomol. 23: 443-69. Feyereisen, R. 1999. Insect P450 enzymes. Annu. Rev. Entomol. 44: 507-533. Finney, D. J. 1971. Probit analysis. Cambridge University Press, Cambridge, UK, London. 333 pp. Georghiou, G. P. 1990. Overview of insecticide resistance. pp. 18-41. In: M. B. Green, H. M. LeBaron, and W. K. Moberg eds. Managing Resistance to Agrochemicals. American chemical Society, Washington. Gratz, N. G. 1993. Lessons of Aedes aegypti control in Thailand. Med. Vet. Entomol. 7: 1-10. Gubler, D. J. 1998. Resurgent vector-borne disease as global health problem. Emerg. Infect. Dis. 4: 442-450. Gubler, D. J. and G. Kuno 1997. Dengue and dengue hemorrhagic fever. CAB International, New York. Gunning, R. V., A. L. Devonshire, and G. D. Moores. 1995. Metabolism of esfenvalerate by pyrethroid-susceptible and resistant Australian Helicoverpa armigera (Lepidoptera: Noctuidae). Pestic. Biochem. Physiol. 54: 205-213. Hemingway, J., K. G. I. Jayawardena, I. S. Weerasinghe, and P. R. J. Herath. 1987. The use of biochemical tests to identify multiple insecticide resistance mechanisms in field selected populations of Anopheles subpictus Grassi. Bull. Entomol. Res. 77: 57. Hemingway, J., J. Miyamoto, and P. R. J. Herath. 1991. A possible novel link between organophosphorus and DDT insecticide resistance genes in Anopheles: supporting evidence from fenitrothion metabolism studies. Pestic. Biochem. Physiol. 39: 49-56. Hodgson, E. and A. P. Kulkarni 1983. Characterization of cytochrome P-450 in studies of insecticide resistance. pp. 207-228. In: G. P. Georghiou and T. Saito eds. Pest Resistance to Pesticides. Plenum, New York. Jacobs, M. 2000. Dengue: emergence as a global public health problem and prospects for control. Trans. R. Soc. Trop. Med. Hyg. 94: 7-8. Kantachuvessiri, A. 2002. Dengue hemorrhagic fever in Thai society. Southeast Asian J. Trop. Med. Public Health 33: 56-62. Kasai, S., I. S. Weerashinghe, and T. Shono. 1998. P450 monooxygenases are an import mechanism of permethrin resistance in Culex quinquefasatus Say larvae. Arch. Insect Biochem. Physiol. 37: 47-56. Kennaugh, L., D. Pearce, J. C. Daly, and A. A. Hobbs. 1993. A piperonyl butoxide synergizable resistance to permethrin in Helicoverpa armigera which is not due to increased detoxification by cytochrome, P450. Pestic. Biochem. Physiol. 45: 234-241. Kranthi, K., D. Jadhav, R. Wanjari, S. Kranthi, and D. Russel. 2001. Pyrethroid resistance and mechanisms of resistance in field strains of Helicoverpa armigera (Lepidoptera: Noctuidae). J. Econ. Entomol. 94: 253-263. Kumar, S., A. Thomas, A. Sahgal, A. Verma, T. Samuel, and M. K. K. Pillai. 2002. Effect of the synergist, piperonyl butoxide, on the development of deltamethrin resistance in yellow fever mosquitoes, Aedes aegypti L. (Diptera: Culicidae). Arch. Insect Biochem. Physiol. 50: 1-8. Liu, H., E. W. Cupp, A. Guo, and N. Liu. 2004. Inseciticide resistance in Alabama and Florida mosquito strains of Aedes albopictus. J. Med. Entomol. 41: 946-952. Liu, H., E. W. Cupp, K. M. Micher, A. Guo, and N. Liu. 2004. Insecticide resistance and cross-resistance in Alabama and Florida strains of Culex quinquefaciatus. J. Med. Entomol. 41: 408-413. Mayer, R., J. Jermyn, M. Burke, and R. Prough. 1977. Methoxyresorufin as a substrate for he fluorometric assay of insect microsomal O-dealkylases. Pestic. Biochem. Physiol. 7: 349-354. Morrison, A. C., H. Astete, F. Chapilliquen, G. Ramirez-Prada, G. Diaz, A. Getis, K. Gray, and T. W. Scott. 2004. Evaluation of a sampling methodology for rapid assessment of Aedes aegypti infestation levels in Iquitos, Peru. J. Med. Entomol. 41: 502-510. Omura, T., and R. Sato. 1964. The carbon monoxide-biding pigment of liver microsomes. J. Biol. Chem. 239: 2370-2378. Pancharoen, C., W. Kulwichi, T. Tantawichien, U. Thisyakorn, and C. Thisyakorn. 2002. Dengue infection: a global concern. J. Med. Assic. Thai. 85: 25-33. Pasteur, N., and M. Raymond 1996. Insecticide resistnace genes in mosquitoes: their mutations, migration, and selection in field populations. J. Hered. 87: 444. Peterson, J. A. and R. A. Prough. 1986. Cytochrome P450 reductase and cytochrome b5 in cytochrome P-450 catalysis. pp.89. In: P. R. Ortiz de Montellano, ed. Cytochrome P450 structure, Mechanism, and Biochemistry. Plenum, New York. Rodriguez, M. M., J. Bisset, M. Ruiz, and A. Soca. 2002. Cross-resistance to pyrethroid and organophosphorus insecticides induced by delection with Temephos in Aedes aegypti (Diptera: Culicidae) from Cuba. J. Med. Entomol. 39: 882-888. Rose, R., L. Barbhaiya, R. Roe, G. Rock, and E. Hodgson. 1995. Cytochrome P-450-associated insecticide resistance and the development of biochemical diagnostic assays in Heliothis virescens. Pestic. Biochem. Physiol. 51: 178-191. Sanchez-Arroyo, H., P. G. Koehler, and S. M. Valles. 2001. Effects of the synergists piperonyl butoxide and S,S,S-tributyl phosphorotrithioate on propoxur pharmacrokinetics in Blattella germanica (Blattodea: Blattellidae). J. Econ. Entomol. 94: 1209-1216. Scharf, M. E., J. J. Neal, C. B. Marcus, and G. W. Bennett. 1998. Cytochrome P450 purification and immunological detection in an insecticide resistant strain of German Cockroach (Blattella germanica, L.). Insect Bioche. Molec. biol. 28: 1-9. Schuler, M. 1996. The role of cytochrome P450 monooxygenases in plant-insect interactions. Plant Physiol. 112: 1411. Scott, J. G. 1999. Cytochrome P450 and insecticide resistance. Insect Bioche. Molec. Biol. 29: 757-777. Scott, J. G., N. Liu., and Z. Wen. 1998. Insect cytochromes P450: diversity, insecticide resistance and tolerance to plant Toxins. Comp. Biochem. Physiol. 121: 147-155. Suwanchaichinda, C., and L. B. Brattsten. 2001. Effects of exposure to pesticides on carbaryl toxicity and cytochrome P450 activities in Aedes albopictus larvae (Diptera: Culicidae). Pestic. Biochem. Physiol. 70: 63-73. Swaddiwudhipong, W., P. Lerdlukanavonge, P. Khumklam, S. Koonchote, P. Nguntra, and C. Chaovakiratipong. 1992. A survey of knowledge, attitude and practice of the prevention of dengue hemorrhagic fever in an urban community of Thailand. Southeast Asian J. Trop. Med. Public Health 23: 207-211. Tang, Z. H., and R. J. Wood. 1986. Comparative study of resistance to organophosphate and carbamate insecticides in four strains of the Culex pipens L. complex (Diptera: Culicidae). Bull. Ent. Res. 76: 505-511. Tomita, T., and J. G. Scott. 1995. cDNA and deduced ptotein sequence of CYP6D1: the putative gene for a cytochrome P450 responsible for pyrethroid resistance in house fly. Insect Bioche. Molec. Biol. 25: 275-283. Valles, S. M., P. G. Koehler, and R. J. Brenner. 1997. Antagonism of fipronil toxicity by piperonyl butoxide and S,S,S-tributyl phosphorotrithioate in the German cockroach (Dictyoptera: Blattellidae). J. Econ. Entomol. 90: 1254-1258. Wei, Y., A. G. Appel, W. J. Moar, and L. Liu. 2001. Pyrethroid resistance and cross-ressitance in the German cockroach, Blattella germanica (L.). Pest Manage. Sci. 57: 1055-1059. Wheelock, G. D., and J. G. Scott 1992a. Anti-P450lpr antiserum inhibits spectific monooxygenase acitvities in LPR house fly microsomes. J. Exp. Zool. 264: 153. Wheelock, G. D., and J. G. Scott 1992b. The role of cytochrome P450lpr in deltamethrin metabolism by pyrethroid-resistant and suscetible strains of house flies. Pestic. Biochem. Physiol. 43: 67-77. World Health Organization. 1981. Instructions for determining the susceptibility or resistance of adult mosquitoes to organochlorine, organophosphate and carbamate insecticide-diagnostic test. WHO/VBC/81.806, Geneva, Switzerland, 6 pp. World Health Organization. 2003. Global defense against the infectious disease threat. Geneva, World Health Organization. Document WHO/CDS/2003.15. Wu, D., M. E. Scharf, J. J. Neal, D. R. Suiter, and G. W. Bennett. 1998. Mechanisms of fenvalerate resistance in the German cockroach, Blattella germanica (L.). Pestic. Biochem. Physiol. 61: 53-62. Yang, Y., Y. Wu, S. Chen, G. J. Devine, I. Denholm, P. Jewess, and G. D. Moores. 2004. The involvement of microsomal oxidase in pyrethroid resistance in Helicoverpa armigera from Asia. Insect Bioche. Molec. biol. 34: 763-773. Zhang, L., S. Kasai, and T. Shono. 1998. In vitro metabolism of pyreproxyfen by microsomes from susceptible and resistant housefly larvae. Arch.Insect Biochem. Physiol. 37: 215-224. Zhang, M., and J. G. Scott. 1994. Cytochrome b5 involvement in cytochrome P450 monooxygenase activities in house fly microsomes. Arch. Insect Biochem. Physiol. 27: 205. Zhang, M., and J. G. Scott. 1996. Cytochrome b5 is essential for cytochrome P450 6D1-mediated cypermethrin resistance in LPR house flies. Pestic. Biochem. Physiol. 55: 150-156. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32601 | - |
| dc.description.abstract | 合成除蟲菊殺蟲劑除了對昆蟲具有高度致死能力外還具有對哺乳動物低毒性的特性,在過去20年被廣泛用來作為居家環境及農業方面主要噴灑的藥劑種類,於1990年在高雄縣苓雅區採集的苓雅品系 (LYPL),以百滅寧對每一代幼蟲篩藥至第35代,另以百滅寧添加協力劑piperonyl butoxide (PBO,細胞色素 P450抑制劑)自LYPL第30-4代對每一代幼蟲篩藥至第5代(LYPPL),以百滅寧自LYPL第30-4代對每一代成蟲篩藥至第5代(LYPA),以百滅寧添加協力劑PBO自LYPL第30-4代對每一代成蟲篩藥至第5代(LYPPA),LYPL、LYPPL、LYPA及LYPPA品系在幼蟲階段對百滅寧抗性比分別為322.27、148.18、182.73及296.82,在成蟲階段分別為46.57、40.51、98.08及40.30,在協力效果測試實驗中使用協力劑PBO、s,s,s-tributyl phosphorotrithioate (DEF, 酯抑制劑)、diethyl maleate (DEM, glutathione S-transferase抑制劑)及triphenyl phosphate (TPP, 酯 抑制劑),發現在幼蟲階段僅有PBO及DEF具協力效果,在成蟲階段四種協力劑皆具協力效果,且LYPL、LYPPL、LYPA及LYPPA品系在幼蟲及成蟲階段對賽滅寧、酚丁滅寧及異治滅寧皆具中度到高度交互抗性,在幼蟲時期僅在LYPL發現抗性與細胞色素P450含量的提高有關,在成蟲階段則是LYPL及LYPPA的抗性與細胞色素P450活性的提高有關、LYPA的抗性與細胞色素P450含量及活性的提高有關,除此之外,抗性應還與其他抗性機制有關,如酯 、GST、作用目標的不敏感或穿透抗性。 | zh_TW |
| dc.description.abstract | Aedes aegypti is the vector of dengue fever, and dengue hemorrhagic fever in many tropical countries, including the southern areas of Taiwan. LYPL strain was collected from Lingya in Kaohsiung in 1990 and was selected with permethrin at larval stage for 35 generations. Three sub-strains;LYPPL, LYPA, and LYPPA were established by laboratory selection from LYPL strain. LYPPL strain was selected with a mixture of permethrin and piperonyl butoxide (PBO, a cytochrome P450 monooxygenase inhibitor) at larval stage for 5 generations. LYPA strain was selected with permethrin at adult stage for 5 generations. LYPPA strain was selected with a mixture of permethrin and PBO at adult stage for 5 generations. The resistance ratio of the four strains (LYPL, LYPPL, LYPA, and LYPPA) to permethrin at larval stage was 322.27, 148.18, 182.73, and 296.82, respectively. The resistance ratio at adult stage was 46.57, 40.51, 98.08, and 40.30, respectively. In the synergistic effect test, PBO, s,s,s-tributyl phosphorotrithioate (DEF, an esterase inhibitor), diethyl maleate (DEM, a glutathione S-transferase inhibitor), and triphenyl phosphate (TPP, an esterase inhibitor) were used and only PBO and DEF had effect on increasing permethrin toxicity at larval stage, and PBO, TPP, DEM, DEF were all had effect on increasing permethrin toxicity at adult stage. All the four strains had moderate to high level of cross-resistance to cypermethrin, phenothrin, and tetramethrin at larval and adult stage. In the cytochrome P450 monooxygenases and b5 content analysis, at larval stage the resistance was only associated with the higher content of cytochrome P450 of LYPL strain. At adult stage the resistance was associated with the higher activity of cytochrome P450 of LYPL strain and LYPPA sub-strain. And the resistance was associate with higher content and activity of cytochrome P450 of LYPA sub-strain. In addition to cytochrome P450, there should be other resistant mechanisms involved with resistance, such as esterase, glutathione-S-transferase, target site insensitivity and penetration resistance. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:12:09Z (GMT). No. of bitstreams: 1 ntu-94-R93632008-1.pdf: 1459837 bytes, checksum: 8089878d468f07c6fb668ea0c4d48100 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 目錄……………………………………………………………………………………I
表次…………………………………………………………………………………II 圖次…………………………………………………………………………………III 壹、中文摘要…………………………………………………………………………1 貳、英文摘要…………………………………………………………………………2 參、前言………………………………………………………………………………4 肆、材料與方法………………………………………………………………………6 伍、結果………………………………………………………………………………12 陸、討論………………………………………………………………………………15 柒、結論………………………………………………………………………………27 捌、參考文獻…………………………………………………………………………28 玖、誌謝………………………………………………………………………………32 拾、表…………………………………………………………………………………33 拾壹、圖………………………………………………………………………………53 | |
| dc.language.iso | zh-TW | |
| dc.subject | 協力劑 | zh_TW |
| dc.subject | 細胞色素P450 | zh_TW |
| dc.subject | 百滅寧 | zh_TW |
| dc.subject | permethrin | en |
| dc.subject | cytochrome P450 | en |
| dc.subject | synergist | en |
| dc.title | 協力劑對抗百滅寧埃及斑蚊(苓雅品系)之效應 | zh_TW |
| dc.title | The effect of the Synergists on the Permethrin Resistance in Dengue Fever Mosquito, Aedes aegypti Linya Strain (Diptera: Culicidae) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 馬堪津,白秀華 | |
| dc.subject.keyword | 百滅寧,協力劑,細胞色素P450, | zh_TW |
| dc.subject.keyword | permethrin,synergist,cytochrome P450, | en |
| dc.relation.page | 66 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-26 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 昆蟲學研究所 | zh_TW |
| 顯示於系所單位: | 昆蟲學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
