Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32572
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李允中 教授
dc.contributor.authorJong-Jyh chenen
dc.contributor.author陳忠智zh_TW
dc.date.accessioned2021-06-13T04:11:46Z-
dc.date.available2006-07-27
dc.date.copyright2006-07-27
dc.date.issued2006
dc.date.submitted2006-07-25
dc.identifier.citation參 考 文 獻
Albert, R.A., and E.L. King. 1951. Moving boundary systems formed by weak electrolytes. Study of cadmium Iodide complexes. J. Am. Chem. Soc. 73(2):517-523.
Albin, M., R.Weinberger, E. Sapp, and S. Moring. 1991. Fluorescence detection in capillary electrophoresis: evaluation of derivatizing reagents and techniques. Anal. Chem. 63:417-422.
Altria, K.D. 1993. Essential peak area normalization in capillary electrophoresis. J. Chromatogr. 35:177-182.
Altria, K.D. 1996a. Capillary electrophoresis guidebook. Method in molecular biology. Vol. 52. Humana Press inc., Totowa, NJ.
Altria, K.D. 1996b. Determination of drug-related impurities by capillary electrophoresis. J. Chromatogr. A. 735(1-2):43-56.
Amini, A., and D. Westerlund. 1998. Evaluation of association constants between drug enantiomers and human a1-acid glycoprotein by applying a partial-filling technique in affinity capillary electrophoresis. Anal. Chem. 70(7):1425-1430.
Anderson, J.W., R.J. Nicolosi, and J.F. Borzelleca. 2004. Glucosamine effects in humans: a review of effects on glucose metabolism, side effects, safety considerations and efficacy. Food and Chemical Toxicology. 43:187-201.
Awakhwa, L.N., M. Albink, and W.G. Kuhr. 1992. Fluorescence detection in capillary electrophoresis. TRAC 11:114-120.
Beck, W., and H. Engelhardt. 1992. Capillary electrophoresis of organic and inorganic cation with indirect UV detection. J. Chromatogr. 33:313-316.
Bjergaard, S.P., and K. E. Rasmussen. 2000. Liquid-phase microextraction and capillary electrophoresis of acidic drugs. Electrophoresis. 21(3): 579-585.
Blanco, M., J. Coello, H. Iturriaga, S. Maspoch, and M.A. Romero. 2001. Resolution of isomers of sorbitolparaben esters by chromatographic and electrophoretic techniques. J. Chromatogra. B. 752:99-105.
Burgi, D.S., and R.-L. Chien. 1992. Sample stacking of extremely large injection volume in high-performance capillary electrophoresis. Anal. Chem. 64(9):1046-1052.
Burgi, D.S. and R.-L. Chien. 1996. Application and limits of sample stacking in capillary electrophoresis: Methods in Molecular Biology. Vol.52: Capillary electrophoresis. (Edited by K. Altria copyright Humana Press Inc., Totowa, NJ.
Busch, M.H.A., H.F.M. Boelens, J.C. Kraak, and H. Poppe. 1997. Comparison of five methods for the study of drug-protein binding in affinity capillary electrophoresis. J. Chromatogr. A. 775:313-326.
Chan, K.C., G. M. Janini, G. M. Muschik, and H. J. Issaq. 1993. Laser-induced fluorescence detection of 9-fluorenylmethyl chloroformate derivatized amino acids in capillary electrophoresis. J Chromatogr A. 653(1):93-97.
Chang, B.W., R.L.C. Chen, I.J. Huang, and H.C. Chang. 2001. Assays for angiotensin converting enzyme inhibitory activity. Anal. Biochem. 291:84-88.
Chang, J.J., and J.H. Hash. 1979. The use of an amino acid analyzer for the rapid identification and quantitative determination of chitosan oligosaccharides, Anal. Biochem. 95:563-567.
Chen, J.J., Y.C. Lee, H.C., Lin, and R.L.C. Chen. 2004. Determination of benzoate derivatives in soy sauce by capillary electrophoresis and in- capillary microextraction procedure, J. Food Drug Anal. 12:332-335.
Chen, M., and R.M. Cassidy. 1992. Bonded-phase capillaries and the separation of inorganic ions by capillary zone electrophoresis. J. Chromatogr. 602:227-234.
Cheng, P.W. 1987. High-performance liquid chromatographic analysis of galactosamine, glucosamine, glucosaminitol, and galactosaminitol. Anal. Biochem. 167(2):265-269.
Chiem, N., and D.J. Harrison. 1997. Microchip-based capillary electrophoresis for immunoassay: analysis of monoclonal antibodies and thephylline. Anal. Chem. 69(3):373-378.
Chien, R.–L., and J.C. Helmer. 1991. Electroosmotic properties and peak broadening in field-amplified capillary electrophoresis. Anal. Chem. 63:1354-1361.
Choe, J., F. Zhang, M.W. Wolff, D.W. Murhammer, R.J. Linhardt, and J.S. Dordick. 2000. Separation of -acid glycoprotein glycoforms using affinity-based reversed micellar extraction and separation. Biotech. And Bioeng. 70(5):484-490.
Chu, Y.-H., and G.M.Whitesides. 1992. Affinity capillary electrophoresis can simultaneously measure binding constants of multiple peptides to vancomycin. J. Org. Chem. 57:3524-3525.
Chu, T.Y., C.L. Chen, and H.F. Wang. 2003. A rapid method for the simultaneous determination of preservatives in soy sauce. J. Food and Drug Anal. 11(3):246-250.
Conrad, H.E. 1998. Heparin-binding protein. Academic Press, San Diego, CA. pp.203-238.
Defaye, J., A. Gadelle, and C. Pedersen. 1989. In chitin and chitosan, Sajak-Brek, G., Anthonsen, T. and Sandford, P. (Ed.), Chitin and chitosan oligosaccharides. pp.415-429. Elsevier Science Publishers Ltd, England.

Deuchi, K., O. Kananuchi, Y. Imasato, and E. Kobayashi. 1995. Effect of the viscosity or deacetylation degree of chitosan on fecal fat excreted. Biosci. Biotech. Biochem. 59:781-785.
Domard, A., and N. Cartier. 1989. glucosamine oligomers: 1. Preparation and characterization. Int. J. Biol. Macromol. 11(5):297-302.
Dougherty, A.M., C.L. Wooley, D.L. Williams, D.F. Swaile, R.O. Cole, and M.J. Sepaniak. 1991. Stable phase for capillary electrophoresis. J. Liquid Chromatogr. 14:907-912.
Duijn, R.M.G., J. Frank, G.W.K. Dedem, and E. Baltussen. 2000. Recent advances in affinity capillary electrophoresis. J. Electrophoresis. 21:3905-3918.
Eikenes, M., M. Fongen, L. Roed, and Y. Stenstrom. 2005. Determination of chitosan in wood and water sample by acidic hydrolysis and liquid chromatography with online fluorescence derivatization. Carbohyd. Poly. 61(1):29-38.
Everaerts, F.M., T.P.E.M. Verheggen, and F.E.P. Mikkers. 1979. Determination of substances at low concentrations in complex mixtures by isotachophoresis with column coupling. J. Chromatogr. 169:21-38.
Ewing, A.G., R.A. Wallingford, and J. Olefirowicz. 1989. Capillary electrophoresis. Anal. Chem. 61:292A-303A.
Ferrer, J., G. Paez, Z. Marmol, E. Ramones, H. Garcia, and C.F. Forster. 1996. Acid hydrolysis of shrimp- shell wastes and the production of single cell protein from the hydrolysate, Bioresource Technology 57:55-60.
Gilpin, R.K., S.E. Ethsham, and R.B. Gregory. 1991. Liquid chromatographic studies of the effect of temperature on the chiral recognition of tryptophan by silica-immobilized bovine albumin. Anal. Chem. 63:2825-2828.
Hattori, T., K. Kimura, E. Seyrek, and P.L. Dubin. 2001. Binding of bovine serum albumin to heparin determined by turbidimetric titration and frontal analysis continuous capillary electrophoresis. Anal. Biochem. 295:158-167.
Heegaard, N.H.H., M.H. Nissen, and D.D. Chen. 2002. Application of on- line weak affinity interactions in free solution capillary electrophoresis. J. Electrophoresis. 23:815-822.
Heegaard, N.H.H., S. Nilsson, and N.A. Guzman. 1998. Affinity capillary electrophoresis: important application areas and some recent developments. J. Chromatogr. 715:29-54.
Heintz, J., M. Hemandez, and F.A. Gomez. 1999. Use of a partial-filling technique in affinity capillary electrophoresis for determining binding constants of ligands to receptors. J. Chromatogr. A. 840(2):261-268.
Hirai, A., H. Odani, and A. Nakajima. 1991. Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy. Polym. Bull. 26:87-94.
Hjert’en, S., and K. Kubo. 1993. A new type of pH- and detergent- stable coating for elimination of electroendosmosis and adsorption in capillary electrophoresis. J. Electrophoresis. 14:390-395.
Horejsi, V., and J. Ticha. 1986. Qualitative and quantitative applications of affinity electrophoresis for the study of protein–ligand interactions: A review. J. Chromatogr. 376:33-47.
Horner, S., J. Puls, B. Saake, and H. Thielking. 1999. Enzyme- aided characterisation of carboxymethycellulose. Carbohyd. Polym. 40:1-7.
Hsiao, H.Y., C.C. Tsai, S. Chen, B.C. Hsieh, and R.L.C. Chen. 2004. Spectrophotometric determination of deacetylation degree of chitinous materials dissolved in phosphoric acid. Marcomal. Biosci. 4:919-921.
Huang, I.J. 2003. personal communication.
Hulme, E.C., and N.J.M. Birdsale. 1992. Strategic and tactics in receptor-binding stdies, in: E.C. Hulme (Ed.). Receptor-ligand Interactions. Oxford University Press. Oxford. pp.63-176.
Jackson, P.E., and P. Haddad. 1993. Optimisation of injection technique in capillary electrophoresis for the determination of trace levels of anion in environmental samples. J. Chromatogr. 640:481-487.
Janssens, J., R. Chevigne, and L. Dalhem. 1997. Capillary electrophoresis method using initialized capillary and polyanion-containing buffer and chemical kit therefore. U.S. patent No. 5611903.
Jones, W.R. 1993. Method development approaches for capillary ion analysis. J. Chromatogr. 640:387-395.
Kang, S.H. and H. Kim. 1997. Simultaneous determination of methylparaben, propylparaben and thimerosal by high-performance liquid chromatography and electrochemical detection. J. Pharm. Biomed. Anal. 15(9-10):1359-1364.
Kawaoka, J., and F.A. Gomez. 1998. Use of mobility ratios to estimate binding constants of ligands to proteins in affinity capillary electrophoresis. J. Chromatogr. B. 715:203-210.
Khor, E., and L.Y. Lim. 2003. Implantable applications of chitin and chitosan. Biomaterial. 24:2339-2349.
Kohr, J., and H. Engelhardt. 1991. Capillary electrophoresis with surface coated capillaries. J. Microcolumn Sep. 3(6):491-495.
Kumar, M.N.V.R. 2000. A review of chitin and applications, Reactive & Functional Polymers. 46(1):1–27.
Kuhn, R., and R.H. Kuhn. 1993. Capillary electrophoresis: Principles and practice. In “Factors Influencing Performance”. pp.1-81. Springer-Verlag Berlin Heidelberg, New York, U.S.A.
Kuo, K.L., and Y.Z. Hsieh. 1997. Determination of preservatives in food products by cyclodextine-modified capillary electrophoresis with multiwavelength detection. J. Chromatogr. A. 768:334-341.
Labat, L., E. Kummer, P. Dallet, and J.P. Dubost. 2000. Comparison of high-performance liquid chromatography and capillary zone electrophoresis for the determination of parabens in a cosmetic product. J. Pharm. Biomed. Anal. 23(4):763-769.
Lagane, B., M. Treilhou, and F. Couderc. 2000. Capillary electrophoresis: theory, teaching approach and separation of oligosaccharides using indirect UV detection. Biochemistery and Molecular Biology Education. 28:251-255.
Liu, J., O. Shirota, and M. Novotny. 1991. Capillary electrophoresis of amino surgars with laser- induced fluorescence detection. Anal. Chem. 63:413-417.
Lohmander, L.S. 1986. Analysis by high-performance liquid chromatography of radioactively labeled carbohydrate components of proteoglycans Anayl. Biom. 154(1):75-84.
Mammen, M., F.A. Gomez, and G.M. Whitesides. 1995. Determination of the Binding of Ligands Containing the N-2,4-dinitrophenyl Group to Bivalent Monoclonal Rat Anti-DNP Antibody Using Affinity Capillary Electrophoresis. Anal. Chem. 67:3526-3535.
Matousek, V., and V. Horejsi. 1982. Affinity electrophoresis: a theoretical study of the effects of the kinetics of protein––ligand complex formation and dissociation reactions. J. Chromatogr. 245(3):271-290.
Mito. E., Y. Zhang, S. Esquivel, and F.A. Gomez. 2000. Estimation of receptor–Ligand Interactions by the Use of a two-marker system in affinity capillary electrophoresis. J. Chromatogr. 280(2):209-215.
Muraki, E., F. Yaku, and H. Kojima. 1993. Preparation and crystallization of D-glucosamine oligosaccharides with dp 6-8, Carbohyd. Res. 239:227-237.
Muzzarelli, R.A.A., M. Tomasetti, and P. Ilari. 1994. Depolymerization of chitosan with the aid of papain. Enzyme Microb. Technol. 16:110-114.
Nanjo, F., R. Katsumi, and K. Sakai. 1991. Enzymatic method for determination of the degree of deacetylation of chitosan. Anal. Biochem. 193:164- 167.
Nasseri, S.P., S.A.M. Hotchkiss, and J. Caldwell. 1997. Cutaneous xenobiotic metabolism: Glycine conjugation in human and rat keratinocytes. Food and Chemical Toxicology. 35(3):409-416.
Nielen, M.W.F. 1991. Quantitative aspects of indirect UV detection in capillary zone electrophoresis. J. Chromatogr. 588:321-326.
Nishi, H., and S. Terabe. 1995. Optical resolution of drugs by capillary electrophoreic techniques. J. Chromatogr. A. 694:245-276.
Novatchev, N., and U. Holzgrabe. 2001. Evaluation of the impurity profile of amino acids by means of CE. J. Pharm. And Biom. Anal. 26:779-789.
Novatchev, N., and U. Holzgrabe. 2002. Evaluation of amino sugar, low molecular peptide and amino acid impurities of biotechnologically produced amino acids by means of CE. J. Pharm. And Biom. Anal. 28:475-486.
Pedroni, V.I., M.E. Gschaider, and P.C. Schulz. 2003. UV spectrophotometry: improvements in the study of the degree of acetylation of chitosan, Macromol. Biosci. 3(10):531-534.
Reginster, J.Y., R. Deroisy, L.C. Rovati, R.L. Lee, E. Lejeune, O. Bruyere, G. Giacovelli, Y. Henrotin, J.E. Dacre, and C. Gossett. 2001. Long-term effects of glucosamine sulphate on osteoarthritis progression: a randomized, placebo-controlled clinical trial. Lancet. 27(357):251-256.
Retuert, J., S. Fuentes, G. Gonzalezy, and R. Benavente. 2000. Thermal effect on the microhardness of chitosan films. Bol. Soc. Chil. Quin. 45(2):323-327.
Rundlett, K.L., and D.W. Armstrong. 2001. Methods for the determination of binding constants by capillary electrophoresis. J. Capillary Electrophoresis. 22:1419-1427.
Shafey, A.E., H. Zhong, G. Jones, and I.S. Krull. 2002. Application of affinity capillary electrophoresis for the determination of binding and thermodynamic constants of enediynes with bovine serum albumin. J. Electrophoresis. 23:945-950.
Sheldon, M., and M.D. Cooper. 1999. Improving outcomes in osteoarthritis: How to help patients stay a step ahead of the pain. Postgraduate Medicine. 105(6):29-42.
Shibukawa, A., Y. Kuroda, and T. Nakagawa. 1999. High-performance frontal analysis for drug–protein binding study. Pharm. Biomed. Anal. 18(6):1047-1055.
Shimura, K., and B.L. Karger. 1994. Affinity probe capillary electrophoresis: analysis of recombinant human growth hormone with a fluorescent labeled antibody fragment.
Anal. Chem. 66:9-15.
Shimura, K., and K. Kasai. 1995. Determination of the affinity constants of concanavalin a for monosaccharides by fluorescence affinity probe capillary electrophoresis. Anal. Biochem. 227(1):186-194.
Smith, J. T., and Z. E. Rassi. 1993. Capillary zone electrophoresis of biological substances with fused silica capillaries having zero of constant electroosmotic flow. J. Electrophoresis. 14:396-406.
Sottofattori, E., M. Anzaldi, A. Balbi, and G. Tonello. 1998. Simultaneous HPLC determination of multiple components in a commercial cosmetic cream. J. Pharm. Biomed. Anal. 18:213-217.
Stig, P.B., and K.E. Rasmussen. 2000. Liquid-phase microextraction and capillary electrophoresis of acidic drugs. Electrophoresis 21(3):579-585.
Taga, A., M. Sugimura, and S. Honda. 1998. Derivation of amino acids in a moving zone of o- phthaladehyde in the middle of a capillary for amino acid analysis by capillary electrophoresis. J. Chromatog. A. 802:243-248.
Takahashi, Y. 1997. Effect of sonication on the acid degradation of chitin and chitosan. In: Advances in Chitin Science. (A Domard, GAF Robert, and KM Varum. ed.). 2:372-377. Held in Lyon, France.
Tanaka, T., and S. Terabe. 2002. Estimation of binding constants by capillary electrophoresis. J. Chromatogra. B. 768:81-92.
Terbojevich, M., A. Cosani, and R.A.A. Muzzarelli. 1996. Molecular parameters of chitosans depolymerized with the aid of papain, Carbohydr. Polym. 29:63-68.
Thomassin, M. E. Cavalli, Y. Guillaume, and C. Guinchard. 1997. Comparison of quantitative high performance thin layer chromatography of parabens. J. Pharm. Biomed. Anal. 15(6):831-838.
Tsaih M.L., and R.H. Chen. 2003. Effect of degree of deacetylation of chitosan on the kinetics of ultrasonic degradation of chitosan. J. Applied Polymer Science. 90(13):3526-3531.
Tsuji, A., T. Kinoshita, and M. Hoshino. 1969. Analytical chemical studies on amino sugars. II. Deterimation of hexosamines using 3-mthyl-2- benzothiazolone hydrazone hydrochloride. Chem. Pharm. Bull. 17:1505-1510.
Varenne, A., P. Gareil, S. Colliec-Jouault, and R. Daniel. 2003. Capillary electrophoresis determination of the binding affinity of bioactive sulfated polysaccharides to proteins: study of the binding properties of fucoidan to antithrombin. J. Anal. Biochem. 315:152-159.
Vollmerhaus, P.J., F.W. Tempels, J.J.K. Bosch, and A.J.R. Heck. 2002. Molecular interactions of glycopeptide antibiotics investigated by affinity capillary electrophoresis and bioaffinity electrospray ionization-mass spectrometry. J. Electrophoresis. 23:868-879.
Wang, C.Y., and Y.Z. Hsieh. 2002. Analysis of chitin oligosaccharides by capillary electrophoresis with laser-induced fluorescence. J. Chromatogra. A. 979:431-438.
Wang, S.P., and C.L. Chang. 1998. Determination of parabens in cosmetic products by supercritical fluid extraction and capillary zone electrophoresis. Anal. Chim. Acta. 377:85-93.
Weber, K., and W. Stahl. 2002. Improvement of filtration kinetics by pressure electrofiltration. Separation and Purification Tech. 26(1):69-80.
Wren, S.A.C., and R.C. Rowe. 1992. Theoretical aspects of chiral separation in capillary electrophoresis. J. Chromatogr. 603:235-241.
Yao, Y.J., and S.F.Y. Li. 1994. Capillary zone electrophoresis of basic proteins with chitosan as capillary modifier. J. Chromatogra. A. 663:97-104.
Yoshihide, T., and T. Shigeru. 2002. Estimation of binding constants by capillary electrophoresis. J. Chromatogra. B. 768:81-92.
Zhang, Y., E. Arriaga. P. Diedrich, O. Hindsgaul, and N.J. Dovichi. 1995. Nanomolar determination of aminated surgars by capillary electrophoresis. J. of Chromatog. A. 716:221-229.
Zhang, Y., and F.A. Gomez. 2000. Multiple- step ligand injection affinity capillary electrophoresis for determining binding constants of ligands to receptors. J. Chromatogr. A. 897:339-347.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32572-
dc.description.abstract本研究旨將一般生化分析轉用成具動態且可微量分析之毛細管電泳技術,並進行以下幾種管內反應之應用。首先,為將幾丁質類物質之親合特性作具體化的描述,採親合性電泳技術作幾丁質類物質之結合常數的驗證,本研究係藉由馬尿酸與幾丁寡醣(5〜9mer.)間具親合特性,故分析其親合物之結合常數約為0.56〜1.0174 M-1。由於該分析物在毛細管中的分離與結合係同時發生,所以對於分子間的動態交互反應提供相當多有用的資訊。
另外利用在毛細管管內進行呈色反應,可提高毛細管電泳圖譜分析的靈敏度,本研究以鄰苯二甲醛(O-phthalaldehyde;OPA)及硼酸液與葡萄糖胺可形成複合物,並對該兩種方法作一比較,結果顯示該OPA法較為靈敏(0.1~50mM, A340)且專一,且為克服OPA試液之衰減快速及再現性差的缺點,本研究之OPA法配合毛細管可線上反應、偵測之特點,成功地對於市售含葡萄糖胺之保健產品作有效的量測。
又毛細管電泳管內微萃取技術是另種對於樣品前處理的有效手段,在富含各種蛋白質的市售醬油中,毛細管電泳技術是無法有效地偵測出防腐劑成份的,本研究則將醬油先經酸化、再以乙酸乙酯萃取後之有機層液,微量注入具鹼性緩衝液之毛細管中進行電泳程序,則可簡化對醬油中防腐劑之分析,並達到定量的目的。
zh_TW
dc.description.abstractDynamic micro-scaled biochemical processes were designed and conducted within the separation capillary of capillary electrophoresis (CE) system, and several possible applications were demonstrated. To characterize the bio-affinity properties of chitosan, ACE (affinity capillary electrophoresis) techniques were applied to evaluate the binding constant. From the shift in migration times of hippurate / chitooligosacharide complex, the binding constant of hippurate with chitooligosacharides (around 5〜9 mer.) was calculated to be in the range of 0.56〜1.0174 M-1. Since the binding process occurred simultaneously with the separation process, the method is rapid and provides valuable information about the dynamic molecular interactions.
Secondly, in-capillary chromogenic reaction was used to enhance the separation and sensitivity of CE system. Two labeling procedures for glucosamine using o-phthalaldehyde (OPA) and borate were developed and compared. The OPA method is more sensitive (0.1~50mM, A340) and specific, but the reaction is too quick to reproducibly operate in an off-line manner. OPA-labeling reaction was successfully performed on-line within the capillary, and the glucosamine contents in nutraceuticals were accurately measured.
Thirdly, in-capillary micro-extraction process served as an efficient sample pretreatment procedure. Benzoate derivatives are common preservatives in soy sauce; however, the CEgrams of untreated samples were too complicated and can not be effectively resolved / analyzed. The complicated samples were acidified and then extracted with ethyl acetate. The organic extract was directly injected and analyzed in capillary zone electrophoresis mode. The organic sample plug (benzoates in ethyl acetate) was extracted and then separated in the alkaline running buffer, which simplified the electropherogram for quantification.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:11:46Z (GMT). No. of bitstreams: 1
ntu-95-D89631003-1.pdf: 893049 bytes, checksum: f6104bf1a4e2a2661f70c4c0845babd3 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents誌謝 i
中文摘要……………………………………………………………… ii
英文摘要……………………………………………………………… iv
目錄…………………………………………………………………… vi
圖目錄………………………………………………………………… x
表目錄………………………………………………………………… xii
符號說明……………………………………………………………… xiii
字詞縮寫……………………………………………………………… xvi
第一章 前言………………………………………………………… 1
第二章 文獻探討…………………………………………………… 3
2-1 毛細管電泳…………………………………………………… 5
2-1-1 毛細管之性質…………………………………………… 6
2-1-2 緩衝液之作用…………………………………………… 7
2-1-3 電滲泳在分析上之影響………………………………… 8
2-1-4 毛細管電泳檢測指標…………………………………… 9
2-2 改善毛細管電泳之方法……………………………………… 11
2-2-1 面積的正規化…………………………………………… 11
2-2-2 樣品注入的機制及其特性……………………………… 12
2-2-3 溫度對毛細管電泳之影響……………………………… 15
2-3 親合性毛細管電泳之定義及分類…………………………… 17
2-3-1 親合性電泳的特點……………………………………… 21
2-3-2 運用親合性電泳解結合常數之注意事項……………… 24
2-3-3 運用親合性電泳的時機………………………………… 26
2-3-4 運用親合性毛細管電泳分析醣類分子………………… 27
2-3-5 結合常數(KB)之運用…………………………………… 28
2-4 幾丁質類物質………………………………………………… 32
2-4-1 幾丁質類物質之去乙醯度……………………………… 34
2-4-2 幾丁質類物質之降解…………………………………… 35
2-4-3 葡萄糖胺之特性………………………………………… 37
2-4-4 葡萄糖胺之檢測………………………………………… 38
2-5 萃取之機制…………………………………………………… 40
2-5-1 萃取技術之應用………………………………………… 41
2-5-2 苯甲酸及其衍生物……………………………………… 42
第三章 試驗設備與方法…………………………………………… 44
3-1 藥劑…………………………………………………………… 44
3-1-1 幾丁質類物質之分析試驗……………………………… 44
3-1-2 馬尿酸鈉與幾丁寡醣之親合性電泳…………………… 45
3-1-3 防腐劑之分析試驗……………………………………… 45
3-1-4 酸水解程序……………………………………………… 46
3-1-5 鄰苯二甲酸(OPA)溶液之製備…………………………… 46
3-2 儀器設備與方法……………………………………………… 47
3-2-1 儀器……………………………………………………… 47
3-2-2 馬尿酸鈉與幾丁寡醣之親合性電泳…………………… 47
3-2-3 幾丁質類物質酸水解物試驗…………………………… 48
3-2-4 硼酸鹽與葡萄醣胺之試驗……………………………… 48
3-2-5 鄰苯二甲酸與葡萄醣胺之試驗………………………… 48
3-2-6 防腐劑之分析…………………………………………… 49
3-2-7 回收率試驗……………………………………………… 49
第四章 結果與討論………………………………………………… 50
4-1 幾丁寡醣之毛細管電泳……………………………………… 50
4-1-1 馬尿酸鈉與幾丁寡醣之親合性電泳…………………… 50
4-1-2 馬尿酸鈉與幾丁寡醣之結合常數……………………… 54
4-2 幾丁質類物質之酸水解……………………………………… 59
4-2-1 乙酸、葡萄糖胺、N-乙醯葡萄糖胺之分析……………… 59
4-2-2 去乙醯度之分析………………………………………… 61
4-3 葡萄糖胺(Glucosamine)之檢測……………………………… 68
4-3-1 硼酸鹽與葡萄醣胺之反應……………………………… 68
4-3-2 N-乙醯葡萄糖胺與葡萄糖胺之分析…………………… 70
4-3-3 硼酸鹽-葡萄醣胺衍生物檢量線之建立……………… 72
4-3-4 市售樣品測試及分析(硼酸鹽法)……………………… 74
4-3-5 OPA試劑與葡萄醣胺之反應……………………………… 76
4-3-6 硼酸鹽緩衝液濃度之影響……………………………… 78
4-3-7 工作電壓之影響………………………………………… 80
4-3-8 硼酸緩衝液pH之影響…………………………………… 82
4-3-9 OPA與葡萄醣胺衍生物之最適混合時間分析………… 84
4-3-10 OPA與葡萄醣胺衍生物檢量線之建立………………… 88
4-3-11 市售樣品測試及分析(OPA法) ………………………… 91
4-3-12 硼酸鹽法與OPA法對葡萄醣胺產品之比較…………… 94
4-4 苯甲酸及其衍生物之分析…………………………………… 96
4-4-1 硼酸緩衝液之電壓-電流(V-I)對應曲線……………… 96
4-4-2 防腐劑之毛細管電泳分離條件………………………… 102
4-4-3 各防腐劑之標準迴歸曲線……………………………… 107
4-4-4 市售含防腐劑之醬油分離……………………………… 107
4-4-5 防腐劑之回收率………………………………………… 111
第五章 結論………………………………………………………… 113
參考文獻……………………………………………………………… 115
附錄 計算結合常數( )之Scatchard Plot模式推導…………… 129
圖目錄
圖2-1 幾丁質類物質之結構式…………………………………… 32
圖4-1 添加幾丁寡醣對馬尿酸鈉之親合性反應………………… 52
圖4-2 幾丁寡醣/馬尿酸鈉之散佈圖(Scatchart plot)…………… 58
圖4-3 施加輔助壓對乙酸之電泳影響…………………………… 60
圖4-4 幾丁質(Chitin)之酸水解物電泳分析…………………… 62
圖4-5 乙酸/葡萄糖胺之分子量比標準曲線…………………… 65
圖4-6 硼酸鹽與葡萄糖胺之結合反應變化情形………………… 69
圖4-7 葡萄糖胺、乙醯葡萄糖胺與硼酸鹽反應後之電泳分析… 69
圖4-8 硼酸鹽/葡萄糖胺濃度比檢量線(馬尿酸為內標準)…… 74
圖4-9 市售含葡萄糖胺錠劑之電泳分析 (硼酸鹽法) …………… 75
圖4-10 鄰苯二甲酸/葡萄糖胺(OPA/GluN)衍生化之吸光反應… 77
圖4-11 硼酸緩衝液濃度對OPA/葡萄糖胺之電泳影響…………… 79
圖4-12 工作電壓對OPA/葡萄糖胺之電泳影響…………………… 81
圖4-13 硼酸緩衝液pH對OPA/葡萄糖胺之電泳影響……………… 83
圖4-14 OPA/葡萄糖胺/OPA夾注模式之電泳圖…………………… 85
圖4-15 OPA/葡萄糖胺/OPA之理論板數及解析度圖……………… 86
圖4-16 OPA/葡萄糖胺衍生物濃度檢量線…………………………… 89
圖4-17 OPA/葡萄糖胺衍生物濃度檢量線(Gycine為內標準)……… 90
圖4-18 市售含葡萄糖胺錠劑之電泳分析………………………… 92
圖4-19 市售含葡萄糖胺錠劑與標準品之頻譜比較………………… 93
圖4-20 毛細管電泳之電壓-電流-電阻之變化………………… 98
圖4-21 數值分析毛細管電泳之適切工作電壓………………… 99
圖4-22 工作電壓對防腐劑分離效果之影響…………………… 103
圖4-23 硼酸緩衝液之pH 值對電泳圖之影響………………… 106
圖4-24 市售醬油直接注入毛細管進行電泳之頻譜圖………… 109
圖4-25 醬油經毛細管電泳線上萃取法所得到之頻譜圖……… 110
表目錄
表4-1 幾丁寡醣添加量對於泳動時間之影響……………………… 53
表4-2 泳動時間之正規化處理……………………………………… 56
表4-3 幾丁質類物質去乙醯度之分析……………………………… 67
表4-4 市售含葡萄糖胺產品之CE比較(OPA法及硼酸鹽法)…… 95
表4-5 工作電壓變異容許程度之評估……………………………… 100
表4-6 各防腐劑相對於馬尿酸鈉之含量迴歸……………………… 108
表4-7 添加於醬油中之防腐劑回收率……………………………… 112
dc.language.isozh-TW
dc.subject毛細管電泳zh_TW
dc.subject微萃取zh_TW
dc.subject保健食品zh_TW
dc.subject葡萄糖胺zh_TW
dc.subjectCapillary electrophoresisen
dc.subjectGlucosamineen
dc.subjectMicro-extractionen
dc.subjectNutraceuticalen
dc.title毛細管電泳管內反應之探討和應用zh_TW
dc.titleOn In-capillary Processes of Capillary Electrophoresis and the Applicationsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳榮輝 教授,盧福明 教授,楊景雍 助理教授,陳力騏 副教授
dc.subject.keyword毛細管電泳,葡萄糖胺,保健食品,微萃取,zh_TW
dc.subject.keywordCapillary electrophoresis,Glucosamine,Nutraceutical,Micro-extraction,en
dc.relation.page134
dc.rights.note有償授權
dc.date.accepted2006-07-26
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
872.12 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved