請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32570完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林榮耀 | |
| dc.contributor.author | Hsiao-Fan Chen | en |
| dc.contributor.author | 陳筱凡 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:11:45Z | - |
| dc.date.available | 2006-08-04 | |
| dc.date.copyright | 2006-08-04 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-25 | |
| dc.identifier.citation | 1. Yu, A.S. and E.B. Keeffe, Management of hepatocellular carcinoma. Rev Gastroenterol Disord, 2003. 3(1): p. 8-24.
2. Llovet, J.M., A. Burroughs, and J. Bruix, Hepatocellular carcinoma. The Lancet, 2003. 362(9399): p. 1907-1917. 3. Perry, J.F., et al., Current approaches to the diagnosis and management of hepatocellular carcinoma. Clin Exp Med, 2005. 5(1): p. 1-13. 4. Thorgeirsson, S.S. and J.W. Grisham, Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet, 2002. 31(4): p. 339-46. 5. Tang, Z.Y., Hepatocellular carcinoma--cause, treatment and metastasis. World J Gastroenterol, 2001. 7(4): p. 445-54. 6. Atkins, D., R. Lichtenfels, and B. Seliger, Heat shock proteins in renal cell carcinomas. Contrib Nephrol, 2005. 148: p. 35-56. 7. Drucker, B.J., Renal cell carcinoma: Current status and future prospects. Cancer Treatment Reviews, 2005. 31(7): p. 536-545. 8. Pavlovich, C.P. and L.S. Schmidt, Searching for the hereditary causes of renal-cell carcinoma. Nat Rev Cancer, 2004. 4(5): p. 381-93. 9. Lam, J.S., et al., Role of molecular markers in the diagnosis and therapy of renal cell carcinoma. Urology, 2005. 66(5, Supplement 1): p. 1-9. 10. Bruno, J.J., et al., Renal cell carcinoma local recurrences: impact of surgical treatment and concomitant metastasis on survival. BJU International, 2006. 97(5): p. 933-938. 11. Amato, R.J., Chemotherapy for renal cell carcinoma. Semin Oncol, 2000. 27(2): p. 177-86. 12. Morris, S.M., Jr., Enzymes of Arginine Metabolism. J. Nutr., 2004. 134(10): p. 2743S-2747. 13. Wu, G. and S.M. Morris, Jr., Arginine metabolism: nitric oxide and beyond. Biochem J, 1998. 336 ( Pt 1): p. 1-17. 14. Husson, A., et al., Argininosuccinate synthetase from the urea cycle to the citrulline-NO cycle. Eur J Biochem, 2003. 270(9): p. 1887-1899. 15. Mori, M. and T. Gotoh, Arginine Metabolic Enzymes, Nitric Oxide and Infection. J. Nutr., 2004. 134(10): p. 2820S-2825. 16. Koga, T., et al., Induction of citrulline-nitric oxide (NO) cycle enzymes and NO production in immunostimulated rat RPE-J cells. Experimental Eye Research, 2003. 76(1): p. 15-21. 17. Goodwin, B.L., L.P. Solomonson, and D.C. Eichler, Argininosuccinate Synthase Expression Is Required to Maintain Nitric Oxide Production and Cell Viability in Aortic Endothelial Cells. J. Biol. Chem., 2004. 279(18): p. 18353-18360. 18. Hattori, Y., E.B. Campbell, and S.S. Gross, Argininosuccinate synthetase mRNA and activity are induced by immunostimulants in vascular smooth muscle. Role in the regeneration or arginine for nitric oxide synthesis. J. Biol. Chem., 1994. 269(13): p. 9405-9408. 19. Zhang, W.Y., et al., Coinduction of inducible nitric oxide synthase and arginine recycling enzymes in cytokine-stimulated PC12 cells and high output production of nitric oxide. Molecular Brain Research, 2000. 83(1-2): p. 1-8. 20. Yun, H.Y., V.L. Dawson, and T.M. Dawson, Nitric oxide in health and disease of the nervous system. Mol Psychiatry, 1997. 2(4): p. 300-10. 21. Chung, K.K., T.M. Dawson, and V.L. Dawson, Nitric oxide, S-nitrosylation and neurodegeneration. Cell Mol Biol (Noisy-le-grand), 2005. 51(3): p. 247-54. 22. Moncada, S. and A. Higgs, The L-Arginine-Nitric Oxide Pathway. N Engl J Med, 1993. 329(27): p. 2002-2012. 23. Cohen, R.A., et al., Mechanism of Nitric Oxide1. Yu, A.S. and E.B. Keeffe, Management of hepatocellular carcinoma. Rev Gastroenterol Disord, 2003. 3(1): p. 8-24. 2. Llovet, J.M., A. Burroughs, and J. Bruix, Hepatocellular carcinoma. The Lancet, 2003. 362(9399): p. 1907-1917. 3. Perry, J.F., et al., Current approaches to the diagnosis and management of hepatocellular carcinoma. Clin Exp Med, 2005. 5(1): p. 1-13. 4. Thorgeirsson, S.S. and J.W. Grisham, Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet, 2002. 31(4): p. 339-46. 5. Tang, Z.Y., Hepatocellular carcinoma--cause, treatment and metastasis. World J Gastroenterol, 2001. 7(4): p. 445-54. 6. Atkins, D., R. Lichtenfels, and B. Seliger, Heat shock proteins in renal cell carcinomas. Contrib Nephrol, 2005. 148: p. 35-56. 7. Drucker, B.J., Renal cell carcinoma: Current status and future prospects. Cancer Treatment Reviews, 2005. 31(7): p. 536-545. 8. Pavlovich, C.P. and L.S. Schmidt, Searching for the hereditary causes of renal-cell carcinoma. Nat Rev Cancer, 2004. 4(5): p. 381-93. 9. Lam, J.S., et al., Role of molecular markers in the diagnosis and therapy of renal cell carcinoma. Urology, 2005. 66(5, Supplement 1): p. 1-9. 10. Bruno, J.J., et al., Renal cell carcinoma local recurrences: impact of surgical treatment and concomitant metastasis on survival. BJU International, 2006. 97(5): p. 933-938. 11. Amato, R.J., Chemotherapy for renal cell carcinoma. Semin Oncol, 2000. 27(2): p. 177-86. 12. Morris, S.M., Jr., Enzymes of Arginine Metabolism. J. Nutr., 2004. 134(10): p. 2743S-2747. 13. Wu, G. and S.M. Morris, Jr., Arginine metabolism: nitric oxide and beyond. Biochem J, 1998. 336 ( Pt 1): p. 1-17. 14. Husson, A., et al., Argininosuccinate synthetase from the urea cycle to the citrulline-NO cycle. Eur J Biochem, 2003. 270(9): p. 1887-1899. 15. Mori, M. and T. Gotoh, Arginine Metabolic Enzymes, Nitric Oxide and Infection. J. Nutr., 2004. 134(10): p. 2820S-2825. 16. Koga, T., et al., Induction of citrulline-nitric oxide (NO) cycle enzymes and NO production in immunostimulated rat RPE-J cells. Experimental Eye Research, 2003. 76(1): p. 15-21. 17. Goodwin, B.L., L.P. Solomonson, and D.C. Eichler, Argininosuccinate Synthase Expression Is Required to Maintain Nitric Oxide Production and Cell Viability in Aortic Endothelial Cells. J. Biol. Chem., 2004. 279(18): p. 18353-18360. 18. Hattori, Y., E.B. Campbell, and S.S. Gross, Argininosuccinate synthetase mRNA and activity are induced by immunostimulants in vascular smooth muscle. Role in the regeneration or arginine for nitric oxide synthesis. J. Biol. Chem., 1994. 269(13): p. 9405-9408. 19. Zhang, W.Y., et al., Coinduction of inducible nitric oxide synthase and arginine recycling enzymes in cytokine-stimulated PC12 cells and high output production of nitric oxide. Molecular Brain Research, 2000. 83(1-2): p. 1-8. 20. Yun, H.Y., V.L. Dawson, and T.M. Dawson, Nitric oxide in health and disease of the nervous system. Mol Psychiatry, 1997. 2(4): p. 300-10. 21. Chung, K.K., T.M. Dawson, and V.L. Dawson, Nitric oxide, S-nitrosylation and neurodegeneration. Cell Mol Biol (Noisy-le-grand), 2005. 51(3): p. 247-54. 22. Moncada, S. and A. Higgs, The L-Arginine-Nitric Oxide Pathway. N Engl J Med, 1993. 329(27): p. 2002-2012. 23. Cohen, R.A., et al., Mechanism of Nitric Oxide 1. Yu, A.S. and E.B. Keeffe, Management of hepatocellular carcinoma. Rev Gastroenterol Disord, 2003. 3(1): p. 8-24. 2. Llovet, J.M., A. Burroughs, and J. Bruix, Hepatocellular carcinoma. The Lancet, 2003. 362(9399): p. 1907-1917. 3. Perry, J.F., et al., Current approaches to the diagnosis and management of hepatocellular carcinoma. Clin Exp Med, 2005. 5(1): p. 1-13. 4. Thorgeirsson, S.S. and J.W. Grisham, Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet, 2002. 31(4): p. 339-46. 5. Tang, Z.Y., Hepatocellular carcinoma--cause, treatment and metastasis. World J Gastroenterol, 2001. 7(4): p. 445-54. 6. Atkins, D., R. Lichtenfels, and B. Seliger, Heat shock proteins in renal cell carcinomas. Contrib Nephrol, 2005. 148: p. 35-56. 7. Drucker, B.J., Renal cell carcinoma: Current status and future prospects. Cancer Treatment Reviews, 2005. 31(7): p. 536-545. 8. Pavlovich, C.P. and L.S. Schmidt, Searching for the hereditary causes of renal-cell carcinoma. Nat Rev Cancer, 2004. 4(5): p. 381-93. 9. Lam, J.S., et al., Role of molecular markers in the diagnosis and therapy of renal cell carcinoma. Urology, 2005. 66(5, Supplement 1): p. 1-9. 10. Bruno, J.J., et al., Renal cell carcinoma local recurrences: impact of surgical treatment and concomitant metastasis on survival. BJU International, 2006. 97(5): p. 933-938. 11. Amato, R.J., Chemotherapy for renal cell carcinoma. Semin Oncol, 2000. 27(2): p. 177-86. 12. Morris, S.M., Jr., Enzymes of Arginine Metabolism. J. Nutr., 2004. 134(10): p. 2743S-2747. 13. Wu, G. and S.M. Morris, Jr., Arginine metabolism: nitric oxide and beyond. Biochem J, 1998. 336 ( Pt 1): p. 1-17. 14. Husson, A., et al., Argininosuccinate synthetase from the urea cycle to the citrulline-NO cycle. Eur J Biochem, 2003. 270(9): p. 1887-1899. 15. Mori, M. and T. Gotoh, Arginine Metabolic Enzymes, Nitric Oxide and Infection. J. Nutr., 2004. 134(10): p. 2820S-2825. 16. Koga, T., et al., Induction of citrulline-nitric oxide (NO) cycle enzymes and NO production in immunostimulated rat RPE-J cells. Experimental Eye Research, 2003. 76(1): p. 15-21. 17. Goodwin, B.L., L.P. Solomonson, and D.C. Eichler, Argininosuccinate Synthase Expression Is Required to Maintain Nitric Oxide Production and Cell Viability in Aortic Endothelial Cells. J. Biol. Chem., 2004. 279(18): p. 18353-18360. 18. Hattori, Y., E.B. Campbell, and S.S. Gross, Argininosuccinate synthetase mRNA and activity are induced by immunostimulants in vascular smooth muscle. Role in the regeneration or arginine for nitric oxide synthesis. J. Biol. Chem., 1994. 269(13): p. 9405-9408. 19. Zhang, W.Y., et al., Coinduction of inducible nitric oxide synthase and arginine recycling enzymes in cytokine-stimulated PC12 cells and high output production of nitric oxide. Molecular Brain Research, 2000. 83(1-2): p. 1-8. 20. Yun, H.Y., V.L. Dawson, and T.M. Dawson, Nitric oxide in health and disease of the nervous system. Mol Psychiatry, 1997. 2(4): p. 300-10. 21. Chung, K.K., T.M. Dawson, and V.L. Dawson, Nitric oxide, S-nitrosylation and neurodegeneration. Cell Mol Biol (Noisy-le-grand), 2005. 51(3): p. 247-54. 22. Moncada, S. and A. Higgs, The L-Arginine-Nitric Oxide Pathway. N Engl J Med, 1993. 329(27): p. 2002-2012. 23. Cohen, R.A., et al., Mechanism of Nitric Oxide nduced Vasodilatation : Refilling of Intracellular Stores by Sarcoplasmic Reticulum Ca2+ ATPase and Inhibition of Store-Operated Ca2+ Influx. Circ Res, 1999. 84(2): p. 210-219. 24. Guzik, T.J., R. Korbut, and T. Adamek-Guzik, Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol, 2003. 54(4): p. 469-87. 25. Zhou, J. and B. Brune, NO and transcriptional regulation: from signaling to death. Toxicology, 2005. 208(2): p. 223-233. 26. Li, C.-Q. and G.N. Wogan, Nitric oxide as a modulator of apoptosis. Cancer Letters, 2005. 226(1): p. 1-15. 27. Kim, P.K.M., et al., The regulatory role of nitric oxide in apoptosis. International Immunopharmacology, 2001. 1(8): p. 1421-1441. 28. Vogelstein, B., D. Lane, and A.J. Levine, Surfing the p53 network. Nature, 2000. 408(6810): p. 307-310. 29. Hofseth, L.J., et al., Nitric oxide-induced cellular stress and p53 activation in chronic inflammation. Proc Natl Acad Sci U S A, 2003. 100(1): p. 143-8. 30. Forrester, K., et al., Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. PNAS, 1996. 93(6): p. 2442-2447. 31. Ambs, S., et al., p53 and vascular endothelial growth factor regulate tumor growth of NOS2-expressing human carcinoma cells. Nat Med, 1998. 4(12): p. 1371-6. 32. Xu, W., et al., The role of nitric oxide in cancer. Cell Res, 2002. 12(5-6): p. 311-20. 33. Rao, C.V., Nitric oxide signaling in colon cancer chemoprevention. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2004. 555(1-2): p. 107-119. 34. Wheatley, D.N., Arginine deprivation and metabolomics: Important aspects of intermediary metabolism in relation to the differential sensitivity of normal and tumour cells. Seminars in Cancer Biology, 2005. 15(4): p. 247-253. 35. Wheatley, D.N., Controlling cancer by restricting arginine availability--arginine-catabolizing enzymes as anticancer agents. Anticancer Drugs, 2004. 15(9): p. 825-33. 36. Shen, L.-J., et al., Resistance to the anti-proliferative activity of recombinant arginine deiminase in cell culture correlates with the endogenous enzyme, argininosuccinate synthetase. Cancer Letters, 2003. 191(2): p. 165-170. 37. Brian J. Dillon, V.G.P.S.A.C.C.M.E.F.W.H.J.S.B.M.A.C., Incidence and distribution of argininosuccinate synthetase deficiency in human cancers. Cancer, 2004. 100(4): p. 826-833. 38. Tang, S.-W., et al., Identification of differentially expressed genes in clear cell renal cell carcinoma by analysis of full-length enriched cDNA library. Journal of Biomedical Science, 2006: p. 1-8. 39. Tsai, C.-C., et al., Gene expression analysis of human hepatocellular carcinoma by using full-length cDNA library. Journal of Biomedical Science, 2006: p. 1-9. 40. Dhanakoti, S.N., et al., Cellular and subcellular localization of enzymes of arginine metabolism in rat kidney. Biochem J, 1992. 282 ( Pt 2): p. 369-75. 41. Taylor, W.R., et al., Mechanisms of G2 arrest in response to overexpression of p53. Mol Biol Cell, 1999. 10(11): p. 3607-22. 42. Taylor, W.R. and G.R. Stark, Regulation of the G2/M transition by p53. Oncogene, 2001. 20(15): p. 1803-15. 43. McCurrach, M.E., et al., bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc Natl Acad Sci U S A, 1997. 94(6): p. 2345-9. 44. Schuler, M. and D.R. Green, Mechanisms of p53-dependent apoptosis. Biochem Soc Trans, 2001. 29(Pt 6): p. 684-8. 45. Tytell, A.A. and R.E. Neuman, Growth response of stable and primary cell cultures to L-ornithine, L-citrulline, and L-arginine. Exp Cell Res, 1960. 20: p. 84-91. 46. Kenny, G.E. and M.E. Pollock, Mammalian cell cultures contaminated with pleuropneumonia-like organisms. I. Effect of pleuropneumonia-like organisms on growth of established cell strains. J Infect Dis, 1963. 112: p. 7-16. 47. Ensor, C.M., et al., Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res, 2002. 62(19): p. 5443-50. 48. Zhang, B., et al., Stable expression of varied levels of inducible nitric oxide synthase in primary cultures of endothelial cells. Anal Biochem, 2000. 286(2): p. 198-205. 49. Xie, L. and S.S. Gross, Argininosuccinate Synthetase Overexpression in Vascular Smooth Muscle Cells Potentiates Immunostimulant-induced NO Production. J. Biol. Chem., 1997. 272(26): p. 16624-16630. 50. Hussain, S.P., L.J. Hofseth, and C.C. Harris, RADICAL CAUSES OF CANCER. Nature Reviews Cancer, 2003. 3(4): p. 276-285. 51. Bode, A.M. and Z. Dong, POST-TRANSLATIONAL MODIFICATION OF P53 IN TUMORIGENESIS. Nature Reviews Cancer, 2004. 4(10): p. 793-805. 52. Wahl, G.M. and A.M. Carr, The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nat Cell Biol, 2001. 3(12): p. E277-E286. 53. Shieh, S.-Y., et al., DNA Damage-Induced Phosphorylation of p53 Alleviates Inhibition by MDM2. Cell, 1997. 91(3): p. 325-334. 54. Oda, K., et al., p53AIP1, a Potential Mediator of p53-Dependent Apoptosis, and Its Regulation by Ser-46-Phosphorylated p53. Cell, 2000. 102(6): p. 849-862. 55. D'Orazi, G., et al., Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol, 2002. 4(1): p. 11-19. 56. Keller, D.M., et al., A DNA Damage-Induced p53 Serine 392 Kinase Complex Contains CK2, hSpt16, and SSRP1. Molecular Cell, 2001. 7(2): p. 283-292. 57. Sakaguchi, K., et al., Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53. Biochemistry, 1997. 36(33): p. 10117-24. 58. Koutsodontis, G., et al., Physical and functional interactions between members of the tumour suppressor p53 and the Sp families of transcription factors: importance for the regulation of genes involved in cell-cycle arrest and apoptosis. Biochem J, 2005. 389(Pt 2): p. 443-55. 59. Yu, J., et al., Identification and classification of p53-regulated genes. PNAS, 1999. 96(25): p. 14517-14522. 60. Zhao, R., et al., Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev, 2000. 14(8): p. 981-93. 61. Flam, B.R., et al., Caveolar localization of arginine regeneration enzymes, argininosuccinate synthase, and lyase, with endothelial nitric oxide synthase. Nitric Oxide, 2001. 5(2): p. 187-97. 62. Demarquoy, J., et al., Demonstration of argininosuccinate synthetase activity associated with mitochondrial membrane: characterization and hormonal regulation. Mol Cell Biochem, 1994. 136(2): p. 145-55. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32570 | - |
| dc.description.abstract | 摘要
肝細胞癌是在肝臟中所產生的惡性腫瘤,其死亡率在所有癌症中居於首位,全球每年被診斷發現的新病例多達五十萬人次,全球發生率約為十萬人口中有5.5-14.9人被診斷為肝細胞癌,其發生以亞洲及非洲地區為主。目前已知肝細胞癌的危險因子包括有B型肝炎病毒及C型肝炎病毒的感染,另外已知在許多食品中,尤其是堅果及穀類製品相當容易受到黃麴黴菌的感染,而此類黴菌的化學產物,黃麴毒素也是相當重要的致癌因子。即使過去在已有相當大量的研究是針對肝細胞癌的致癌途徑,然而真正可供臨床診斷治療使用的結果卻是相當少量。腎細胞癌是由腎小管上皮細胞病變所衍化而成的癌症,佔所有成人腎臟惡性腫瘤中的百分之九十,發生率則約為所有惡性腫瘤的百分之二。腎細胞癌最好根治的方法, 就是利用手術切除,因為大部分的腎細胞癌對目前的化學藥物治療、荷爾蒙治療及放射線治療都具有抗性,整體而言,五年的存活率低於百分之二十。到目前為止,臨床上還沒有可作為預測診斷或治療預後的分子指標。因此,癌症學者們積極探究造成癌症之基因變化,不但可以增進對於癌症分子病理機轉之認識,更可以藉此發現做為診斷、篩檢以及治療之分子指標。而在本實驗室的蔡家櫸先生及唐賽文先生所建構的全長cDNA庫中發現,精氨基琥珀酸合成酵素基因的轉錄調控在肝細胞癌及腎細胞癌組織中都有受到抑制的現象。 精氨基琥珀酸合成酵素是參與在精氨酸生合成過程中的一個重要的酵素,在肝臟中參與尿素生化循環反應,此循環反應在大多數的哺乳類中是一種排出多餘氨的重要機制。除此之外,由於瓜胺酸-一氧化氮循環的發現,使得精氨基琥珀酸合成酵素躍升為一氧化氮生合成反應中速率限制步驟的重要酵素。一氧化氮的生物學作用具有複雜性和多樣性,在過去的研究證據指出,一氧化氮的生物學作用可能是通過誘導抑癌基因p53蛋白的表現量上升或透過促進抑癌基因p53蛋白的轉譯後修飾,進而殺滅腫瘤或抑制腫瘤生長。在最近的研究顯示,精氨基琥珀酸合成酵素的缺失在不同的腫瘤及組織中都有相當高的發生率。然而,精氨基琥珀酸合成酵素的缺失導致癌症生成中値得研究。 在本研究中發現,在多對肝細胞癌組織及腎細胞癌組織與其週邊正常組織配對樣本中,精氨基琥珀酸合成酵素在腎細胞癌中RNA及蛋白層次都有表現量下降的情形。針對精氨基琥珀酸合成酵素在功能性研究上,發現在人類胚胎腎細胞株,HEK293,和人類腎細胞癌細胞株,786-O,中過度表現精氨基琥珀酸合成酵素,會造成抑癌基因p53的蛋白表現量增加以及促進p53後轉譯修飾的產生,而這樣的現象可能是憑藉著一氧化氮訊息路徑而產生的。此外,在持續表現精氨基琥珀酸合成酵素的細胞株有生長速率被抑制的現象,更進一步地,我們亦發現這種生長抑制的現象可能是透過p53調控的G2細胞週期阻滯或細胞凋亡所引發的。綜合以上的實驗結果,顯示出精氨基琥珀酸合成酵素藉由引發癌細胞死亡或是減緩癌細胞生長速率進而抑制癌症的生成及發展。 | zh_TW |
| dc.description.abstract | Abstracts
Hepatocellular carcinoma (HCC) arises from hepatocytes, and is the primary malignant disease of the liver. It is the number one cause of cancer death worldwide. It is especially prevalent in parts of Asia and Africa. Although many studies about HCC have been studied, only fragmentary and incomplete data are available about genomic alterations during the development and progression of HCC in humans. Renal cell carcinoma (RCC), the most common tumor of the kidney in adults, accounts for 2% of all cancers and 90% of malignant kidney tumors. RCC is highly resistant to the most therapy and has poor response to chemotherapy, hormonal therapy and radiation therapy, and is associated with a 5-year survival rate of less than 20%. To date there have been no specific tumor markers available for the differential diagnosis of RCC. The identification of new molecular parameters of HCC or RCC will be necessary in cancer research. In pervious studies, the down-regulated expression of arginiosuccinate sythetase (ASS) was identified by comparing the gene-expression profiles of the full-length cDNA libraries both of HCC/normal liver tissues by Mr. C.C. Tsai, and RCC/normal kidney tissues by Mr. S.W. Tang in our laboratory. ASS is an enzyme that participates in the arginine biosynthetic pathway and contributes to ammonia detoxification in the liver. In addition, discovery of the citrulline– nitric oxide (NO) cycle has increased interest in the key enzyme, ASS that was found to represent a potential limiting step in NO synthesis. Then, the evidences for the link between NO and p53 are shown that p53 accumulation and post-translational modifications induced by NO donor treatment in previous studies. Previous studies have demonstrated that the incidence of ASS deficiency varied greatly with the tumor type and tissue of origin. However, the reason of ASS deficiency is unknown. In this study, the down-regulation expression of ASS mRNA and ASS protein was demonstrated in HCC tissues and RCC tissues by quantitative real-time PCR, Western blot analysis and immunohistochemistry analysis. By functional studies, the tumor suppressor p53 protein was up-regulated and phosphorylated by overexpression of ASS in 786-O cells and HEK cells. Furthermore, the accumulation and modification of p53 protein probably mediated by nitric oxide signaling pathway. On the other hand, the cell viability assay showed that stable expression of ASS protein could decrease the cell growth rate. Furthermore, the decrease of the cell growth could be caused by cell cycle arrest or apoptosis which was mediated by p53 protein in 786-O cells and HEK cells, respectively. Taken together, these results suggested that ASS would cause tumor cell death or its growth repression to suppress tumorgenesis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:11:45Z (GMT). No. of bitstreams: 1 ntu-95-R93442008-1.pdf: 3558992 bytes, checksum: b12076f339b4a44b75ecaa581acad08e (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Abbreviations………………………………………………………III
摘要……………………………………………………………………1 Abstract………………………………………………………………3 Introduction…………………………………………………………5 Materials and Methods 1.Materials……………………………………………………………11 2.Real-time RT-PCR…………………………………………………12 3.Western Blotting…………………………………………………13 4.Immunohistochemistry……………………………………………18 5.Plasmid Transformation…………………………………………20 6.Plasmid Preparation………………………………………………21 7.Cell Culture………………………………………………………22 8.Transient Transfection…………………………………………23 9.Stable Clones Selection…………………………………………24 10.Confocal Microscopy……………………………………………25 11.Cell Fractionation……………………………………………27 12.Alamar Blue assay………………………………………………29 13.MTT assay…………………………………………………………30 14.Flow cytometric analysis of DNA content…………………31 15.Genomic DNA extraction………………………………………33 16.RNA extraction and reverse transcription…………………33 Results 1.Down-regulation of ASS mRNA level in HCC tissues…………37 2.Protein level of ASS was down-regulated in HCC tissues…37 3.Down-regulation of ASS mRNA level in RCC tissues…………38 4.Protein level of ASS was down-regulated in RCC tissues…39 5.Subcellular localization of over-expressed ASS protein…40 6.Presence of wild type p53 protein in 786-O cell line and HEK293 cell line………………………………………………………41 7.Over-expression of ASS protein induced the increase of phosphorylated p53 protein…………………………………………42 8.Effects of ASS on p53 protein expression were mediated by nitric oxide signaling pathway……………………………………43 9.Stably expression of ASS protein suppressed the cell growth rate…………………… ………………………………………44 10.Cell cycle arrest or apoptosis caused by ASS stable cell lines……………………………………………………………………45 11.Effects of stable expression of ASS protein on the expression of several cell cycle related or apoptosis genes……………………………………………………………………46 Discussion……………………………………………………………48 Acknowledgments………………………………………………………53 Figures…………………………………………………………………54 Legends…………………………………………………………………66 Table……………………………………………………………………72 References……………………………………………………………73 List of Figures Fig. 1. Down-regulation of mRNA expression of ASS in HCC tissue pairs……………………………………………………………54 Fig. 2. Down-regulation of ASS protein expression in HCC tissue pairs……………………………………………………………54 Fig. 3. Down-regulation of protein expression of ASS by Immunohistochemical staining of HCC sections…………………………………………………………………55 Fig. 4. Down-regulation of mRNA expression of ASS in RCC tissue pairs……………………………………………………………56 Fig. 5. Down-regulation of ASS protein expression in RCC tissue pairs……………………………………………………………56 Fig. 6. Down-regulation of protein expression of ASS by Immunohistochemical staining of RCC sections…………………………………………………………………57 Fig. 7. Down-regulated expression of ASS protein in all cell lines………………………………………………………………57 Fig. 8. Intracellular localization of ASS in 786-O and HEK293 cell lines……………………………………………………58 Fig. 9. PCR products of p53 exons for determination of the p53 status………………………………………………………………59 Fig. 10. Effects of over-expression of ASS in 786-O cells on p53 protein expression with dose- and time-dependent manner……………………………………………………………………60 Fig. 11. Effects of over-expression of ASS and treatment of NO inhibitor on the level and status of p53 protein in HEK293 cells……………………………………………………………61 Fig. 12. Effects of NO inhibition on the p53 expression in 786-O cells……………………………………………………………62 Fig. 13. Inhibitory effects of stable expression of ASS protein on the growth of 786-O cells or HEK293 cells………63 Fig. 14. Regulation of cell cycle arrest and cell apoptosis in those ASS-expression stable clones individually derived from 786-O and HEK293 cell lines…………………………………64 Fig. 15. Effects of the stable expression of ASS on the gene expression of cell cycle and apoptosis-related genes………………………………………………………v………… 65 List of Table Table 1. Sequences of primers for each p53 exon…………72 | |
| dc.language.iso | en | |
| dc.subject | 肝細胞癌 | zh_TW |
| dc.subject | 精氨基琥珀酸合成酵素 | zh_TW |
| dc.subject | p53蛋白 | zh_TW |
| dc.subject | 腎細胞癌 | zh_TW |
| dc.subject | 一氧化氮 | zh_TW |
| dc.subject | p53 | en |
| dc.subject | Renal cell carcinoma | en |
| dc.subject | Hepatocellular carcinoma | en |
| dc.subject | Arginiosuccinate sythetase | en |
| dc.subject | Nitric oxide | en |
| dc.title | 肝細胞癌及腎細胞癌相關基因,精氨基琥珀酸合成酵素,對生長抑制、誘導細胞週期停止及凋亡之影響 | zh_TW |
| dc.title | Effects of the HCC and RCC-associated gene, argininosuccinate synthetase on growth inhibition, induction of cell cycle arrest and apoptosis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周玉山,吳華林,錢宗良 | |
| dc.subject.keyword | 精氨基琥珀酸合成酵素,肝細胞癌,腎細胞癌,p53蛋白,一氧化氮, | zh_TW |
| dc.subject.keyword | Arginiosuccinate sythetase,Hepatocellular carcinoma,Renal cell carcinoma,p53,Nitric oxide, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-26 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 3.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
