Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32565
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳明汝(Ming-Ju Chen)
dc.contributor.authorYi-Tzu Kuoen
dc.contributor.author郭怡孜zh_TW
dc.date.accessioned2021-06-13T04:11:41Z-
dc.date.available2009-07-31
dc.date.copyright2006-07-31
dc.date.issued2006
dc.date.submitted2006-07-24
dc.identifier.citation毛漢梅。2002。以遺傳演算法探討酸凝酪中原生菌生長速率之最適 化。碩士論文。國立台灣大學畜產學研究所。
李棟義。1990。胰酶微膠囊化。碩士論文。國立台灣大學畜牧學研究所。
沈明來。1999。試驗設計學。九州圖書文物有限公司。台北市。
林子琦。2002。利用褐藻酸鈣膠囊化雙叉桿菌之耐酸性與儲存安定性。碩士論文。國立台灣大學食品科技研究所。
林嘉瑜。2002。反應曲面法之改良研究—權重平滑搜尋方向與實驗區域改變規則之探討。碩士論文。國立成功大學工業管理學研究所。
林慶文。1996。乳品加工學。pp. 161-163。華香園出版社印行。
周佳蓉。2003。藉由遺傳演算法與序列二次規劃法探討原生菌奶豆腐最佳製作條件。碩士論文。國立台灣大學畜產學研究所。
邱欣怡。2004。藉最適化方法探討添加益菌質於囊壁材質對微膠囊化原生菌之影響。碩士論文。國立台灣大學畜產學研究所。
徐業良。1995。工程最佳化設計。國立編譯館主編。宏明圖書有限公司印行。台中市。
翁瑋蓮。1999。以反應曲面法探討扣碗酪之最佳生產模式。碩士論文。 國立台灣大學畜產學研究所。
連紋乾。2000。保健膳食補助品之製備—利用阿拉伯膠及脫脂奶粉低溫噴霧乾燥微膠囊化雙叉桿菌。碩士論文。國立台灣大學食品科技研究所。
陳怡宏。1994。Gellan Gum的介紹。食品工業26(6): 27-33。
張富華。2004。以定位誤差為基準之機械手臂操作位置最佳化。碩士論文。私立逢甲大學機械工程學研究所。
黃建榕。2000。以微生物包埋法處理之雙叉乳桿菌應用於酸酪乳製造之研究。中畜會誌 29(2): 125-131。
蘇豊棋。2003。以回應曲面法探討渦旋式流體化床中之淘析現象。碩士論文。私立中原大學化學工程系研究所。
Adhikari, K., A. Mustapha and I. U. Grün. 2000. Viability of microencapsulated bifidobacteria in set yogurt during refrigerated storage. J. Dairy Sci. 83: 1946-1951.
Adhikari, K., A. Mustapha and I. U. Grün. 2003. Survival and metabolic activity of microencapsulated Bifidobacterium in stirred yogurt. J. Food Sci. 68(1): 275-280.
Alhaique, F., E. Santucci, M. Carafa, T. Coviello, E. Murtas and F. M. Riccieri. 1996. Gellan in sustained release formulations: preparation of gel capsules and release studies. Biomaterials 17: 1981-1986.
Ananta, E., M. Volkert and K. Knorr. 2005. Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. Int. Dairy J. 15: 399-409.
Audet, P., C. Paquin and C. Lacroix. 1989. Sugar utilization and acid production by free and entrapped cells of Streptococcus salivarius subsp. thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, and Lactococcus lactis subsp. lactis in a whey permeate medium. Appl. Environ. Microbiol. 55(1): 185-189.
Baird, J. K. and J. L. Shim. 1985. Non-heated gellan gum gels. U.S.Patent 4503084.
Berrada, N., J. F. Lemeland, G. Laroche, P. Thouvenot and M. Piaia. 1991. Bifidobacterium from fermented milks: Survival during gastric transit. J. Dairy Sci. 74: 409-413.
Bickerstaff, G. F. 1997. Immobilization of enzymes and cells. pp.1-11. Bickerstaff G. F. (Ed.), In'Methods in Biotechnology', vol. 1. Humana Press, Totowa, New Jersey.
Box, G. E. P. and K. B. Wilson. 1951. On the experimental attainment of optimum conditions. Journal of the royal statistical society, Series B, 13: 1-45.
Box, G. E. P. and D. W. Behnken. 1960. Some new three-level designs for the study of quantitative variables. Technometrics 2: 455-475.
Boyacı, İ. H., P. C. Williams and H. Köksel. 2004. A rapid method for the estimation of damaged starch in wheat flours. J. Cereal Sci. 39: 139-145.
Champagne, C. P., Gaudy, D. Poncelet and R. J. Neufeld. 1992. Lactococcus lactis release from calcium alginate beads. Appl. Environ. Microbiol. 58: 1429-1434.
Champagne, C. P., Lacroix and I. Sodini-Gallot. 1994. Immobilized cell technologies for the dairy industry. Crit. Rev. Biotechnol. 14(2): 109-134.
Chandramouli, V., K. Kailasapathy, P. Peiris and M. Jones. 2004. An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J. Microbiol. Methods 56: 27-35.
Charteris, W. P., P. M. Kelly, L. Morelli and J. K. Collins. 1998. Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J. Appl. Microbiol. 84: 759-768.
Chen, M. J. and C. W. Lin. 2002. Factors affecting the water-holding capacity of fibrinogen/plasma protein gels optimized by response surface methodology. J. Food Sci. 67(7): 2579-2582.
Chen, Q. H., G. Q. He and Mokhtar A. M. Ali. 2002. Optimization of medium composition for the production of elastase by Bacillus sp. EL31410 with response surface methodology. Enzyme Microb. Technol. 30: 667-672.
Chen, M. J., K. N. Chen and C. W. Lin. 2004. Sequential quadratic programming for development of a new probiotic dairy tofu with Glucon-δ-Lactone. J. Food Sci. 69(7): 344-350.
Chen, K. N., M. J. Chen, J. R. Liu, C. W. Lin and H. Y. Chiu. 2005. Optimization of incorporated prebiotics as coating materials for probiotic microencapsulation. J. Food Sci. 70 (5): 260-267.
Chen, K. N., M. J. Chen and C. W. Lin. 2006. Optimal combination of the encapsulating materials for probiotic microcapsules and its experimental verification (R1). J. Food Eng. 76: 313-320.
Chen, M. J. and K. N. Chen. 2006. Applications of probiotic encapsulation in dairy products. In Encapsulation Applications in Food Systems, ed. Jamileh Lakkis. Iowa: Blackwell Publishing. (In press).
Cui, J. H., J. S. Goh, P. H. Kim, S. H. Choi and B. J. Lee. 2000. Survival and stability of bifidobacteria loaded in alginate poly-l-lysine microparticles. Int. J. Pharm. 210: 51-59.
Dave, R. I. and N. P. Shah. 1997. Effectiveness of ascorbic acid as an oxygen scavenger in improving viability of probiotic bacteria in yoghurts made with commercial starter cultures. Int. Dairy J. 7: 435-443.
Dave, R. I. and N. P. Shah. 1998. Ingredients supplementation effects on viability of probiotic bacteria in yogurt. J. Dairy Sci. 81: 2804-2816.
Davenport, H. W. 1977. Intestinal digestion and absorption of fat. In Physiology of the Digestive Tract 4th. Davenport, H. W.(ed.), Year Book Medical Publishers Incorporated, Chicago, London. P. 232.
De Coninck, J., S. Bouquelet, V. Dumortier, F. Duyme and VI. Denantes. 2000. Industrial media and fermentation process for improved growth and protease production by Tetrahymena thermophila BIII. J. Ind. Microbiol. Biotechnol. 24: 285-90.
Desmond, C., R. P. Ross, E. O’Callaghan, G. Fitzgerald and C. Stanton. 2002. Improved survival of Lactobacillus paracasei NFBC 338 in spray-dried powders containing gum acacia. J. Appl. Microbiol. 93: 1003-1011.
Dinakar, P. and V. V. Mistry. 1994. Growth and viability of Bifidobacterium bifidum in Cheddar cheese. J. Dairy Sci. 77: 2854-2864.
Doleyres, Y. and C. Lacroix. 2005. Technologies with free and immobilized cells for probiotic bifidobacteria production and protection. Int. Dairy J. 15: 973-988.
Doner, L. W. 1997. Rapid purification of commercial gellan gum to highly soluble and gellable monovalent cation salts. Carbohydr. Polym. 32: 245-247.
Dutta, J. R., P. K. Dutta and R. Banerjee. 2004. Optimization of culture parameters for extracellular protease production from a newly isolated Pseudomonas sp. using response surface and artificial neural network models. Process Biochemistry 39: 2193-2198.
Dziezak, J. D. 1988. Microencapsulation and encapsulated ingredients. Food Technol. 42(4): 136-149.
Ertesvåg, H. and S. Valla. 1998. Biosynthesis and applications of alginates. Polymer Degradation and Stability 59: 85-91.
Favaro-Trindade, C. S. and C. R. F. Grosso. 2002. Microencapsulation of L. acidophilus (La-05) and B. lactis (Bb-12) and evaluation of their survival at the pH values of the stomach and in bile. J. Microencapsul. 19(4): 485-494.
Fuller, R. 1992. Probiotics: the scientific basis. London: Chapman&Hall.
Fundueanu, G., C. Nastruzzi, A. Carpov, J. Desbrieres and M. Rinaudo. 1999. Physico-chemical characterization of Ca-alginate microparticles produced with different methods. Biomaterials 20: 1427-1435.
Fundueanu, G., C. Nastruzzi, A. Carpov, J. Desbrieres and M. Rinaudo. 1999. Physico-chemical characterization of Ca-alginate microparticles produced with different methods. Biomaterials 20: 1427-1435.
Gardiner, G. E., P. Bouchier, E. O’sullivan, J. Kellly, J. K. Collins, B. G. Fitzgerald, R. P. Ross and C. Stanton. 2002. A spray-dried culture for probiotic cheddar cheese manufacture. Int. Dairy J. 12: 749-756.
Gerbsch, N. and R. Buchholz. 1995. New processes and actual trends in biotechnology. FEMS Microbiol. Rev. 16: 259-269.
Gibbs, B. F., S. Kermasha, I. Alli and C. N. Mulligan. 1999. Encapsulation in the food industry: a review. Int. J. Food Sci. Nutr. 50: 213-224.
Gibson, G. R. and M. B. Roberfroid. 1995. Dietary modulation of the human colonic microbial—Introducing the concept of prebiotics. J. Nutr. 125: 1401-1412.
Gill, P. E., W. Murrary and M. H. Wright. 1989. Practical optimization, Eighth Printing, Academic Press, San Diego, California.
Gilliland, S. E. 1989. Acidophilus milk products: A review of potential benefits to consumers. J. Dairy Sci. 72: 2483-2494.
Giovanni, M. 1983. Response surface methodology and product optimization. Food Technol. 37: 41-45.
Grill, J. P., C. Manginot-Durr, F. Schneider and J. Ballongue. 1995. Bifidobacteria and probiotic effects: action of Bifidobacterium species on conjugated bile salt. Cur. Microbiol. 31: 23-27.
Haaland, P. D. 1989. Statistical problem solving. In: Haaland PD, editor. Experimental design in biotechnology. New York: Marcel Dekker, Inc. pp.1-18.
Havenaar, R. and J. H. H. Huis in’t Veld. 1992. Probiotics: a general view. New York: Chapman and Hall. P 209-224.
Hegenbart, S. 1993. Encapsulated ingredients keep problems conversed. Food Prod. Design 3: 28-34.
Hook, S. K. and E. A. Zottola. 1988. Effect of low pH on the ability of Lactobacillus acidophilus to survive adhere to human intestinal cells. J. Food. Sci. 53: 1514-1516.
Hou, R. C. W., M. Y. Lin, M. M. C. Wang and J. T. C. Tzen. 2003. Increase of viability of entrapped cells of Lactobacillus delbrueckii ssp. bulgaricus in artificial sesame oil emulsions. J. Dairy Sci. 86: 424-428.
Iyer, C. and K. Kailasapathy. 2005. Effect of co-encapsulation of probiotics with prebiotics on increasing the viability of encapsulated bacteria under in vitro acidic and bile salt conditions and in yogurt. J. Food Sci. 70(1): 18-23.
Kamel, B. S. and C. E. Stauffer. 1993. Advances in baking technology. In Sensory Evaluation, ed. C. S. Setser, 254-291. New York: Blackie Academic & Professional.
Kearney, L., M. Upton and A. Loughlin. 1990. Enhancing the viability of Lactobacillus plantarum inoculum by immobilizing the cells in calcium-alginate beads. Appl. Environ. Microbiol. 56(10): 3112-3116.
Kebary, K. M., S. A. Hussein and R. M. Badawi. 1998. Improving viability of Bifidobacteria and their effect on frozen ice milk. Egypt. J. Dairy Sci. 26(2): 319-337.
Kedzierewicz, F., C. Lombry, R. Rios, M. Hoffman and P. Maincent. 1999. Effect of the formulation on the in-vitro release of propranolol from gellan beads. Int. J. Pharm. 178: 129-136.
King, A. H. 1995. Encapsulation of food ingredients: a review of available technology, focusing on hydrocolloids. In Encapsulation and control release of food ingredients, ed. S. J. Risch and G. A. Reineccius, 213-220. Washington DC: American Chemical Society.
Krasaekoopt, W., B. Bhandari and H. Deeth. 2003. Review: Evaluation of encapsulation techniques of probiotics for yoghurt. Int. Dairy J. 13: 3-13.
Krasaekoopt, W., B. Bhandari and H. Deeth. 2004. The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. Int. Dairy J. 14: 737-743.
Kurman, J. A. and J. L. Rasic. 1991. The health potential of products containing bifidobacteria. In Therapeutic properties of fermented milk, ed. R. K. Robinson, 115-117. London: Elsevier Application Food Science Series.
Lankaputhra, W. E. V. and N. P. Shah. 1995. Survival of Lactobacillus acidopilus and Bifidobacterium spp. in the presence of acid and bile salts. Cult. Dairy Prod. J. 30: 2-7.
Lee, K. Y. and T. R. Heo. 2000. Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution. Appl. Environ. Microbiol. 66(2): 869-873.
Lee, J. S., D. S. Cha and H. J. Park. 2004. Survival of freeze-dried Lactobacillus bulgaricus KFRI 673 in chitosan-coated calcium alginate microparticles. J. Agric. Food Chem. 52: 7300-7305.
Lian, W. C., H. C. Hsiao and C. C. Chou. 2002. Survival of bifidobacteria after spray-drying. Int. J. Food Microbiol. 74: 79-86.
Lian, W. C., H. C. Hsiao and C. C. Chou. 2003. Viability of microencapsulated bifidobacteria in simulated gastric juice and bile solution. Int. J. Food Microbiol. 86: 293-301.
Lourens-Hattingh, A. and B. C. Viljoen. 2001. Yogurt as prebiotic carrier food. Int. Dairy J. 11: 1-17.
Luenberger, D. G. 1984. Linear and nonlinear programming. Addison-Wesley Publishing Company, Reading, M.A.
Maitrot, H., C. Paquin, C. Lacroix and C. P. Champagne. 1997. Production of concentrated freeze-dried cultrues of Bifidobacterium longum in k-carrageenan-locust bean gum gel. Biotechnol. Tech. 11(7): 527-531.
Matsukawa, S., Z. Huang and T. Watanabe. 1999. Structural change of polymer chains of gellan monitored by circular dichroism. Progr. Colloid Polym. Sci. 114: 92-97.
Mattila-Sandholm, T., P. Myllärinen, R. Crittenden, G. Mogensen, R. Fonden and M. Saarela. 2002. Technological challenges for future probiotic foods. Int. Dairy J. 12: 173-182.
McMaster, L. D., S. A. Kokott, S. J. Reid and V. R. Abratt. 2005. Use of traditional African fermented beverages as delivery vehicles for Bifidobacterium lactis DSM 10140. Int. J. Food Microbiol. 102: 231-237.
Miyoshi, E. and K. Nishinari. 1999. Rheollogical and thermal properties near the sol-gel transition of gellan gum aqueous solutions. Progr. Colloid Polym. Sci. 114: 68-82.
Modler, H. W. and L. Villa-Garcia. 1993. The growth of Bifidobacterium longum in whey-based medium and viability of this organism in frozen yogurt with low and high levels of developed acidity. Cult. Dairy Prod. J. 28: 4-8.
Moe, S. T., K. I. Draget, G. Skjak-Braek and O. Smidsrod. 1995. Alginates.In: Dekker M (ed) Food polysaccharide and application. Dekker,New York, pp. 245-286.
Moritaka, H., S. Kimura, H. Fukuba. 2003. Rheological properties of matrix-particle gellan gum gel: effects of calcium chloride on the matrix. Food Hydrocoll. 17: 653-660.
Myers, R. H. and D. C. Montgomery. 2002. Response surface methodology: process and product optimization using designed experiments, 2nd ed. John Wiley & Sons, Inc. New York.
Norton, S. and C. Lacroix. 1990. Gellan gum gel as entrapment matrix for high temperature fermentation processes: a rheological study. Biotechnol. Tech. 4: 351-356.
Ogawa, E., H. Matsuzawa and M. Iwahashi. 2002. Conformational transition of gellan gum of sodium, lithium, and potassium types in aqueous solutions. Food Hydrocoll. 16: 1-9.
Ogbonna, J. C., Y. Amano, K. Nakamura. 1989. Elucidation of optimum conditions for immobilization of viable cells by using calcium alginate. J. Ferment. Bioeng. 67(2): 92-96.
Omoto, T., Y. Uno and I. Asai. 1999. The latest technologies for the application of gellan gum. Progr. Colloid Polym. Sci. 114: 123-126.
O’Riordan, K. I., D. Andrews, K. Buckle and P. Conway. 2001. Evaluation of microencapsulation of a Bifidobacterium strain with starch an approach to prolonging viability during storage. J. Appl. Microbiol. 91: 1059-1066.
Picot, A. and C. Lacroix. 2003. Production of multiphase water-insoluble microcapsules for cell microencapsulation using an emulsification/ spray-drying technology. J. Food Sci. 68(9): 2693-2700.
Picot, A. and C. Lacroix. 2004. Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yogurt. Int. Dairy J. 14: 505-515.
Peniche C., W. Argüelles-Monal, H. Peniche and N. Acosta. 2003. Chitosan: an attractive biocompatible polymer for microencapsulation. Macromol. Biosci. 3: 511-520.
Pochart, P., P. Marteau, B. Y. Goderel, P. I. Bourlioux and J. C. Rambaud. 1992. Survival of bifidobacteria ingested via fermented milk during their passage through the human small intestine: an in vivo study using intestinal perfusion. Am. J. Clin. Nutr. 55: 78-80.
Poncelet, D., V. Babak, C. Dulieu and A. Picot. 1999. A physico- chemical approach to production of alginate beads by emulsification- internal ionotropic gelation. Colloids surf. 155: 171-176.
Prasad, J., H. Gill, J. Smart and P. K. Gopal. 1998. Selection and characterization of Lactobacillus and Bifidobacterium strains for use as probiotics. Int. Dairy J. 8: 993-1002.
Prevost, H. and C. Divies. 1987. Fresh fermented cheese production with continuous pre-fermented milk by a mixed culture of mesophilis lactic streptococci entrapped in Ca-alginate. Biotechnol. Lett. 9(11): 789-794.
Prevost, H. and C. Divies. 1988. Continuous prefermentation of milk by entrapped yogurt bacteria. I. Development of the process. Milchwissenschaft 43: 621-625.
Prevost, H. and C. Divies. 1992. Cream fermentation by a mixed culture of lactococci entrapped in two-layer calcium alginate gel beads. Biotechnol. Lett. 14(7): 583-588.
Pujari, V. and T. S. Chandra. 2000. Statistical optimization of medium components for enhanced riboflavin production by a UV-mutant of Eremothecium ashbyii. Proc. Biochem. 36: 31-37.
Rao, A. V., N. Shiwnarain and I. Maharaj. 1989. Survival of microencapsulated Bifidobacterium pseudolongum in simulated gastric and intestinal juices. Can. Inst. Food Sci. Technol. J. 22(4): 345-349.
Reklaintis, G. V., A. Ravindran and K. M. Ragsdell. 1983. Engineering Optimization: Methods and Applications. New York: John Wiley and Sons.
Robinson, R. K. 1987. Survival of Lactobacillus acidophilus in fermented products. Suid Afrikaans Tydskrif Vir Suiwelunde 19(1): 25-27.
Sabra, W., A. P. Zeng and W. D. Deckwer. 2001. Bacterial alginate: physiology, product quality and process aspects. Appl. Microbiol. Biotechnol. 56: 315-325.
Samona, A. and R. K. Robinson. 1994. Effect of yogurt cultures on the survival of bifidobacteria in fermented milks. J. Soc. Dairy Technol. 47: 58-60.
Schiffrin, E. J., D. Brassart, A. L. Servin, F. Rochat and A. D. Hughnes. 1997. Immune modulation of blood leukocytes in humans by lactic acid bacteria: Criteria for strain selection. Am. J. Clin. Nutr. 66: 515-520.
Shah, N. P. and R. R. Ravla. 2004. Selling the cells in desserts. Dairy Ind. Int. 69: 31-32.
Sheu, T. Y. and R. T. Marshall. 1993. Microentrapment of lactobacilli in calcium alginate gels. J. Food Sci. 54(3): 557-561.
Smidsrod O. and G. Skjak-Braek. 1990. Alginate as immobilization matrix for cells. Trends Biotechnol. 8(3): 71-78.
Song, S., Y. Cho and J. Park. 2003. Microencapsualtion of Lactobacillus casei YIT 9018 using a microporous glass membrane emulsification system. J. Food Sci. 68(1): 195-200.
Sultana, K., G. Godward, N. Reynolds, R. Arumugaswamy, P. Peiris and K. Kailasapathy. 2000. Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yogurt. Int. J. Food Microbiol. 62: 47-55.
Sun, W. and M. W. Griffiths. 2000. Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan-xanthan beads. Int. J. Food Microbiol. 61: 17-25.
Thies, C. 1996. A survey of microencapsulation. In Microencapsulation: Methods and Industrial Applications, ed. S. Benita, pp. 1-19. New York: Marcel & Dekker.
Truelstrup-Hansen, L., P. M. Allan-Wojtas, Y. L. Jin and A. T. Paulson. 2002. Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol. 19: 35-45.
Vulevic, J., R. A. Rastall and G. R. Gibson. 2004. Developing a quantitative approach for determining the in vitro prebiotics potential of dietary oligosaccharides. FEMS Micro. Biol. Lett. 236: 153-159.
Wang, Q. J. 1997. Using genetic algorithms to optimize model parameters. Environ. Model Software 12: 27-34.
Wang, Y. X. and Z. X. Lu. 2005. Optimization of processing parameters for the mycelial growth and extracellular polysaccharide production by Boletus spp. ACCC 50328. Process Biochemistry 40: 1043-1051.
Yoo, I., G. H. Seong, H. N. Chang and J. K. Park. 1996. Encapsulation of Lactobacillus casei cells in liquid-core alginate capsules for lactic acid production. Enzyme microb. Technol. 19: 428-433.
Yuguchi, Y., H. Urakawa and K. Kajiwara. 2002. The effect of potassium salt on the structural characteristics of gellan gum gel. Food Hydrocoll. 16: 191-195.
Zhou, Y., E. Martins, A. Groboillot, C. P. Champagne and R. J. Neufeld. 1998. Spectrophotometric quantification of lactic bacteria in alginate and control of cell release with chitosan coating. J. Appl. Microbiol. 84(3): 342-348.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32565-
dc.description.abstract本研究目的擬藉由最適化技術開發具隔熱效果之益生菌微膠囊,以改善益生菌在高溫環境、模擬腸胃液及儲存期間的存活率。研究中選用結蘭膠及褐藻酸鈉兩種食用膠,以不同比例混合成膠作為囊壁材質包覆益生菌Lactobacillus casei及Bifidobacterium bifidum作為菌元,並在囊壁中多添加短鏈肽類與果寡醣等益菌質,探討添加不同益菌質濃度及膠體比例之微膠囊化益生菌,經高溫短時間加熱(75℃,一分鐘)處理後其存活菌數。試驗中以反應曲面法(response surface methodology, RSM)之四因子三階次實驗設計得到30組之實驗組,實驗結果以Design-Expert軟體分析,建立反應曲面模式及最適方程式後,再利用序列二次規劃法(sequential quadratic programming, SQP)尋找出隔熱性最佳之微膠囊囊壁組合。
結果顯示,若欲同時考慮兩種益生菌在最適的條件下,因設定目標較多而複雜,複合函數在序列二次規劃法之運算下,經過68次隨機找尋起始點開始運算,發現搜尋到三個不同的區域性最佳解,在反覆採用隨機選取起始點搜尋的過程中,則會因為其中一個最佳解出現機率達99.99 %的條件限定下才停止搜尋;尋得最適結果之各成分添加濃度,分別為1.0 %結蘭膠、2.0 %褐藻酸鈉、0.82 %肽類且不需要添加果寡醣;在此條件下,包覆後所釋放的乳酸桿菌及雙叉乳桿菌菌數分別可達到7.8 log CFU/g及7.3 log CFU/g,而包覆再經加熱處理後的殘存菌數則分別為7.4 log CFU/g及7.4 log CFU/g,其預估的存活率分別高達95.87 %以及100 %。將上述藉由序列二次規劃法所推薦的最佳解經由實際實驗驗證,發現實驗目標之理論值與實際值之間均不具顯著性的差異(p>0.05),這樣的結果亦即代表所建立的目標函數模式是可以信賴的,有達到最佳化的效果。
將最適化推薦組經儲存後,測試其儲存期間的菌數變化,以及儲存後再經由加熱與模擬腸胃液處理,測試其存活菌數。經儲存試驗後發現,若添加結蘭膠與褐藻膠混合作為囊壁材質,可提高加熱及模擬腸胃液處理後的殘活菌數;而在囊壁材質中多添加益菌質亦能在儲存後期保提供菌體足夠的營養來源,故經過一個月的儲存後,菌數仍能維持在106-107 CFU/g。
zh_TW
dc.description.abstractMany studies have shown low viability of probiotics in dairy products due to acidity, the presence of hydrogen peroxide, and the oxygen content. In addition, heat treatments during food processing also hamper the application of probiotics. Encapsulation, which has been investigated for improving the viability of microorganisms in both dairy products and the intestinal tract, might provide the solution. Thus, the purpose of this research was to encapsulate probiotics using insulating material and modern optimization techniques to determine optimal processing conditions, performance and survival rates under heat treatments, simulated gastrointestinal conditions and storage. Prebiotics (fructooligosaccharides), growth promoter (peptide) and gums (sodium alginate and gellan gum) were incorporated as coating materials to microencapsulate two probiotics (Lactobacillus casei and Bifidobacterium bifidum). The proportion of the prebiotics, peptide and gums was optimized using response surface methodology (RSM) to first construct a surface model, with sequential quadratic programming (SQP) subsequently adopted to optimize the model and evaluate the survival of microencapsulated probiotics under heat treatment (HT). Optimization results indicated that after 68 sets of randomly generated initial points leading to optimal composite function (CF) values (local optima) ranging from 7.35 to 7.48, the global optimal CF was found to be 7.48 (99.99% certainty). The global optimal CF values corresponded to: 7.8 log CFU/g for survival of L. casei before HT; 7.3 log CFU/g for survival of B. bifidum before HT; 7.4 log CFU/g for survival of L. casei after HT and 7.4 log CFU/g for survival of B. bifidum after HT. The optimal combination of coating materials for probiotic microcapsules was 2.0% sodium alginate mixed with 1.0% gellan gum and 0.82% peptide as coating materials would produce the highest survival in terms of probiotic count. The verification experiment yielded a result close to the predicted values, with no significant difference (P>0.05). The storage results also demonstrated that incorporation of gallen gum with alginate significantly improved the viabilities of probiotics during HT and SGFT. Furthermore, addition of prebiotics in the wall materials of probiotic microcapsules provided superior shield for the active organisms. These probiotic counts remained at 106-107 CFU/g for microcapsules stored for one month and then treated in HT and SGFT.en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:11:41Z (GMT). No. of bitstreams: 1
ntu-95-R93626018-1.pdf: 6191745 bytes, checksum: 99832a96e710d272b89bfeb91cde63c1 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要 i
英文摘要 iii
緒言 v
壹、文獻檢討 1
ㄧ、益生菌微膠囊在乳製品之應用 1
(ㄧ) 益生菌微膠囊化之簡介 1
(二) 製備微膠囊方法 3
(三) 影響微膠囊化益生菌存活率的因素 7
二、反應曲面法之介紹 28
(ㄧ) 試驗設計 29
(二) 建立數學模式 31
(三) 最適化 33
(四) 反應曲面法之優點與限制 34
三、序列二次規劃法之介紹 43
(ㄧ) 序列二次規劃法之簡介 43
(二) 序列二次規劃法之方法 43
(三) 序列二次規劃法之優點與限制 45
貳、材料與方法 46
ㄧ、實驗材料 46
(ㄧ) 微膠囊組成基質及其他添加物 46
(二) 菌種 46
(三) 培養基及其添加物 46
(四) 試藥 47
(五) 實驗儀器及器材 48
二、實驗方法 51
(ㄧ) 乳酸菌元之保存與活化 51
(二) 菌體之收集 51
(三) 微膠囊樣品製備 51
(四) 探討益生菌微膠囊最佳製備模式之試驗設計 52
(五) 反應曲面法之四因子三變級實驗設計測定項目 54
(六) 驗證 55
(七) 儲存試驗之菌數測定 55
(八) 掃描式電子顯微鏡 56
(九) 品評試驗 58
參、結果與討論 63
ㄧ、建立反應曲面模式 63
(ㄧ) 益生菌微膠囊製備條件之選擇 63
(二) 架構反應曲面模式 65
二、建立目標函數與最佳化搜尋 75
(ㄧ) 建立目標函數 75
(二) 最佳化搜尋 76
三、試驗驗證 83
四、儲存試驗 85
(ㄧ) 儲存於無菌水中之安定性及耐熱性 85
(二) 益生菌微膠囊於儲存後對模擬胃液之耐受性 87
(三) 益生菌微膠囊於儲存後對膽鹽之耐受性 89
五、微膠囊之顯微構造及應用 95
(ㄧ) 微膠囊之顯微構造 95
(二) 品評試驗之比較 97
肆、結論 111
伍、參考文獻 113
陸、作者小傳 126
柒、附表 127
dc.language.isozh-TW
dc.title應用最適化方法開發具隔熱性益生菌微膠囊zh_TW
dc.titleDevelopment of Insulating Probiotic Microcapsules by Optimization Methoden
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林慶文(Chin-Wen Lin),王政騰(Cheng-Taung Wang),蘇和平(Hou-Pin Su),陳小玲(Xiao-ling Chen)
dc.subject.keyword最適化,隔熱性,微膠囊化,zh_TW
dc.subject.keywordOptimization,Insulation,Microencapsulation,en
dc.relation.page129
dc.rights.note有償授權
dc.date.accepted2006-07-26
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
6.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved