Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32541
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林江珍
dc.contributor.authorYu-Ting Yenen
dc.contributor.author顏于婷zh_TW
dc.date.accessioned2021-06-13T04:11:25Z-
dc.date.available2016-08-05
dc.date.copyright2011-08-05
dc.date.issued2011
dc.date.submitted2011-07-28
dc.identifier.citation1. Albrecht, M. A.; Evans, C. W.; Raston, C. L., Green chemistry and the health implications of nanoparticles. Green Chemistry 2006, 8 (5), 417.
2. Service, R. F., Nanotechnology Takes Aim at Cancer. Science 2005, 310 (5751), 1132-1134.
3. Downing, G., Nanotechnology Takes Aim at Cancer. Materials and Biology 2005.
4. Winkler, P. M.; Steiner, G.; Vrtala, A.; Vehkam ki, H.; Noppel, M.; Lehtinen, K. E. J.; Reischl, G. P.; Wagner, P. E.; Kulmala, M., Heterogeneous Nucleation Experiments Bridging the Scale from Molecular Ion Clusters to Nanoparticles. Science 2008, pp 1374-1377.
5. Carretero, M. I., Clay minerals and their beneficial effects upon human health. Applied Clay Science 2002, 21, 155-163.
6. Utracki, L. A.; Sepehr, M.; Boccaleri, E., Synthetic, layered nanoparticles for polymeric nanocomposites (PNCs). Polymers for Advanced Technologies 2007, 18 (1), 1-37.
7. Lee, J. H.; Nam, H. J.; Rhee, S. W.; Jung, D.-Y., Hybrid Assembly of Layered Double Hydroxide Nanocrystals with Inorganic, Polymeric and Biomaterials from Micro- to Nanometer Scales. European Journal of Inorganic Chemistry 2008, 2008 (36), 5573-5578.
8. Hu, C.-H.; Xia, M.-S., Adsorption and antibacterial effect of copper-exchanged montmorillonite on Escherichia coli K88. Applied Clay Science 2006, 31 (3-4), 180-184.
9. Borrok, D.; Fein, J. B.; Tischler, M.; O'Loughlin, E.; Meyer, H.; Liss, M.; Kemner, K. M., The effect of acidic solutions and growth conditions on the adsorptive properties of bacterial surfaces. Chemical Geology 2004, 209 (1-2), 107-119.
10. Schoonen, M. A. A.; Harrington, A. D.; Laffers, R.; Strongin, D. R., Role of hydrogen peroxide and hydroxyl radical in pyrite oxidation by molecular oxygen. Geochimica et Cosmochimica Acta 2010, 74 (17), 4971-4987.
11. Williams, L. B.; Metge, D. W.; Eberl, D. D.; Harvey, R. W.; Turner, A. G.; Prapaipong, P.; Poret-Peterson, A. T., What Makes a Natural Clay Antibacterial? Environmental Science & Technology 2011, 45 (8), 3768-3773.
12. Lin, J.-J.; Cheng, I. J.; Wang, R.; Lee, R.-J., Tailoring Basal Spacings of Montmorillonite by Poly(oxyalkylene)diamine Intercalation. Macromolecules 2001, 34 (26), 8832-8834.
13. Chu, C.-C.; Chiang, M.-L.; Tsai, C.-M.; Lin, J.-J., Exfoliation of Montmorillonite Clay by Mannich Polyamines with Multiple Quaternary Salts. Macromolecules 2005, 38, 6240-6243.
14. Lin, J.-J.; Chu, C.-C.; Chiang, M.-L.; Tsai, W.-C., First Isolation of Individual Silicate Platelets from Clay Exfoliation and Their Unique Self-Assembly into Fibrous Arrays. J. Phys. Chem. B 2006, 110, 18115-18120.
15. Lin, J. J.; Chu, C. C.; Chou, C. C.; Shieu, F. S., Self-Assembled Nanofibers from Random Silicate Platelets. Advanced Materials 2005, 17 (3), 301-304.
16. Li, P.-R.; Wei, J.-C.; Chiu, Y.-F.; Su, H.-L.; Peng, F.-C.; Lin, J.-J., Evaluation on Cytotoxicity and Genotoxicity of the Exfoliated Silicate Nanoclay. ACS Applied Materials & Interfaces 2010, 2 (6), 1608-1613.
17. Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramírez, J. T.; Yacaman, M. J., The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16 (10), 2346-2353.
18. Kim, J. S.; Kuk, E.; Yu, K. N.; Kim, J.-H.; Park, S. J.; Lee, H. J.; Kim, S. H.; Park, Y. K.; Park, Y. H.; Hwang, C.-Y.; Kim, Y.-K.; Lee, Y.-S.; Jeong, D. H.; Cho, M.-H., Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 2007, 3 (1), 95-101.
19. Gong, P.; Li, H.; He, X.; Wang, K.; Hu, J.; Tan, W.; Zhang, S.; Yang, X., Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 2007, 18 (28), 285604.
20. Castellano, J. J.; Shafii, S. M.; Ko, F.; Donate, G.; Wright, T. E.; Mannari, R. J.; Payne, W. G.; Smith, D. J.; Robson, M. C., Comparative evaluation of silver-containing antimicrobial dressings and drugs. International Wound Journal 2007, 4 (2), 114-122.
21. Klasen, H. J., A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 2000, 26 (2), 131-138.
22. Russell, A. D.; Hugo, W. B.; Ayliffe, G. A. J., Principles and practice of disinfection, preservation, and sterilization. Blackwell Science: 1999.
23. Chopra, I., The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? Journal of Antimicrobial Chemotherapy 2007, 59 (4), 587-590.
24. Bellinger, C. G.; Conway, H., Effects of Silver Nitrate and Sulfamylon on Epithelial Regeneration. Plastic and Reconstructive Surgery 1970, 45 (6).
25. Fox, C. L., Jr.; Modak, S. M., Mechanism of Silver Sulfadiazine Action on Burn Wound Infections. Antimicrobial Agents and Chemotherapy 1974, 5 (6), 582-588.
26. Rai, M.; Yadav, A.; Gade, A., Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances 2009, 27 (1), 76-83.
27. Liau, S. Y.; Read, D. C.; Pugh, W. J.; Furr, J. R.; Russell, A. D., Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterialaction of silver ions. Letters in Applied Microbiology 1997, 25 (4), 279-283.
28. Sondi, I.; Salopek-Sondi, B., Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science 2004, 275 (1), 177-182.
29. Alivisatos, A. P., Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996, 271 (5251), 933-937.
30. Kang, M. S.; Sahu, A.; Norris, D. J.; Frisbie, C. D., Size-Dependent Electrical Transport in CdSe Nanocrystal Thin Films. Nano Letters 2010, 10 (9), 3727-3732.
31. Yen, H.-J.; Hsu, S.-h.; Tsai, C.-L., Cytotoxicity and Immunological Response of Gold and Silver Nanoparticles of Different Sizes. Small 2009, 5 (13), 1553-1561.
32. Martínez-Castañón, G. A.; Niño-Martínez, N.; Martínez-Gutierrez, F.; Martínez-Mendoza, J. R.; Ruiz, F., Synthesis and antibacterial activity of silver nanoparticles with different sizes. Journal of Nanoparticle Research 2008, 10 (8), 1343-1348.
33. Bohren, C. F.; Huffman, D. R., Absorption and Scattering of Light by Small Particles. Wiley-Interscience: New York, 1983.
34. Mulvaney, P., Surface Plasmon Spectroscopy of Nanosized Metal Particles. Langmuir 1996, 12 (3), 788-800.
35. Pal, S.; Tak, Y. K.; Song, J. M., Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. Applied and Environmental Microbiology 2007, 73 (6), 1712-1720.
36. Raimondi, F.; Scherer, G. G.; Kötz, R.; Wokaun, A., Nanoparticles in Energy Technology: Examples from Electrochemistry and Catalysis. Angewandte Chemie International Edition 2005, 44 (15), 2190-2209.
37. Leaper, D. J., Silver dressings: their role in wound management. International Wound Journal 2006, 3 (4), 282-294.
38. Braydich-Stolle, L.; Hussain, S.; Schlager, J. J.; Hofmann, M.-C., In Vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells. Toxicological Sciences 2005, 88 (2), 412-419.
39. Tiwari, D. K.; Jin, T.; Behari, J., Dose-dependent in-vivo toxicity assessment of silver nanoparticle in Wistar rats. Toxicology Mechanisms and Methods 2010, 21 (1), 13-24.
40. Hussain, S. M.; Hess, K. L.; Gearhart, J. M.; Geiss, K. T.; Schlager, J. J., In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology in Vitro 2005, 19 (7), 975-983.
41. Burd, A.; Kwok, C. H.; Hung, S. C.; Chan, H. S.; Gu, H.; Lam, W. K.; Huang, L., A comparative study of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal models. Wound Repair and Regeneration 2007, 15 (1), 94-104.
42. El Badawy, A. M.; Silva, R. G.; Morris, B.; Scheckel, K. G.; Suidan, M. T.; Tolaymat, T. M., Surface Charge-Dependent Toxicity of Silver Nanoparticles. Environmental Science & Technology 2010, 45 (1), 283-287.
43. Farré, M.; Gajda-Schrantz, K.; Kantiani, L.; Barceló, D., Ecotoxicity and analysis of nanomaterials in the aquatic environment. Analytical and Bioanalytical Chemistry 2008, 393 (1), 81-95.
44. Klaine, S. J.; Alvarez, P. J. J.; Batley, G. E.; Fernandes, T. F.; Handy, R. D.; Lyon, D. Y.; Mahendra, S.; McLaughlin, M. J.; Lead, J. R., Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry 2008, 27 (9), 1825-1851.
45. Liu, J.; Hurt, R. H., Ion Release Kinetics and Particle Persistence in Aqueous Nano-Silver Colloids. Environmental Science & Technology 2010, 44 (6), 2169-2175.
46. Fabrega, J.; Fawcett, S. R.; Renshaw, J. C.; Lead, J. R., Silver Nanoparticle Impact on Bacterial Growth: Effect of pH, Concentration, and Organic Matter. Environmental Science & Technology 2009, 43 (19), 7285-7290.
47. Zhang, W.; Yao, Y.; Sullivan, N.; Chen, Y., Modeling the Primary Size Effects of Citrate-Coated Silver Nanoparticles on Their Ion Release Kinetics. Environmental Science & Technology 2011, 110422123352004.
48. Chen, X.; Schluesener, H. J., Nanosilver: A nanoproduct in medical application. Toxicology Letters 2008, 176 (1), 1-12.
49. Mallick, K.; Witcomb, M.; Scurrell, M., Silver nanoparticle catalysed redox reaction: An electron relay effect. Materials Chemistry and Physics 2006, 97 (2-3), 283-287.
50. Cai, H.; Xu, Y.; Zhu, N.; He, P.; Fang, Y., An electrochemical DNA hybridization detection assay based on a silver nanoparticle label. Analyst 2002, 127 (6), 803-808.
51. Basak, D.; Karan, S.; Mallik, B., Size selective photoluminescence in poly(methyl methacrylate) thin solid films with dispersed silver nanoparticles synthesized by a novel method. Chemical Physics Letters 2006, 420 (1-3), 115-119.
52. Jia, H.; Zeng, J.; Song, W.; An, J.; Zhao, B., Preparation of silver nanoparticles by photo-reduction for surface-enhanced Raman scattering. Thin Solid Films 2006, 496 (2), 281-287.
53. Luo, X.; Morrin, A.; Killard, A. J.; Smyth, M. R., Application of Nanoparticles in Electrochemical Sensors and Biosensors. Electroanalysis 2006, 18 (4), 319-326.
54. Shipway, A. N.; Katz, E.; Willner, I., Nanoparticle Arrays on Surfaces for Electronic, Optical, and Sensor Applications. ChemPhysChem 2000, 1 (1), 18-52.
55. Oberdörster, G.; Oberdörster, E.; Oberdörster, J., Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environmental Health Perspectives 2005, 113 (7), 823-839.
56. Zhang, Q.; Ge, J.; Pham, T.; Goebl, J.; Hu, Y.; Lu, Z.; Yin, Y., Reconstruction of Silver Nanoplates by UV Irradiation: Tailored Optical Properties and Enhanced Stability. Angewandte Chemie International Edition 2009, 48 (19), 3516-3519.
57. Shameli, K.; Ahmad, M. B.; Zargar, M.; Yunus, W. M. Z. W.; Ibrahim, N. A.; Shabanzadeh, P.; Ghaffari, M.; Moghaddam, Synthesis and Characterization of Silver/Clay Nanocomposites by Chemical Reduction Method. International Journal of Nanomedicine 2011, 6, 271-284.
58. Ahmad, M. B.; Shameli, K.; Darroudi, M.; Yunus, W. M. Z. W.; Ibrahim, N. A., Synthesis and Characterization of Silver/Clay Nanocomposites by Chemical Reduction Method. American Journal of Applied Sciences 2009, 6, 1909-1914.
59. Szłyk, E.; Piszczek, P.; Grodzicki, A.; Chaberski, M.; Goliński, A.; Szatkowski, J.; Błaszczyk, T., CVD of AgI Complexes with Tertiary Phosphines and Perfluorinated Carboxylates—A New Class of Silver Precursors. Chemical Vapor Deposition 2001, 7 (3), 111-116.
60. Niu, A.; Han, Y.; Wu, J.; Ning Yu; Xu, Q., Synthesis of One-Dimensional Carbon Nanomaterials Wrapped by Silver Nanoparticles and
Their Antibacterial Behavior. J. Phys. Chem. C 2010, 114, 12728-12735.
61. Tolaymat, T. M.; El Badawy, A. M.; Genaidy, A.; Scheckel, K. G.; Luxton, T. P.; Suidan, M., An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers. Science of The Total Environment 2010, 408 (5), 999-1006.
62. NL, K.; RE, R.; T, L.; R, P.; JF, R.; SI, B. Silver nanoparticles.ProjectGroup N344.Faculty of Physics and Nanotechnology; Aalborg University: 2005.
63. KJ, L.; Y, L.; I, S.; BH, J.; HJ, C.; J., J., Large-Scale Synthesis of Polymer-Stabilized Silver Nanoparticles. Solid State Phenomena 2007, 124-126, 1189-1192.
64. Chen, M.; Feng, Y.-G.; Wang, X.; Li, T.-C.; Zhang, J.-Y.; Qian, D.-J., Silver Nanoparticles Capped by Oleylamine:  Formation, Growth, and Self-Organization. Langmuir 2007, 23 (10), 5296-5304.
65. Bönnemann, H.; Brijoux, W.; Brinkmann, R.; Fretzen, R.; Joussen, T.; Köppler, R.; Korall, B.; Neiteler, P.; Richter, J., Preparation, characterization, and application of fine metal particles and metal colloids using hydrotriorganoborates. Journal of Molecular Catalysis 1994, 86 (1-3), 129-177.
66. Sardar, R.; Park, J.-W.; Shumaker-Parry, J. S., Polymer-Induced Synthesis of Stable Gold and Silver Nanoparticles and Subsequent Ligand Exchange in Water. Langmuir 2007, 23 (23), 11883-11889.
67. Olenin, A.; Krutyakov, Y.; Kudrinskii, A.; Lisichkin, G., Formation of surface layers on silver nanoparticles in aqueous and water-organic media. Colloid Journal 2008, 70 (1), 71-76-76.
68. Grubbs, R. B., Roles of Polymer Ligands in Nanoparticle Stabilization. Polymer Reviews 2007, 47 (2), 197-215.
69. Kvitek, L.; Panacek, A.; Soukupova, J.; Kolar, M.; Vecerova, R.; Prucek, R.; Holecova, M.; Zboril, R., Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (NPs). Journal of Physical Chemistry C 2008, 112 (15), 5825-5834.
70. Lin, X. Z.; Teng, X.; Yang, H., Direct synthesis of narrowly dispersed silver nanoparticles using a single-source precursor. Langmuir 2003, 19, 10081-10085.
71. Noritomi, H.; Igari, N.; Kagitani, K.; Umezawa, Y.; Muratsubaki, Y.; Kato, S., Synthesis and size control of silver nanoparticles using reverse micelles of sucrose fatty acid esters. Colloid and Polymer Science 2010, 288 (8), 887-891.
72. Magaña, S. M.; Quintana, P.; Aguilar, D. H.; Toledo, J. A.; Ángeles-Chávez, C.; Cortés, M. A.; León, L.; Freile-Pelegrín, Y.; López, T.; Sánchez, R. M. T., Antibacterial activity of montmorillonites modified with silver. Journal of Molecular Catalysis A: Chemical 2008, 281 (1-2), 192-199.
73. Miyoshi, H.; Ohno, H.; Sakai, K.; Okamura, N.; Kourai, H., Characterization and photochemical and antibacterial properties of highly stable silver nanoparticles prepared on montmorillonite clay in n-hexanol. Journal of Colloid and Interface Science 2010, 345 (2), 433-441.
74. Si, S.; Mandal, T. K., Tryptophan-Based Peptides to Synthesize Gold and Silver Nanoparticles: A Mechanistic and Kinetic Study. Chemistry – A European Journal 2007, 13 (11), 3160-3168.
75. Huang, K.-C.; Wang, Y.-C.; Dong, R.-X.; Tsai, W.-C.; Tsai, K.-W.; Wang, C.-C.; Chen, Y.-H.; Vittal, R.; Lin, J.-J.; Ho, K.-C., A high performance dye-sensitized solar cell with a novel nanocomposite film of PtNP/MWCNT on the counter electrode. Journal of Materials Chemistry 2010, 20 (20), 4067.
76. Lin, J.-J.; Hsu, Y.-C.; Wei, K.-L., Mechanistic Aspects of Clay Intercalation with Amphiphilic Poly(styrene-co-maleic anhydride)-Grafting Polyamine Salts. Macromolecules 2007, 40, 1579-1584.
77. Balan, L.; Malval, J.-P.; Schneider, R.; Burget, D., Silver nanoparticles: New synthesis, characterization and photophysical properties. Materials Chemistry and Physics 2007, 104 (2-3), 417-421.
78. Wang, W.; Chen, X.; Efrima, S., Silver Nanoparticles Capped by Long-Chain Unsaturated Carboxylates. The Journal of Physical Chemistry B 1999, 103 (34), 7238-7246.
79. Panacek, A.; Kvitek, L.; Prucek, R.; Kolar, M.; Vecerova, R.; Pizurova; N.; Sharma, V. K.; Nevecna, T.; Zboril, R. J., Silver Colloid Nanoparticles_Synthesis, Characterization, and Their Antibacterial Activity. Phys. Chem. B 2006, 110 (33), 16248-16253
80. Creighton, J. A.; Eadon, D. G., Ultraviolet-visible absorption spectra of the colloidal metallic elements. Journal of the Chemical Society, Faraday Transactions 1991, 87 (24), 3881.
81. Doering, W. E.; Piotti, M. E.; Natan, M. J.; Freeman, R. G., SERS as a Foundation for Nanoscale, Optically Detected Biological Labels. Advanced Materials 2007, 19 (20), 3100-3108.
82. Su, H. L.; Chou, C. C.; Hung, D. J.; Lin, S. H.; Pao, I. C.; Lin, J. H.; Huang, F. L.; Dong, R. X.; Lin, J. J., The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials 2009, 30 (30), 5979-87.
83. Lok, C.-N.; Ho, C.-M.; Chen, R.; He, Q.-Y.; Yu, W.-Y.; Sun, H.; Tam, P. K.-H.; Chiu, J.-F.; Che, C.-M., Proteomic Analysis of the Mode of Antibacterial Action of Silver Nanoparticles. Journal of Proteome Research 2006, 5 (4), 916-924.
84. Sotiriou, G. A.; Pratsinis, S. E., Antibacterial Activity of Nanosilver Ions and Particles. Environmental Science & Technology 2010, 44 (14), 5649-5654.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32541-
dc.description.abstract本研究設計一新型奈米複合材料-奈米矽片銀,使用奈米矽片水溶液分散奈米銀粒子,並將其應用至抗菌生醫領域。奈米銀粒子之尺寸由3.8奈米至35奈米可藉由控制固態分散劑,即厚度為1奈米之奈米矽片,得到良好之可操控性。而奈米矽片帶有高表面電荷及高表面積之特殊性質為奈米銀粒子帶來不只良好可操控性,也是其具高穩定性與抗菌效果。本研究中,我們將不同比例之奈米矽片銀水溶液進行抗菌測試,發現抗菌能力對無論革蘭氏陰性菌或革蘭氏陽性菌均與奈米銀粒子大小成反比。更進一步以SEM觀察可發現表面細菌之形態,奈米矽片銀會由於表面帶有電荷而貼附至細菌表面,造成細菌之表面型態由原本飽滿轉化成萎縮更甚破裂之構形,且奈米矽片使銀粒子固定在表面而可能不經由穿透細胞即造成死亡。zh_TW
dc.description.abstractA new class of nanohybrids were synthesized by complexing silver nanoparticles (AgNPs) with clay silicate platelets and evaluated for antibacterial activities. Various silver particle sizes in the range of 3.8 to 35 nm diameter were tailored by using nanoscale silicate platelets (NSP) at 1.0 nm thickness as supports. High stability and antibacterial activity were achieved. The efficacy of AgNPs on NSP was highly dependent on the silver particle size in the tests of controlling dermal pathogens including Gram-positive and Gram-negative bacteria. Scanning electron microscope had directly observed the adherence of the nanohybrids to the surface of individual bacteria. The role of NSP as surface supports for immobilizing AgNPs was elucidated by varying the AgNP/NSP weight ratio and testing for their differences in antibacterial efficacy. It is concluded that that hybridization of AgNPs on NSP surface allows the enhancement of AgNP activities and mitigation of their adversary effects on cells.en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:11:25Z (GMT). No. of bitstreams: 1
ntu-100-R98549001-1.pdf: 2937297 bytes, checksum: f77a9c06dd0194b0ec6fdd32dea11f3d (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsAcknowledgement i
Abstract ii
摘要 iii
Table of Contents iv
Figure Captions vii
Table Captions x
Introduction 1
1.1.1. Intercalation of layered structure 3
1.1.2. Property of nano silicate platelet (NSP) 4
1.1.3. Cytotoxicity of nano silicate platelet (NSP)16 5
1.2. Introduction to silver nanoparticles (AgNPs) 5
1.2.1. Silver as antibacterial material 6
1.2.2. Bactericidal mechanism of silver 7
1.2.2.1. Bactericidal mechanism of silver ions (Ag+)27 7
1.2.2.2. Bactericidal mechanism of AgNPs 8
1.2.3. The size and shape effect on the antibacterial activity of AgNPs 9
1.2.4. Silver toxicity 10
1.2.5. Ion Release Kinetics of AgNPs 11
1.2.6. Summary of silver nanoparticles 12
1.3. Synthesis of nanocomposite consisting of AgNPs 12
1.3.1. Metal salt precursor. 13
1.3.2. Solvents 13
1.3.3. Reducing agents 14
1.3.4. Stabilizer 16
1.3.5. Summary of synthesizing silver nanoparticles 18
1.4. Research Objectives 19
Experimental Section 20
2.1. Materials 20
2.2. Stability of AgNPs with different stabilizers 20
2.3. Synthesis of various ratios of AgNP/NSP nanohybrids 21
2.4. Ultraviolet-visible (UV-Vis) Spectroscopy 22
2.5. Transmission Electron Microscopy (TEM) 23
2.6. Sources of bacteria 23
2.7. Evaluation of antibacterial activity 24
2.8. AgNP/NSP-Bacteria Interaction by Scanning Electron Microscopy (SEM) 24
Results and Discussion 26
3.1. Comparison of stability for AgNPs 26
3.2. Synthesis of various ratios of AgNP/NSP nanohybrid 30
3.2.1 Transmission electron microscopy (TEM) Morphology 33
3.2.2 Ultraviolet-visible spectroscopy 35
3.3. Synthesis of AgNP/NSP nanohybrid under different concentration 38
3.4. Growth Inhibition Effect 40
3.4.1. Antibacterial Activities of AgNP/clay (7/93) against E. coli 40
3.4.2. Scanning Electron Microscopy (SEM) Morphology 49
Conclusion 51
Future Work 53
References 54
dc.language.isoen
dc.title具高穩定性之奈米矽片銀水溶液及其抗菌性探討zh_TW
dc.titleHigh Stability and Antibacterial Activity of Silver Nanoparticles Supported by Clay Silicate Plateletsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee彭福佐,何國川
dc.subject.keyword奈米複材,奈米矽片,土,奈米銀粒子,抗菌,zh_TW
dc.subject.keywordnanohybrid, nano silicate platelets,clay,silver nanoparticles,antibacterial,en
dc.relation.page67
dc.rights.note有償授權
dc.date.accepted2011-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
2.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved