Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32530
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳永芳(Yang-Fang Chen)
dc.contributor.authorNan-Hsun Huangen
dc.contributor.author黃南勛zh_TW
dc.date.accessioned2021-06-13T04:11:20Z-
dc.date.available2011-08-02
dc.date.copyright2011-08-02
dc.date.issued2011
dc.date.submitted2011-07-28
dc.identifier.citationchapter1
1. D. C. Look, B. Claflin, Ya. I. Alivov, and S. J. Park. Phys. Stat. Sol. 10, 2203 (2004).
2. M. T. Lloyd, Y. J. Lee, R. J. Davis, E. Fang, R. M. Fleming, J. W. P. Hsu, R. J. Kline, and M. F. Toney J. Phys. Chem. C 113, 17608 (2009)
3. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
4. D. C. Look, J. W. Hemsky, and J. R. Sizelove, Phys. Rev. Lett. 82, 2552 (1999).
5. F. D. Auret, S. A. Goodman, M. Hayes, M. J. Legodi, H. A. van Laarhoven, and D. C. Look, Appl. Phys. Lett. 79, 3074 (2002).
6. S. O. Kucheyev, J. E. Bradley, J. S. Williams, C. Jagerdish, and M. V. Swain, Appl.Phys. Lett. 80, 956 (2002).
7. M. Wraback, H. Shen, S. Liang, C. R. Gorla, and Y. Lu, Appl. Phys. Lett. 76, 507 (1999).
8. T. Aoki, D. C. Look, and Y. Hatanaka, Appl. Phys. Lett. 76, 3257 (2000).
9. J. Wollenstein, J. A. Plaza, C. Cane, Y. Min, H. Botttner, and H. L. Tuller. Sensors Actuat. B 93, 350 (2003).
10. M. Yazawa, M. Koguchi, and K. Hiruma, Appl. Phys. Lett. 58, 1080 (1991).
11. C. M. Lieber, Sci. Am. 285, 58 (2001).
12. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E.Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
13. Kind H, Yan H, Messer B, Law M and Yang P, Adv. Mater. 14, 158 (2002).
14. T. T. Chen, C. L. Cheng, S. P. Fu and Y. F. Chen, Nanotechnology 18, 225705 (2007).
15. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996).
16. Q. H. Li, T. Gao, Y. G. Wang, and T. H. Wang, Appl. Phys. Lett. 86, 123117 (2005).
chapter2
1. C.Y. Yeh, Z. W. Lu, S. Froyen, and A. Zunger Phys. Rev. B 46, 10086 (1992).
2. B. Wang, J. Zhao, J. Jia, D. Shi, J. Wan, and G. Wang, Appl. Phys. Lett. 93, 021918 (2008).
3. J. E. Jaffe, J. A. Snyder, Z. J. Lin, and A. C. Hess, Phys. Rev. B 62, 1660 (2000).
4. S. Limpijumnong and S. Jungthawan, Phys. Rev. B 70, 054104 (2004).
5. M. Fox, Optical Properties of Solids (Oxford, London, 2001).
6. A. Mang, K. Reimann, and St. Rübenacke, 94, 251 (1995) .
7. K. Thonke, T. Gruber, N. Teofilov, R. Schönfelder, A. Waag, and R. Sauer Physica B 945, 308 (2001).
8. M. Guo, P. Diao, and S. Cai, J. Soli. Stat. Chem. 178, 1864 (2005).
9. Y. S. Bae, D. C. Kim, C. H. Ahn, J. H. Kim, and H. K. Cho, Surf. Interface Anal. 42, 978 (2010)
10. Y. Wu, H. Yan, M. Huang, B. Messer, J. H. Song, and Peidong Yang, Chem. Eur. J. 8, 1260 (2002).
11. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
12. G. Shen, Y. Bando, D. Chen, B. Liu, C. Zhi, and D. Golberg, J. Phys. Chem. B 110, 3973 (2006).
13. H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, and J. M. Xu, Appl. Phys. Lett. 84, 3376 (2004)
14. X. C. Wu, W. H. Song, W. D. Huang, M. H. Pu, B. Zhao, Y. P. Sun and J.J. Du, Chem. Phys. Lett. 328, 5 (2000).
15. Z. W. Pan, Z. R. Dai and Z. L. Wang, Science 291, 1947 (2001).
16. R. Q. Zhang, Y. Lifshitz and S. T. Lee, Adv. Mater. 15, 635 (2003).
17. H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P, Yu, Y. Ding, Q. L. Hang and S.Q. Feng, Solid State Comm. 109, 677 (1999).
18. M. Quirk and J. Serda, Semiconductor Manufacturing Technology, Prentice Hall (2000).
19. D. Gershoni, H. Temkin, D. J. Dolan, J. Dunsmuir, S. N. G. Chu,and M. B. Panish (1988), Appl. Phys. Lett. 53, 995.
20. M. Yazawa, M. Koguchi, and K. Hiruma, Appl. Phys. Lett. 58,1080 (1991).
21. C. M. Lieber, Sci. Am. 285, 58 (2001).
22. Y. Sun, Y. H. Cho, E. K. Suh, H. J. Lee, R. J. Choi, and Y. B. Hahn, ppl. Phys. Lett. 84, 49 (2004)
23. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, published by Springer (2001).
24. C. V. Raman, Nature 121, 619 (1928).
chapter3
1. K. M. Nielsen, Nature Biotechnology 21, 227 (2003).
2. M. Ronaghi, Genome Res. 11, 3 (2001).
3. J. Shendure, and H. Ji, Nature Biotechnology 26, 1135, (2008).
4. C. Bowd, Br. J. Ophthalmol 91, 853 (2007).
5. J. J. Storhoff and C. A. Mirkin, Chem. Rev. 99, 1849 (1999).
6. R. Drmanac, S. Drmanac, Z. Strezoska, T. Paunesku, I. Labat, M. Zeremski, J. Snoddy, W. K. Funkhouser, B. Koop, L. Hood, and R. Crkvenjakovil, Science 260, 1649 (1993).
7. K. J. Breslauer, R. Frank, H. Blöcker, and L. A. Marky, Biochemistry 83, 3744 (1986).
8. D. S. Kim, H. J. Park, H. M. Jung, J. K. Shin, P. Choi, J. H. Lee, and G. Lim, Jpn. J. Appl. Phys. 43, 3855 (2004).
9. J. C. Riboh, A. J. Haes, A. D. McFarland, C. R. Yonzon, and R. P. Van Duyne, J. Phys. Chem. B, 107, 1772 (2003).
10. H. Tokudome, Y. Yamada, S. Sonezaki, H. Ishikawa, M. Bekki, K. Kanehira, and M. Miyauchi, Appl. Phys. Lett. 87, 213901 (2005).
11. T. T. Chen, C. L. Cheng, S. P. Fu and Y. F. Chen, Nanotechnology 18, 225705 (2007).
12. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
13. K. Vanheusden, C. H. Seager ,W. Warren, L.Tallant, D. R, and J. A. Voigt, Appl. Phys. Lett. 68, 403 (1996).
14. Y. Hu, Y. Gao, S. Singamaneni, V. V. Tsukruk, and Z. L. Wang, Nano Lett. 9, 2661 (2009).
15. K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisic, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, J. Phys. Chem. B 110, 20865 (2006).
16. Y. W. Heo, D. P. Norton, and S. J. Pearton, J. Appl. Phys. 98, 073502 (2005).
17. S. Ramanathan, S. Patibandla, S. Bandyopadhyay, J. D. Edwards, and J. Anderson, J. Mater. Sci. Mater. Electron. 17, 651 (2006).
18. G. W. Wen, J. Y. Lin, H. X. Jiang, and Z. Chen, Phys. Rev. B. 52, 5913 (1995).
19. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. S. Burrus, Phys. Rev. Lett. 53, 2173 (1984).
20. M. W. Allen, P. Miller, R. J. Reeves, and S. M. Durbin, Appl. Phys. Lett. 90, 062104 (2007).
21. R. Berkowicz and T.Skettrup Phys. Rev. B 11, 2316 (1975)
22. B. S. Kang, S. J. Pearton, J. J. Chen, F. Ren, J. W. Johnson, R. J. Therrien, P.
Rajagopal, J. C. Roberts, E. L. Piner, and K. J. Linthicum, Appl. Phys. Lett. 89, 122102 (2006).
23. M. Mandelkern, J. G. Elias, D. Eden, and D. M. Crothers, J. Mol. Biol. 152, 153 (1981).
24. K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin. J. Appl. Phys. 97, 124313 (2005).
25. T. Azuhata J. Appl. Phys. 94, 968 (2003)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32530-
dc.description.abstract本論文探討一種半導體奈米結構的光學特性:氧化鋅奈米柱,並且發現了一些有趣的現象。我們知道wurtzite 結構一般都有很好的壓電效應,因此氧化鋅奈米柱內存在著強烈的內建電場,此明顯的特性可被我們應用成為生物感測器。當去氧核醣核酸(DNA)在感測器的表面發生混成反應,其電偶極或不同的濃度的DNA會使氧化鋅奈米柱內的電場產生了變化,因為量子侷限史塔克效應,氧化鋅奈米柱的光致螢光光譜、拉曼散射光譜以及我們估算出的氧化鋅奈米柱的應變量也會有所變化,此結果代表氧化鋅奈米柱有很好的應用性可被開發成為生物檢測器。本論文成功的展示氧化鋅奈米柱在生物上應用的新方向。zh_TW
dc.description.abstractIn this thesis, we investigated a kind of semiconductor nanostructures, ZnO nanorods, and found some novel phenomena. We know that wurtzite structure generally has a great piezoelectric effect, such that ZnO nanorods have obvious build-in electric field in them. This important property could be developed to lead ZnO nanorods as a biosensor. As the hybridization process of deoxyribonucleic acid (DNA) on ZnO nanorods,we find that the build-in electric field in ZnO nanorods would be altered by the polarity of DNA molecules or different concentration of DNA. We demonstrate for the first time that the photoluminescence spectra, and Raman spectra of ZnO nanorods could be used to monitor the biosening effect due to the quantum confined Stark effect. As a result, our result opens a new route showing that ZnO nanorods have a great applicability to serve as a biosensor.en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:11:20Z (GMT). No. of bitstreams: 1
ntu-100-R97245001-1.pdf: 3385244 bytes, checksum: bef4992476d03a3e1c3f87bec84d0f86 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents致謝 III
摘要 V
Abstract VI
Figure Caption VII
Contents XI
1.Introduction 1
Reference. 5
2. Experimental and theoretical Background. 7
2.1 Physical characteristics of ZnO materials 8
2.1.1 The Crystal structures of ZnO
materials 8
2.1.2 Luminescent properties of ZnO 12
2.2 Growth Methods of ZnO Nanostructure 14
2.2.1 Hydrothermal growth Growth. 14
2.2.2 The Vapor -Liquid-Solid Growth 21
2.2.3 The Vapor -Solid Growth 25
2.3 DC Sputter Deposition 28
2.4 Photoluminescence Spectroscopy. 30
2.5 Quantum confined stark effect (QCSE) 35
2.6 Raman Scattering. 39
2.7 Scanning Electron Microscopy. 46
Reference 49
3. Optical detection of deoxyribonucleic acid hybridization
with ZnO nanorods. 51
3.1 Introduction. 52
3.2 Experiment details 55
3.3 Results and Discussion 56
3.4 Summary 70
Reference 71
4.Conclusion. 73
dc.language.isoen
dc.title半導體奈米結構之光學性質研究與應用:氧化鋅奈米柱zh_TW
dc.titleStudies and Applications of Optical Properties in Semiconductor Nanostructures:ZnO nanorodsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林泰源(Tai-Yuan Lin),沈志霖(JI-LIN Shen)
dc.subject.keyword奈米科技,去氧核醣核酸混成反應,氧化鋅奈米柱,生物檢測器,量子侷限史塔克效應,zh_TW
dc.subject.keywordNanotechnology,DNA hybridization,ZnO nanorod,biosensor,Quantum confined stark effect,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2011-07-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
3.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved