Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32516
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇明道
dc.contributor.authorTzai-Hung Wenen
dc.contributor.author溫在弘zh_TW
dc.date.accessioned2021-06-13T03:54:07Z-
dc.date.available2006-07-26
dc.date.copyright2006-07-26
dc.date.issued2006
dc.date.submitted2006-07-25
dc.identifier.citation中文參考文獻
1.田巧玲,「調用農業用水供應公共給水可行性探討」,農業工程研討會論文集,2001。
2.台灣省自來水公司,台灣省自來水事業統計年報,2001。
3.台南科學工業園區開發籌備處,台南科學工業園區工廠之用水時程資料,1998
4.行政院主計處,中華民國行業標準分類,1991。
5.朱壽銓等,「紡織、食品製造業區域用水特性比較分析」,第七屆水利工程研討會論文集,C-25~C-32,1994。
6.吳正逵、鄭義仲、陳毓嶸,「曾文水庫乾旱預警及應變機制探討」,農業工程研討會論文集,2002。
7.李英正,張斐章,張雅婷,「檢視臺灣地區農業用水之水權:以桃園水利會水權登記為例」,臺灣水利,49(2) ,2001。
8.李賢明,「南化水庫與高屏溪攔河堰聯合運用研究」,海洋大學河海工程所碩士論文,2000。
9.吳惠如,「台灣地區工業用水需求模式之實證分析」,台灣銀行季刊 47(1): 253-275,1996。
10.林松青,吳瑞賢,陳世偉,「雙標的水庫串聯系統最佳運轉機制之研究,中國土木水利工程學刊」,16(4),2004。
11.林政浩,「應用蓄水之平均缺水率制訂水庫運用規線」,國立成功大學水利及海洋工程研究所碩士論文,2003。
12.林尉濤,「農業水資源調配及乾旱因應對策」,農業工程研討會論文集,2002。
13.周乃昉、林挺生,「區域性水資源系統之最佳營運特性分析」,電子計算機於土木水利工程應用論文研討會論文集,1994。
14.周乃昉、顏君凌、鄭子璉、葉志堅,「曾文水庫運用規線修訂對灌溉標的用水量之影響」,九十年度農業工程研討會論文集,台北,2001。
15.胡文章,「線性規劃在水庫規劃及操作應用」,台灣水利 26(1):15-29,1997。
16.徐元棟,「乾旱時期頭前溪水系農業用水移用之研究」,中華大學土木系碩士論文,2002。
17.徐享崑、鄭念珠、郭國忠、曾鈞敏,「高屏溪流域水資源規劃缺水指標之研究」國立成功大學水利及海洋工程研究所研究報告,1988。
18.莊友欽,「分類法應用於水庫乾旱預測之研究」,台灣大學農業工程學研究所碩士論文,民國八十五年六月,1996。
19.黃宗煌,「水權費費率之訂定及其經濟問題之研究」,經濟部水資局,1996
20.郭振泰、鄧志浩、鄭銘欽,「序率線性規劃模式應用於翡翠水庫運轉之研究」,第四屆水利工程研討會論文集,桃園,1988。
21.陳增壽、糠瑞林、林俊男,「作物生長模式推估缺水敏感參數之研究」,農業工程學報(付梓中),2006。
22.陳獻、葉民山,「嘉南灌區本田灌溉率調查研究報告」,農業工程研究中心研究報告,1981。
23.曾文水庫管理局,「曾文水庫多目標運轉規則之研究」,1976。
24.曾文水庫管理局,「曾文水庫多目標運用規則之檢討」,1986。
25.曾文水庫管理局,「曾文水庫在緊急情況下運轉操作之探討: 合理配水因應方案與應用規線之分析」,1993。
26.曾文水庫管理局,「曾文水庫在緊急情況下運轉操作之探討: 合理配水因應方案與應用規線之分析」,1998。
27.黃文政、周家慶,「乾旱指標之研究-以曾文-烏山頭供水系統為例」,農業工程研討會論文集,2004。
28.張炎銘,「建立乾旱警報系統初論」,台灣水利 39(4): 78-83,1991。
29.張炎銘,「再論乾旱警報系統之建立」,台灣水利 40(3): 56-65,1992。
30.張斐章、陳永祥,「乾旱之統計特性分析-以高屏溪為例」,台灣水利 39(3): 33-43,1991。
31.張承宗,「大漢溪流域水資源利用與乾旱因應對策探討」,農業工程研討會論文集,2002。
32.楊麗凰,「以GIS為基礎之區域工業用水需求推估模式之架構」,台灣大學農業工程研究所碩士論文,2001。
33.鄭欽龍,「水的經濟價值評估—線性規劃的應用」,台大實驗林研究報告,1994。
34.鄧家駒,風險管理,台北市:華泰出版公司,1998。
35.虞國興、莊明德,「台灣乾旱特性之研究」,台灣水利 41(4 ) : 20-33,1992。
36.鄭克偉,「流域性水資源系統運用規劃優選模式之建立與應用」,台灣大學土木工程學研究所碩士論文,1998。
37.廖元熙,「水庫系統最佳營運及風險分析:以鯉魚潭水庫及石岡壩旬聯合營運為例」,台灣大學土木工程學研究所碩士論文,1993。
38.蘇文瑞、吳瑞賢、陳慶和,「南部地區水資源缺水指標之建立」,第九屆水利工程研討會,D149-D158,1997。
39.廖培明,「水庫規劃供水之可靠度分析」,逢甲大學土木及水利工程研究所碩士論文,2002。
40.傅信祐,「水庫規線之制訂與操作之研究」,國立中央大學土木工程研究所碩士論文,1996。
41.顏榮祥,「台灣南部地區跨流域水資源統籌調配動態模式建立之研究」,國立成功大學資源工程研究所博士論文,2001。
42.龔城山、廖翊鈞,「國內外乾旱管理制度之比較」,農業工程研討會,2002。
43.經濟部,「台灣地區水資源開發綱領計畫」,1997。
44.經濟部,「台灣地區北部區域水資源綜合發展計畫」,1998。
45.經濟部,「台灣地區南部區域水資源綜合發展計畫」,1999。
46.經濟部,「乾旱指標之建立-中部及南部區域」, 1999。
47.經濟部,「曾文水庫及南化水庫聯合運用可行性規劃」,2000
48.經濟部,「嘉南地區農業用水節水他用之研究」,2001。
49.經濟部,「區域水資源調度機制(核定版)」,2003。
50.農工中心,「民國八十六年以後曾文水庫各標的需水量合理用水分配之研究」,1997。
51.嘉南農田水利會,「曾文-烏山頭水庫系統幹支分線消耗水量表」,1985。
52.嘉南農田水利會,「嘉南灌區水資源調配之研討」,2002。
53.嘉南農田水利會,「統計要覽」,2004。
54.行政院農委會,「農業統計年報」,2005。
55.能邦科技顧問公司,「台灣地區地下水補注量估算」,經濟部水資源局,2000。
英文參考文獻
1.Burton, I. , RW Kates and GF White, The Environment as Hazard, New York:A Division of Guilford Publications, 1993.
2.Chang, FJ, L Chen, LC Chang, Optimizing the reservoir operating rule curves by genetic algorithms, Hydrological Processes 19(1):2277 – 2289, 2005
3.Chung, I, O Helweg. “Modeling the California State Water Project”, Journal of Water Resources Planning and Management 111 (1): 82-97 1985.
4.Changnon, SA, Detecting Drought in Illinois, Illinois Water Survey, 1987
5.Dariane, AB, “Reservoir Operation During Droughts”, International Journal of Engineering Transaction B: Applications, 16(3):209-216, 2003
6.Dong, W, ”Building a More Profitable Portfolio-Modern Portfolio Theory with Application to Catastrophe Insurance, RMS Inc. Reaction Publishing Group, 2001.
7.Fischhoff, B. , S Watson and C Hope, “Defining Risk”, Policy Sciences, 17:123-139, 1984
8.Hashimoto, T., JR Stedinger and DP Loucks, “Reliability, Resiliency and Vulnerability Criteria for Water Resource System Performance Evaluation”, Water Resources Research, 18(1): 14-20, February 1982.
9.Hayes, MJ ,OV Wilhelmi, CL Knutson, “Reducing Drought Risk: Bridging Theory and Practice”, Natural Hazards Review 5(2), 2004
10.Huang, WC, “Drought Early Warning System In Reservoir Operation: Theory And Practice”, Water Resources Research 41, 2005
11.Holden, and M Thobani, Tradable Water Rights: A Property Rights Approach To. Resolving Water Shortages And Promoting Investment, World Bank Policy Research. Working Paper 1627, 1996
12.Hsu, SK,”Shortage Indices for Water Resources Planning in Taiwan”, Journal of Water Resources Planning and Management 121(2),pp119-131, 1995
13.Israel, M, and JR Lund, “Recent California Water Transfers: Implications for Water Management”, Natural Resources Journal 35, 1995.
14.Japan Water Resources Development Public Corp., “Drought Assessment”, Mizu To Tomomi 159, 1977 (in Japanese).
15.Jinno, Kenji, Z Xu, K Akira, T Kaname, “Risk Assessment of a Water Supply System during Drought”, Water Resources Development 11(2): 185-204, 1995.
16.Kessler, Avner and U Shamir “Analysis of the Linear Programming Gradient Method for Optimal Design of Water Supply Networks”, Water Resources Research, 25(7):1469-1480, 1989.
17.Kloman, HF, ”Risk Management Agonistes “, Risk Analysis 10 (2): 201-205, 1990 .
18.Maass, A., MM Hufschmidt, R Dorfman, HA Thomas, Jr., SA. Marglin, and GM Fair, Design of Water-Resource Systems, Harvard University Press, Cambridge, Mass., 1962.
19.McKee, T.B., NJ Doesken, and J Kleist, 1993.” The Relationship of Drought Frequency and Duration to Time Scales”, Applied Climatology. Preprints, 8th Conference on Applied Climatology Anaheim, CA, pp. 179-184.
20.Michel, C, D Galai, R Mark, Risk Management, McGraw-Hill, New York, 2000
21.Neil, SG., Drought and Water Supply Management, Water Resources Management: Principles, Regulations, and Cases, 1996
22.Oliveria, R and DP Loucks, ”Operation Rules for Multireservoir System”, Water Resources Research , 33(4), pp. 839~852,1997.
23.Palmer, WC, Meteorological Drought, Research Paper No.45,U.S. Department of Commerce Weather Bureau, Washington D.C.,1965.
24.Palmer, WC, “Keeping Track of Crop Moisture Conditions Nationalwide: the New Crop Moisture Index”, Weatherwise, 21:156-161.,1968.
25.Pauchant, TC, and I MitroffIan, Transforming the Crisis-Prone Organization: Preventing Individual, Organizational, and Environmental Tragedies, Proquest Info & Learning. , 1992
26.River Bureau, Drought Conciliation and Water Rights: Japanese Experience, Infrastructure Development Institute, 1997.
27.Schwing, RC and WA Albers, Societal Risk Assessment-How Safe is Safe Enough?,New York:Plenum Press. , 1980
28.Shafer, BA, 1982. “Development of a Surface Water Supply Index (SWSI) to Assess the Severity of Drought Conditions in Snowpack Runoff Areas”, Proceeding of Western Snow Conference, pp. 164-175.
29.Shiau, JT and HC Lee, “Derivation of Optimal Hedging Rules for a Water-supply Reservoir through Compromise Programming”, Water Resources Management, 19(2):111-132, 2005.
30.Shin, JS, R Charles, “Water-Supply Operations During Drought: Continuous Hedging Rule”, Journal of Water Resources Planning and Management 120(5):613-629, 1994
31.Strachan, WV, JA Anderson, Regional Challenges in Water Management; Proceeding of AWA NSW Conference, Port Macquarie, 2001
32.Tatano H, N Okada and H Kawai, Optimal operation model of a single reservoir with drought duration explicitly concerned, Stochastic Environmental Research and Risk Assessment 6 (2): 123 – 134, 1992
33.Tung, CP, SY Hsu, CM Liu, JS Li, Application of the Genetic Algorithm for Optimizing Operation Rules of the LiYuTan Reservoir in Taiwan, Journal of the American Water Resources Association, 39(3) 2003.
34.U.S Army Crops of Engineers, “Hydrologic Engineering Methods for Water Resources Development”, Reservoir Yield 8, 1975.
35.Van lienden, BJ and JR Lund, “Spatial Complexity and Reservoir Optimization Results”, Civil Engineering and Environmental Systems 21(1):1-17, 2004.
36.Wardlaw, R, and M Sharif,” Evaluation Of Genetic Algorithms for Optimal Reservoir System Operation ”, Journal of Water Resources Planning And Management 125(1): 25-33, 1999.
37.Wilhite, DA, “Drought Planning and Risk Assessment: Status and Future Directions”, Annals of Arid Zone 39 (3): 211-230, 2000
38.Wilhite, DA and MH Glantz, “Understanding the Drought Phenomenon: The Role of Definitions”, Water International (10): 111-120, 1985.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32516-
dc.description.abstract導致乾旱發生之原因通常是由於降雨不足所引起,而造成乾旱發生的頻率增加通常由於用水需求成長而導致供需失衡所致。台灣目前乾旱管理主要以暫時性移用農業用水支援民生工業為主要措施之一,故本研究的目的將以現況的乾旱管理措施,模擬各種標的間用水移轉之調配策略,評估各標的之區域性缺水風險從農業部門移轉至非農業部門的流動狀況。
本研究以災害風險分析的整體架構,包括潛勢分析、易損度評估與風險管理措施等,利用地理資訊系統(GIS)建立農業灌溉、民生及工業活動的空間資料庫,作為推估區域各標的用水量之基礎;並以系統最小缺水易損度為決策目標,利用混合整數線性規劃(Mixed Integer Linear Programming, MILP)建立區域性用水調配模型,並模擬各種缺水時期標的間用水調配措施,包括農業部門不允許支援民生與工業(情境一)、以固定水量的移轉方式(情境二)與考慮經濟效益的移轉方式(情境三),建立缺水風險的超越機率曲線及空間風險分佈。
研究結果發現在農業部門不支援民生與工業部門之情境下(情境一),嘉南地區農業灌區之平均缺水率約為14.8%,而民生與工業部門的平均缺水率約為8.6%。同時,農業部門缺水較嚴重的地方多出現於水稻之三年輪區或蔗作區;而至於民生與工業部門,嘉義沿海地區,如東石、朴子、六腳等鄉鎮市,以及靠山區的鄉鎮,如阿里山、大埔等地,均有較高的缺水風險。在以固定水量作為移轉方式的模擬中(情境二)發現嘉南地區透過增加農業用水移轉率可改善民生與工業之供水穩定度。當用水移轉率約20%,可舒緩台南沿海地區(例如,北門、將軍、七股等地)之民生與工業部門缺水風險。然而,農業用水移轉的最大調配潛能約40%,這表示移轉超過40%以上的農業用水對減緩嘉南地區之民生與工業缺水風險的助益已不顯著。若以用水經濟效率為調配準則時(情境三),民生與工業部門之平均缺水率減少至1.2%,其缺水易損度亦大幅度從原本4381.4萬元減少至703萬元,減少幅度約83.9%,而缺水風險從民生工業移轉至農業部門,農業缺水易損度從原本2364.4萬元增加至3004.8萬元,增加幅度約27.1%。
本研究比較不允許用水支援調度之情境(情境一)與以經濟效率為準則(情境三)的模擬結果發現,農業用水移轉將對於區域整體缺水易損度的減緩幅度約60%,故從公平原則上,因農業用水移轉所減緩的工業與民生缺水易損度應反映在移轉補償價格上,而非僅以農業休耕損失作為補償金額的計算基礎。因此,若提高對農業部門的補償金額使工業部門的邊際效益在每噸 $22-26間,對工業用水的缺水量並無顯著影響,但當工業部門的邊際用水效益從原本之每噸 $26降至$22以下時,將顯著降低工業部門向農業部門移轉用水的意願。本研究亦發現工業部門每噸$18的用水邊際效益應為工業部門願意向農業部門移轉用水的底線,而每噸 $6-8之農業用水移轉的補償價格可視為標的間水量移轉之合理範圍。
zh_TW
dc.description.abstractThe droughts often result from inadequate precipitation for meeting the water demands. The increase of water demands makes drought a more frequent phenomenon. Due to the low economic efficiency of agriculture activities as well as political and national economy concerns, irrigation water supplies are usually regarded as temporary water reallocation sources available for supporting municipal and industrial (M&I) activities during severe droughts. The purpose of the study is to evaluate the impacts of different water transfer strategies among sectors on regional drought risk distribution.
A comprehensive framework of risk analysis for natural hazards is used in this study, including potential hazard analysis, vulnerability assessment, and risk management instruments. Drought vulnerability is defined as the product of the vulnerability weight and water deficit. The weight reflects f the economic impacts of suffering droughts in spatial, temporal, and sectoral dimensions. A geographic information system (GIS) is used to capture spatial variations of human activities, including irrigation and M&I sectors in order to estimate regional water demands and establish spatial relationship between demand sites and supply infrastructures. The study area located in southern Taiwan incorporates 8 surface and 2 underground water supplies, 8 reservoirs and 629 demand sites, including 570 irrigated areas and 59 M&I areas in ChiaNan area. A mixed integer linear programming (MILP) model with minimizing regional drought vulnerability as the objective is established for inter-sectoral drought allocation. Exceeding probability curves and spatial mapping of drought risk are established under different water transfer scenarios, including inhibition of water transfer among sectors (scenario 1), and transfer criteria based on specific amount of agricultural water (scenario 2) and priority of economic-efficiency (scenario 3).
The results show that average deficit rate is about 14.8% for irrigation, 8.6% for M&I under scenario 1. Under this scenario, higher drought risk in irrigated areas appears in the areas with rotated paddy crop and area with sugarcane. The M&I sectors suffer from higher risk more in the mountainous and coastal regions. In scenario 2, transferring about 20% of the irrigation water can reduce the drought risk for M&I sector in coastal areas. It is also shown from the simulation when the transfer rate is more than 40%, no further benefits are shown for retarding M&I drought risk. Comparing scenario 3 with scenario 1, it could be found that average deficit rate of M&I sectors reduced from 8.6 % to 1.2 %, and that of agricultural sector increased from 14.8% to 23%. M&I drought vulnerability reduced substantially from 43,814 thousands to 7,030 thousands NT dollars (83.9%), and the agricultural sector increased from 23,644 thousands to 30,048 thousands NT dollars (27.1%).
The results of this study show that the water transfer strategy based on economic-efficiency consideration (scenario 3) could reduce about 60% M&I drought vulnerability in ChiaNan region. The compensation for paddy-farming fallow from the M&I sectors should reflect this contributions accordingly rather than merely the actual farming loses. However, the results also show that the M&I sectors tend to reduce water demands if their marginal benefits for water consumptions are less than $22/ton. And the M&I drought vulnerability will be even larger than the agricultural sector if marginal benefits for M&I sector decrease less than $18/ton. This study shows that the compensation of $6-8/ton for fallow of paddy-farming is reasonable for water transfer to M&I sector.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:54:07Z (GMT). No. of bitstreams: 1
ntu-95-D89622008-1.pdf: 4210903 bytes, checksum: b6f75bca4f99feb85ef281e79c6b59c5 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents謝誌………………………………………………………………………I
中文摘要…………………………………………………………………II
英文摘要…………………………………………………………………III
目錄……………………………………………………………………… V
圖目錄……………………………………………………………………VII
表目錄……………………………………………………………………IX
第一章 緒論
1-1 研究動機……………………………………………………………1
1-2 研究目的……………………………………………………………4
1-3 研究架構與方法……………………………………………………5
第二章 文獻回顧
2-1 災難與風險管理…………………………………………………10
2-1-1 災難與風險的定義……………………………………………10
2-1-2 風險管理………………………………………………………11
2-2 乾旱應變…………………………………………………………14
2-2-1 建立乾旱缺水指標……………………………………………14
2-2-2 建立水庫供水的操作規則……………………………………22
2-3 乾旱風險管理與乾旱地圖………………………………………26
2-4 乾旱調配與標的間用水轉移……………………………………29
2-5 小結………………………………………………………………32
第三章 研究區域概述
3-1 水源與供水設施…………………………………………………34
3-2 水資源供需與用水移轉…………………………………………37
第四章 用水供需資料匯整與用水量推估
4-1 水源供應(含地表水與地下水)………………………………39
4-2 水庫設施…………………………………………………………41
4-3 自來水系統………………………………………………………44
4-4 民生與工業用水量推估…………………………………………47
4-4-1 民生用水………………………………………………………47
4-4-2 工業用水……………………………………………48
4-5灌溉系統與農業用水量推估……………………………….52
4-5-1 田間用水量……………………………………………….52
4-5-2 渠道輸水損失量………………………………………….54
第五章 區域用水調配模式之建立
5-1 目標式…………………………………….……………..62
5-1-1 乾旱易損度的定義……………………………………62
5-1-2 各標的缺水於時間-空間之易損權重……………...62
5-2 限制式………………………………………69
第六章 模式分析結果與討論
6-1各標的缺水風險評估………………………………………76
6-2用水移轉策略對缺水風險之影響………………………81
6-2-1 以固定水量移轉策略(即不考慮經濟效益)……………..83
6-2-2 考慮部門間用水經濟效益的移轉策略…………….…….91
6-2-3 各種移轉策略之比較與討論………….……….…….…93
6-3 用水邊際效益之敏感度分析…………………………………96
第七章 結論與建議
7-1 結論…………………………………………………….99
7-2 建議……………………………………………………………102
中文參考文獻………………………………………………………104
英文參考文獻………………………………………………………107
附錄1:區域用水調配之混合整數線性規劃模式-Lingo程式碼……附-1
dc.language.isozh-TW
dc.subject乾旱調配zh_TW
dc.subject風險管理zh_TW
dc.subject用水移轉zh_TW
dc.subjectrisk managementen
dc.subjectdrought allocationen
dc.subjectwater transferen
dc.title標的間用水移轉對區域乾旱缺水風險分佈之影響zh_TW
dc.titleThe Impact of Water Transfer among Sectors on Regional Drought Risk Distributionen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree博士
dc.contributor.oralexamcommittee鄭克聲,張斐章,童慶斌,郭振泰,黃文政,陳昶憲
dc.subject.keyword用水移轉,風險管理,乾旱調配,zh_TW
dc.subject.keywordwater transfer,risk management,drought allocation,en
dc.relation.page109
dc.rights.note有償授權
dc.date.accepted2006-07-26
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
4.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved