請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32449完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊燦堯 | |
| dc.contributor.author | Pei-Chuan Chuang | en |
| dc.contributor.author | 莊佩涓 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:50:01Z | - |
| dc.date.available | 2011-07-27 | |
| dc.date.copyright | 2006-07-27 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-26 | |
| dc.identifier.citation | 參考文獻
江政鴻 (2002) 嘉義中崙地區天然逸氣來源與自動化監測結果,國立台灣大學地質研究所碩士論文,共110頁。 李貞瑩 (2003) 台灣西南部海域的泥貫體與天然氣水合物的生成。國立台灣海洋大學應用地球物理研究所碩士論文,共79頁。 林曉武 (2004) 台灣西南海域天然氣水合物賦存區地質調查研究海域地質調查與地球化學探勘(1/4)硫酸鹽還原在天然氣水合物賦存區之應用與調查及活塞岩心標本採集系統之研究與製作,中央地質調查所報告第93-25-E號,共58頁。 林曉武 (2005) 台灣西南海域天然氣水合物賦存區地質調查研究海域地質調查與地球化學探勘(2/4)硫酸鹽還原在天然氣水合物賦存區之應用,中央地質調查所報告第94-26-E號,共86頁。 陳汝勤 (2004) 台灣西南海域天然氣水合物賦存區地質調查研究海域地質調查與地球化學探勘(1/4)沉積物粒徑、礦物成分與物理性質分析,並建立其分布狀況及模式,中央地質調查所報告第93-25-B號,共86頁。 陳汝勤 (2005) 台灣西南海域天然氣水合物賦存區地質調查研究海域地質調查與地球化學探勘(2/4)沉積物粒徑、礦物成分與物理性質分析及與天然氣水合物分布之關係,中央地質調查所報告第94-26-B號,共118頁。 曾威豪 (2006) 台灣西南海域海底泥火山之分布特徵與噴發機制。國立台灣大學海洋研究所碩士論文,共62頁。 黃奇瑜 (2004) 台灣西南海域天然氣水合物賦存區地質調查研究海域地質調查與地球化學探勘(1/4)台灣西南海域天然氣水合物潛能區的地質學及地球化學特徵,中央地質調查所報告第93-25-A號,共103頁。 葉高華 (2003) 流體地球化學探討台灣泥火山的成因。國立台灣大學海洋研究所碩士論文,共61頁。 趙鴻椿 (2003) 台灣地區泥火山氣體成份分析及其對全球甲烷來源的可能影響。國立成功大學地球科學研究所碩士論文,共81頁。 劉家瑄 (2002) 臺灣大地構造,黃奇瑜主編,中國地質學會出版,共210頁。 鍾三雄、張碩芳 (2001) 甲烷氣水包合物的研究調查回顧與展望。經濟部中央地質調查所彙刊,第14號,第35-82頁。 謝佩珊 (2000) 台灣地區溫泉與泥火山氣體來源之初探。國立台灣大學地質科學研究所碩士論文,共77頁。 Bernard, B. B., Brooks, J. M. and Sackett, W. M. (1978) Light hydrocarbons in recent Texas continental shelf and slope sediments. J. Geophy. Res., 83, 4053-4061 Berner, R. A. (1978) Sulfate reduction and the rate of deposition of marine sediments. Earth Planet. Sci. Lett., 37, 492-498. Berner, R. A. (1980) Early Diagenesis. A Theoretical Approach. Princeton University Press, 241pp. Borowski, W. S., Paull, C. K. and Ussler, W. (1996) Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology, 24, 655-658. Borowski, W. S., Paull, C. K. and Ussler, W. (1999) Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates. Mar. Geol., 159, 131-154. Chi, W. C., Reed, D. L., Liu, C. S. and Lunberg, N. (1998) Distribution of the bottom simulating reflector in the offshore Taiwan collision zone. Terr. Atmos. Ocean. Sci., 9, 779-793. Chow, J., Lee, J. S., Sun, R., Liu, C. S. and Lundberg, N. (2000) Characteristics of the bottom simulating reflectors near mud diapirs: offshore southwestern Taiwan. Geo-Marine Lett., 20, 3-9. Chow, J., Lee, J. S., Liu, C. S., Lee, B. D. and Watkins, J. S. (2001) A submarine canyon as the cause of a mud volcano - Liuchieuyu Island in Taiwan. Mar. Geol., 176, 55-63. Collett, T. S. and Kuuskraa, V. A. (1998) Hydrates contain vast store ofworld gas resources. Oil Gas J., 96 (19), 90-95. Davidson, D. W. (1983) Gas hydrates as clathrate ices. In: Cox, J.L. (Ed) Natural Gas Hydrates, Properties, Occurrence, and Recovery. Butterworth, Woburn, MS., 1-16. Dickens, G. R., Paull, C. K., Wallace, P. and ODP Leg 164 Scientific Party (1997) Direct measurement of in situ methane quantities in a large gas hydrate reservoir. Nature, 385, 426-428. Dickens, G. R. (2001) Sulfate profiles and barium fronts in sediment on the Blake Ridge: Present and past methane fluxes through a large gas hydrate reservoir. Geochim. Cosmochim. Acta, 65, 529-543. Ginsburg, G. D., Milkov, A. V., Soloviev, V. A., Egorov, A. V., Cherkashev, G. A., Vogt, P. R., Crance, K., Lorenson, T. D. and Khutorskoy, M.D. (1999) Gas hydrate accumulation at the Håkon Mosby Mud Volcano. Geo-Marine Lett., 19, 57-67. Hesse, R. and Harrison, W. E. (1981) Gas hydrates (clathrates) causing pore-water freshening and oxygen isotope fractionation in deep-water sedimentary sections of terrigenous continental margins. Earth Planet. Sci. Lett., 55, 453-462. Hesse, R. (2003) Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface: What have we learned in the past decade? Earth-Sci. Rev., 61, 149–179. Hunt, J. M. (1996) Petroleum geochemistry and geology: San Francisco, Freeman, W. H., 743 pp. Iversen, N and Jørgensen, B. B. (1993) Diffusion coefficients of sulfate and methane in marine sediments: Influence of porosity. Geochim. Cosmochim. Acta, 57, 571-578. Kvenvolden, K. A. and Barnard, L. A. (1983) Gas hydrates of the Blake Outer Ridge, Site 533, Deep Sea Drilling Project Leg 76. In: Sheridan, R.E., Gradstein, F.M., et al. (Eds.) Initial Reports of the Deep Sea Drilling Project, 76, 353-365. Kennicutt, M. C., Brooks, J. M., Bidigare, R. R., Fay, R. R., Wade, T. L. and MacDonald, T.J. (1985) Vent-type taxa in a hydrocarbon seep region on the Louisiana slope. Nature, 317, 351-353. Kvenvolden, K. A. and Grantz, A. (1990) Gas hydrates of the Arctic Ocean region. In: Grantz, A., Johnson, L. and Sweeney, J. (eds.) The Geology of North America. Vol. L – The Arctic Ocean Region. Geol. Soc. Am., Boulder, CO., 539-549. Kvenvolden, K. A. (1993) Gas hydrates–geological perspective and global change. Rev. Geophys., 31, 173-187. Kvenvolden, K. A. (1998) A primer on the geological occurrence of gas hydrate. In: Henriet, J. P. and Mienert, J. (eds.) Gas hydrates: relevance to world margin stability and climate change. Geol. Soc. London, Spec. Publ., 137, 9-30. Kvenvolden, K. A. and Lorenson, T. D. (2000) Methane and other hydrocarbon gases in sediment from the southeastern North American continental margin. In: Paull, C.K. et al. (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, 164, 29-36. Lammers, S and Suess, E. (1994) An improved head-space analysis method for methane in seawater. Mar. Chem., 47, 115-125. Lee, H. F., Yang, T. F., Lan, T. F., Song, S. R. and Tsao, S. (2005) Fumarolic gas composition of the Tatun Volcano Group, northern Taiwan. Terr. Atmos. Oceanic Sci., 16(4), 843-864. Liu, C. S., Huang, I. L. and Teng, L. S. (1997) Structural features off southwestern Taiwan. Mar. Geol., 137, 305-319. Lorenson, T. D. and Collett, T. S. (2000) Gas content and composition of gas hydrate from sediments of the southeastern North American continental margin. In: Paull, C.K. et al. (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, 164, 37-46. MacDonald, G. J. (1990) Role of methane clathrates in past and future climates. Clim. Change., 16, 247-281. Martin, J. B. and Kastner, M. (1996) Chemical and isotopic evidence for sources of fluids in a mud volcano field seaward of the Barbados accretionary wedge. J. Geophy. Res., 101, 20325-20345. Matsumoto, R. (1995) Crystal structure and physical properties of methane hydrate. PETROTEC, 18, 27-32. Matsumoto, R. (1996) Methane gas hydrate drilled at Blake Ridge. Eos, 77 (23), 219. Mazurenko, L. L., Soloviev, V. A., Gardner, J. M. and Ivanov, M. K. (2003) Gas hydrate in the Ginsburg and Yuma mud volcano sediment (Moroccan Margin): results of chemical and isotopic studies of pore water. Mar. Geol., 195, 201-210. Mitchell, J. F. B. (1989) The ‘‘greenhouse’’ effect and climate change. Rev. Geophys., 27, 115-139. Millero, F. J. (1996) Chemical Oceanography. 2nd ed., CRC Press, Inc., Florida, 469pp. Niewöhner, C., Hensen, C., Kasten, S., Zabel, M. and Schulz, H. D. (1998) Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia. Geochim. Cosmochim. Acta, 62, 455-464. Paull, C. K., Ussler III, W. and Dillon, W. P. (2000) Potential role of gas hydrate decomposition in generating submarine slope failures. In: Max, M.D. (Ed.), Natural Gas Hydrates in Oceanic and Permafrost Enbvironments. Kluwer Academic, Dordrecht, 149-156. Pecher, I. A. (2002) Gas hydrates on the brink. Nature, 420, 622-623. Sassen, R. and MacDonald, I. R. (1994) Evidence of structure H hydrate, Gulf of Mexico continental slope. Org. Geochem., 22, 1029-1032. Schnurle, P., Hsiuan, T. H. and Liu, C. S. (1999) Constrains on free gas and gas hydrate bearing sediments from multi-channel seismic data, offshore southwestern Taiwan. Petrol. Geol. Taiwan, 33, 21-42. Schnurle, P., Hsiuan, T. H., Wang, T. K., MacIntosh, K., Liu, C. S., Reed, D. and Nakamura, Y. (2002) Characteristics of gas hydrate and free gas offshore southwestern Taiwan: preliminary results from a combined seismic reflection/refraction analysis. Petrol. Geol. Taiwan, 35, 1-34. Shih, T. T. (1967) A survey of the active mud volcanoes in Taiwan and a study of their types and the character of the mud. Petrol. Geol. Taiwan, 5, 259-311. Sloan, E. D. Jr. (1998) Physical/chemical properties of gas hydrates and application to world margin stability and climatic change. In: Henriet, J.P. and Mienert, J. (Eds.): Gas hydrates: relevance to world margin stability and climate change. Geol. Soc., London, Spec. Publ., 137, 31-50. Stahl, W. J. (1977) Carbon and nitrogen isotopes in hydrocarbon research and exploration. Chem. Geol., 20, 121-149. Suess, E., Torres, M. E., Bohrmann, G., Collier, R. W., Greinert, J., Linkea, P., Rehder, G., Trehu, A., Wallmann, K., Winckler, G. and Zuleger, E. (1999) Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin. Earth Planet. Sci. Lett., 170, 1-15. Ussler, W. and Paull, C. K. (1995) Effects of ion exclusion and isotopic fractionation on pore water geochemistry during gas hydrate formation and decomposition. Geo-Marine Lett., 15, 37-44. Whiticar, M. J. (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol., 161, 291-314. Wood, W. T., Gettrust, J. F., Chapman, N. R., Spence, G. D. and Hyndman, R. D. (2002) Decreased stability of methane hydrate in marine sediments owing to phase-boundary roughness. Nature, 420, 656-660. Yang, T. F., Chou, C. Y., Chen, C-H., Chyi, L. L. and Jiang, J. H. (2003) Exhalation of radon and its carrier gases in SW Taiwan. Radiat. Meas., 36, 425-429. Yang, T. F., Yeh, G. H., Fu, C. C., Wang, C. C., Lan, T. F., Lee, H. F., Chen, C-H., Walia, V. and Sung, Q. C. (2004) Composition and exhalation flux of gases from mud volcanoes in Taiwan. Environm. Geol., 46, 1003-1011. You, C. F., Gieskes, J. M., Lee, T., Yui, T. F. and Chen, H. W. (2004) Geochemistry of mud volcano fluids in the Taiwan accretionary prism. Appl. Geochem., 19, 695-707. Zatsepina, O. and Buffett, B. A. (1997) Phase equilibrium of gas hydrate: Implications for the formation of hydrate in the deep-sea floor. Geophys. Res. Lett., 24, 1567-1570. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32449 | - |
| dc.description.abstract | 由台灣西南海域廣佈的「海床仿擬反射」(bottom simulating reflection,簡稱BSR),顯示此區域沉積物中蘊含大量的天然氣水合物。受限於溫度、壓力等條件,天然氣水合物的穩定範圍有其界線,一旦超出此範圍,則原已生成的天然氣水合物將會解離產生水和甲烷。故沉積物中若含有天然氣水合物,其解離產生的水和氣體混入沉積物中,將會使海水中甲烷濃度增加及沉積物間隙氣體的甲烷濃度增高。因此海水以及沉積物間隙氣體中的甲烷濃度,可作為探勘此區域天然氣水合物存在潛力的重要指標之ㄧ。
本研究自2004~2005年共經歷了八個航次(ORI-697、ORI-718、ORII-1207、ORII-1230、ORI-732、Marion Dufresne (MD)、ORI-758及ORI-765等航次)採集海水及沉積物樣品,分析其中海水溶解甲烷氣濃度及沉積物間隙氣體甲烷濃度。調查分析結果顯示,台灣西南海域海床上的確有許多異常高濃度含量甲烷氣的位置被發現(ORI-697航次之G23、ORI-718航次之N8、ORI-732航次之G96、MD05-2911(G22)、MD05-2912(G24)、MD05-2913(G5A)、MD05-2914(732-5)、ORI-758航次之GH10、GH16、ORI-765航次A、C、D、H等站位),且甲烷濃度有隨沉積物深度增加而逐漸增高的趨勢。此外,ORI-765航次A、H兩站位海水溶解氣體也出現異常高之甲烷氣濃度,也有隨深度加深而逐漸增高的趨勢,對應兩站位沉積物間隙氣體的甲烷氣濃度也異常高,顯示該站位有大量甲烷氣正由海床逸散之地表。綜合兩年之調查結果顯示,主要異常甲烷氣高濃度的站位皆分佈於活動大陸邊緣,而被動大陸邊緣初步調查結果,海床淺處則尚未有顯著異常甲烷逸氣的站位發現。 配合沉積物間隙氣體甲烷濃度及間隙水硫酸鹽濃度剖面,可觀察到本研究區有些站位沉積物之硫酸鹽-甲烷交界面(sulfate methane interface, SMI)非常淺。另外由線性的硫酸鹽梯度、總有機碳(TOC)含量低及高甲烷濃度等證據,顯示沉積物中的硫酸鹽還原反應主要是經甲烷厭氧氧化反應(AMO)所進行。由於AMO反應所消耗的甲烷及硫酸鹽的莫爾數比為1:1,因此可經由擴散定律公式先計算出硫酸鹽通量用以代表甲烷通量。計算結果顯示台灣西南海域普遍都具有高的甲烷通量,尤其是ORI-697航次之G23(4.12×10-2 mmol cm-2yr-1)及ORI-718航次之N8(2.11×10-2 mmol cm-2yr-1)兩站位更有異常高的甲烷通量出現於沉積物中。此結果顯示海床底部有一很高的甲烷逸氣來源,最有可能為天然氣水合物解離釋出大量的甲烷所致。 本研究也選取了部分沉積物間隙氣體樣品(ORI-718航次之N6; N8; G22; ORI-732之G96及MD航次等站位)分析碳同位素值以探討氣體來源。分析結果顯示,甲烷之碳同位素值(d13C)介於-28.3~-95.0 ‰,二氧化碳之碳同位素值介於-11.6~-31.4 ‰。由甲烷之碳同位素分析結果,可推論本研究區沉積物淺處之氣體成份以生物來源為主,越往深處則可能有熱分解來源之氣體加入。 | zh_TW |
| dc.description.abstract | It has been found that Bottom Simulating Reflections (BSRs) widely distribute
in offshore southwestern Taiwan which infer the existence of potential gas hydrates underneath the seafloor sediments. Fluids and gases derived from dissociation of gas hydrates which usually enriched in methane concentrations would affect the compositions of sea water and sediments nearby the venting areas. Hence, methane concentrations of sea waters and sediments become useful proxies for exploration of potential gas hydrates in one area. We systematically collected sea waters and cored sediments for dissolved and pore-space gas analysis through eight cruises: ORI-697, ORI-718, ORII-1207, ORII-1230, ORI-732, Marion Dufresne (MD) cruise, ORI-758 and ORI-765 from 2003 to 2005 in this study. Some unusual high methane concentrations can be found in offshore southwestern Taiwan, e.g., sites G23 of ORI-697, N8 of ORI-718, G96 of ORI-732, MD05-2911(G22), MD05-2912(G24), MD052913(G5A) and MD05-2914(73205) of MD cruise, GH10 and GH16 of ORI-758 cruise, sites A, C, D, and H of ORI-765 cruise. The methane concentrations of cored sediments display an increasing trend with depth. Meanwhile, the water column also showed unusual high dissolve methane concentrations at sites A and H of cruise ORI-765. It indicates that gases are venting actively from seafloor in this region. Compiling the available data, high CH4 concentrations are mainly distributed in active margin SW offshore Taiwan; nevertheless, no abnormally high concentrations were found in passive margin so far. In addition, the profiles of methane and sulfate of cored sediments reveal very shallow depths of sulfate methane interface (SMI) at some sites in this study. The linear sulfate gradients, low total organic carbon (TOC) and high methane concentrations imply that sulfate reduction is mainly driven by the process of anaerobic methane oxidation (AMO) in sediments. Thus, the methane fluxes can be determined through the gradients of sulfate reduction and steady state solutions to diffusion equations and show that the methane fluxes are very high, especially at sites G23 of ORI-697 (4.12×10-2 mmol cm-2yr-1) and N8 of ORI-718 (2.11×10-2 mmol cm-2yr-1) in offshore southwestern Taiwan. It indicates that there is a methane-enriched venting source, which may be the product of dissociation of gas hydrates, in this area. Some selected gas samples from ORI-718 (N6; N8; G22); ORI-732 (G96) and MD cruise have also been analyzed for carbon isotopic compositions. The δ13C data of CH4 gases range from -28.3~ -95.0 o/oo and -11.6 ~ -31.6 o/oo for CO2. The carbon isotopic compositions of methane show that organic gas source is dominated at shallower depth, however, some thermogenic gases might be introduced from deeper source in this region. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:50:01Z (GMT). No. of bitstreams: 1 ntu-95-R93224203-1.pdf: 5267833 bytes, checksum: 436e2852ac6f38bba008e72fefabe935 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 目 錄
第一章 前言 …………………………………………………………………………1 第二章 研究目的 ……………………………………………………………………4 2-1 了解台灣西南海域天然氣水合物存在的潛力……………………………4 2-2 推測台灣西南海域天然氣水合物分佈區域………………………………4 2-3 估算台灣西南海域甲烷逸氣通量…………………………………………5 2-4 探討台灣西南海域天然氣水合物氣體之生成機制與可能來源…………7 第三章 研究方法……………………………………………………………………10 3-1台灣西南海域地質構造背景………………………………………………10 3-2 採樣地點 …………………………………………………………………11 3-3 ORI-697; ORI-718; ORI-732航次及ORII-1207; ORII-1230航次氣體樣品採樣及分析方法 …………………………………………………………23 3-3-1 底層海水採樣及分析方法…………………………………………23 3-3-2 沉積物間隙氣體採樣及分析方法…………………………………23 3-4 MD航次氣體樣品採樣及分析方法………………………………………25 3-4-1沉積物間隙氣體採樣及分析方法…………………………………25 3-4-2螺蓋玻璃採樣瓶 …………………………………………………25 3-5 ORI-758 & ORI-765航次氣體樣品採樣及分析方法 ……………………27 3-5-1 沉積物間隙氣體採樣及分析方法…………………………………27 3-5-2 海水剖面(Water column)溶解氣體濃度分析 …………………27 3-5-2-1 ORI-758航次海水剖面溶解氣體濃度分析………………27 3-5-2-2 ORI-765航次海水剖面溶解甲烷氣體濃度分析…………28 3-6 氣體濃度換算 ……………………………………………………………30 3-6-1 海水溶解甲烷氣體濃度計算………………………………………30 3-6-1-1 ORI-697; ORI-718; ORI-732航次及ORII-1207; ORII-1230航次底水溶解氣體濃度計算………………………………30 3-6-1-2 MD航次沉積物間隙水及ORI-758航次海水剖面溶解氣體濃度分析……………………………………………………30 3-6-1-3 ORI-765航次海水溶解甲烷氣體濃度計算………………31 3-6-2 沉積物間隙氣體濃度計算…………………………………………31 3-6-2-1 計算氣相層析儀分析馬口鐵罐中沉積物間隙氣體濃度 …………………………………………………………31 3-6-2-2 計算氣相層析儀分析螺蓋玻璃瓶或血清瓶內沉積物間隙氣體濃度 …………………………………………………32 3-7氣體成份分析之準確度和精確度誤差……………………………………32 3-8 總有機碳分析前處理及計算方法 ………………………………………32 3-8-1 總碳量(TC)實驗前處理…………………………………………32 3-8-2 有機碳含量(OC)實驗前處理……………………………………33 第四章 分析結果……………………………………………………………………34 4-1各航次海水溶解氣體濃度分析結果 ……………………………………34 4-2各岩心沉積物間隙氣體甲烷與乙烷濃度分析結果 ……………………41 4-3 碳同位素分析結果 ………………………………………………………59 4-4 總有機碳含量分析結果 …………………………………………………62 第五章 討論…………………………………………………………………………63 5-1 底水溶解甲烷氣及沉積物間隙氣體甲烷濃度分佈……………………63 5-2 碳氫化合物氣體來源……………………………………………………65 5-3 沉積物間隙氣體甲烷濃度與間隙水硫酸鹽濃度關係…………………66 5-4 甲烷通量估算……………………………………………………………68 5-5 天然氣水合物解離模式…………………………………………………73 第六章 結論…………………………………………………………………………76 第七章 參考文獻……………………………………………………………………78 | |
| dc.language.iso | zh-TW | |
| dc.subject | 甲烷 | zh_TW |
| dc.subject | 天然氣水合物 | zh_TW |
| dc.subject | 碳同位素 | zh_TW |
| dc.subject | 甲烷通量 | zh_TW |
| dc.subject | methane | en |
| dc.subject | carbon isotopes | en |
| dc.subject | methane flux | en |
| dc.subject | gas hydrate | en |
| dc.title | 台灣西南海域天然氣水合物賦存區之氣體地球化學研究 | zh_TW |
| dc.title | Gas geochemistry study in gas hydrate potential area offshore SW Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳汝勤,黃武良,翁榮南,林曉武 | |
| dc.subject.keyword | 天然氣水合物,甲烷,甲烷通量,碳同位素, | zh_TW |
| dc.subject.keyword | gas hydrate,methane,methane flux,carbon isotopes, | en |
| dc.relation.page | 83 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-26 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 5.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
