Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32447
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡孟君(Meng-Chun Hu)
dc.contributor.authorMei-Ling Wuen
dc.contributor.author吳美伶zh_TW
dc.date.accessioned2021-06-13T03:49:53Z-
dc.date.available2006-08-03
dc.date.copyright2006-08-03
dc.date.issued2006
dc.date.submitted2006-07-25
dc.identifier.citationAil, S., Coombes. R. C. (2002). Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2, 101-112.
Agarwal VR, Bulun SE, Leitch M, Rohrich R, Simpson ER. 1996. Use of alternative promoters to express the aromatase cytochrome P450 (CYP19) gene in breast adipose tissues of cancer-free and breast cancer patients. J Clin Endocrinol Metab 81:3843-3849.
Ali S, Coombes RC. 2002. Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2:101-112.
Annicotte JS, Chavey C, Servant N, Teyssier J, Bardin A, Licznar A, Badia E, Pujol P, Vignon F, Maudelonde T, Lazennec G, Cavailles V, Fajas L. 2005. The nuclear receptor liver receptor homolog-1 is an estrogen receptor target gene. Oncogene 24:8167-8175.
Annicotte JS, Fayard E, Swift GH, Selander L, Edlund H, Tanaka T, Kodama T, Schoonjans K, Auwerx J. 2003. Pancreatic-duodenal homeobox 1 regulates expression of liver receptor homolog 1 during pancreas development. Mol Cell Biol 23:6713-6724.
Bies J, Markus J, Wolff L. 2002. Covalent attachment of the SUMO-1 protein to the negative regulatory domain of the c-Myb transcription factor modifies its stability and transactivation capacity. J Biol Chem 277:8999-9009.
Boerboom D, Pilon N, Behdjani R, Silversides DW, Sirois J. 2000. Expression and regulation of transcripts encoding two members of the NR5A nuclear receptor subfamily of orphan nuclear receptors, steroidogenic factor-1 and NR5A2, in equine ovarian cells during the ovulatory process. Endocrinology 141:4647-4656.
Bulun SE, Simpson ER. 1994. Regulation of aromatase expression in human tissues. Breast Cancer Res Treat 30:19-29.
Chalkiadaki A, Talianidis I. 2005. SUMO-dependent compartmentalization in promyelocytic leukemia protein nuclear bodies prevents the access of LRH-1 to chromatin. Mol Cell Biol 25:5095-5105.
Chen WY, Lee WC, Hsu NC, Huang F, Chung BC. 2004. SUMO modification of repression domains modulates function of nuclear receptor 5A1 (steroidogenic factor-1). J Biol Chem 279:38730-38735.
Chung CD, Liao J, Liu B, Rao X, Jay P, Berta P, Shuai K. 1997. Specific inhibition of Stat3 signal transduction by PIAS3. Science 278:1803-1805.
Clyne CD, Speed CJ, Zhou J, Simpson ER. 2002. Liver receptor homologue-1 (LRH-1) regulates expression of aromatase in preadipocytes. J Biol Chem 277:20591-20597.
Desclozeaux M, Krylova IN, Horn F, Fletterick RJ, Ingraham HA. 2002. Phosphorylation and intramolecular stabilization of the ligand binding domain in the nuclear receptor steroidogenic factor 1. Mol Cell Biol 22:7193-7203.
Desterro JM, Rodriguez MS, Hay RT. 1998. SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 2:233-239.
Duval D, Duval G, Kedinger C, Poch O, Boeuf H. 2003. The 'PINIT' motif, of a newly identified conserved domain of the PIAS protein family, is essential for nuclear retention of PIAS3L. FEBS Lett 554:111-118.
Eloranta JJ, Hurst HC. 2002. Transcription factor AP-2 interacts with the SUMO-conjugating enzyme UBC9 and is sumolated in vivo. J Biol Chem 277:30798-30804.
Fayard E, Auwerx J, Schoonjans K. 2004. LRH-1: an orphan nuclear receptor involved in development, metabolism and steroidogenesis. Trends Cell Biol 14:250-260.
Fisher CL, Pei GK. 1997. Modification of a PCR-based site-directed mutagenesis method. Biotechniques 23:570-571, 574.
Galarneau L, Pare JF, Allard D, Hamel D, Levesque L, Tugwood JD, Green S, Belanger L. 1996. The alpha1-fetoprotein locus is activated by a nuclear receptor of the Drosophila FTZ-F1 family. Mol Cell Biol 16:3853-3865.
Gilbert S, Galarneau L, Lamontagne A, Roy S, Belanger L. 2000. The hepatitis B virus core promoter is strongly activated by the liver nuclear receptor fetoprotein transcription factor or by ectopically expressed steroidogenic factor 1. J Virol 74:5032-5039.
Goodson ML, Hong Y, Rogers R, Matunis MJ, Park-Sarge OK, Sarge KD. 2001. Sumo-1 modification regulates the DNA binding activity of heat shock transcription factor 2, a promyelocytic leukemia nuclear body associated transcription factor. J Biol Chem 276:18513-18518.
Gross M, Liu B, Tan J, French FS, Carey M, Shuai K. 2001. Distinct effects of PIAS proteins on androgen-mediated gene activation in prostate cancer cells. Oncogene 20:3880-3887.
Gross M, Yang R, Top I, Gasper C, Shuai K. 2004. PIASy-mediated repression of the androgen receptor is independent of sumoylation. Oncogene 23:3059-3066.
Hardeland U, Steinacher R, Jiricny J, Schar P. 2002. Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. Embo J 21:1456-1464.
Hinshelwood MM, Repa JJ, Shelton JM, Richardson JA, Mangelsdorf DJ, Mendelson CR. 2003. Expression of LRH-1 and SF-1 in the mouse ovary: localization in different cell types correlates with differing function. Mol Cell Endocrinol 207:39-45.
Hong Y, Rogers R, Matunis MJ, Mayhew CN, Goodson ML, Park-Sarge OK, Sarge KD. 2001. Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification. J Biol Chem 276:40263-40267.
Hui DY, Howles PN. 2002. Carboxyl ester lipase: structure-function relationship and physiological role in lipoprotein metabolism and atherosclerosis. J Lipid Res 43:2017-2030.
Ito M, Park Y, Weck J, Mayo KE, Jameson JL. 2000. Synergistic activation of the inhibin alpha-promoter by steroidogenic factor-1 and cyclic adenosine 3',5'-monophosphate. Mol Endocrinol 14:66-81.
Janne OA, Moilanen AM, Poukka H, Rouleau N, Karvonen U, Kotaja N, Hakli M, Palvimo JJ. 2000. Androgen-receptor-interacting nuclear proteins. Biochem Soc Trans 28:401-405.
Johnson ES, Gupta AA. 2001. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106:735-744.
Kahyo T, Nishida T, Yasuda H. 2001. Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol Cell 8:713-718.
Kim JW, Havelock JC, Carr BR, Attia GR. 2005. The orphan nuclear receptor, liver receptor homolog-1, regulates cholesterol side-chain cleavage cytochrome p450 enzyme in human granulosa cells. J Clin Endocrinol Metab 90:1678-1685.
Kim JW, Peng N, Rainey WE, Carr BR, Attia GR. 2004. Liver receptor homolog-1 regulates the expression of steroidogenic acute regulatory protein in human granulosa cells. J Clin Endocrinol Metab 89:3042-3047.
Komatsu T, Mizusaki H, Mukai T, Ogawa H, Baba D, Shirakawa M, Hatakeyama S, Nakayama KI, Yamamoto H, Kikuchi A, Morohashi K. 2004. Small ubiquitin-like modifier 1 (SUMO-1) modification of the synergy control motif of Ad4 binding protein/steroidogenic factor 1 (Ad4BP/SF-1) regulates synergistic transcription between Ad4BP/SF-1 and Sox9. Mol Endocrinol 18:2451-2462.
Kotaja N, Aittomaki S, Silvennoinen O, Palvimo JJ, Janne OA. 2000. ARIP3 (androgen receptor-interacting protein 3) and other PIAS (protein inhibitor of activated STAT) proteins differ in their ability to modulate steroid receptor-dependent transcriptional activation. Mol Endocrinol 14:1986-2000.
Kotaja N, Karvonen U, Janne OA, Palvimo JJ. 2002. PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol Cell Biol 22:5222-5234.
Kwek SS, Derry J, Tyner AL, Shen Z, Gudkov AV. 2001. Functional analysis and intracellular localization of p53 modified by SUMO-1. Oncogene 20:2587-2599.
Lavorgna G, Guffanti A, Borsani G, Ballabio A, Boncinelli E. 1999. TargetFinder: searching annotated sequence databases for target genes of transcription factors. Bioinformatics 15:172-173.
Lee H, Quinn JC, Prasanth KV, Swiss VA, Economides KD, Camacho MM, Spector DL, Abate-Shen C. 2006. PIAS1 confers DNA-binding specificity on the Msx1 homeoprotein. Genes Dev 20:784-794.
Lee MB, Lebedeva LA, Suzawa M, Wadekar SA, Desclozeaux M, Ingraham HA. 2005. The DEAD-box protein DP103 (Ddx20 or Gemin-3) represses orphan nuclear receptor activity via SUMO modification. Mol Cell Biol 25:1879-1890.
Liu B, Gross M, ten Hoeve J, Shuai K. 2001. A transcriptional corepressor of Stat1 with an essential LXXLL signature motif. Proc Natl Acad Sci U S A 98:3203-3207.
Liu B, Liao J, Rao X, Kushner SA, Chung CD, Chang DD, Shuai K. 1998. Inhibition of Stat1-mediated gene activation by PIAS1. Proc Natl Acad Sci U S A 95:10626-10631.
Liu B, Yang R, Wong KA, Getman C, Stein N, Teitell MA, Cheng G, Wu H, Shuai K. 2005. Negative regulation of NF-kappaB signaling by PIAS1. Mol Cell Biol 25:1113-1123.
Liu DL, Liu WZ, Li QL, Wang HM, Qian D, Treuter E, Zhu C. 2003. Expression and functional analysis of liver receptor homologue 1 as a potential steroidogenic factor in rat ovary. Biol Reprod 69:508-517.
Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J, Mangelsdorf DJ. 2000. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 6:507-515.
Luo Y, Liang CP, Tall AR. 2001. The orphan nuclear receptor LRH-1 potentiates the sterol-mediated induction of the human CETP gene by liver X receptor. J Biol Chem 276:24767-24773.
Matunis MJ, Wu J, Blobel G. 1998. SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J Cell Biol 140:499-509.
Megidish T, Xu JH, Xu CW. 2002. Activation of p53 by protein inhibitor of activated Stat1 (PIAS1). J Biol Chem 277:8255-8259.
Moilanen AM, Karvonen U, Poukka H, Yan W, Toppari J, Janne OA, Palvimo JJ. 1999. A testis-specific androgen receptor coregulator that belongs to a novel family of nuclear proteins. J Biol Chem 274:3700-3704.
Muller S, Hoege C, Pyrowolakis G, Jentsch S. 2001. SUMO, ubiquitin's mysterious cousin. Nat Rev Mol Cell Biol 2:202-210.
Muller S, Ledl A, Schmidt D. 2004. SUMO: a regulator of gene expression and genome integrity. Oncogene 23:1998-2008.
Nishida T, Terashima M, Fukami K. 2006. PIASy-mediated repression of the Ets-1 is independent of its sumoylation. Biochem Biophys Res Commun 345:1536-1546.
Nishida T, Yasuda H. 2002. PIAS1 and PIASxalpha function as SUMO-E3 ligases toward androgen receptor and repress androgen receptor-dependent transcription. J Biol Chem 277:41311-41317.
Okubo S, Hara F, Tsuchida Y, Shimotakahara S, Suzuki S, Hatanaka H, Yokoyama S, Tanaka H, Yasuda H, Shindo H. 2004. NMR structure of the N-terminal domain of SUMO ligase PIAS1 and its interaction with tumor suppressor p53 and A/T-rich DNA oligomers. J Biol Chem 279:31455-31461.
Pare JF, Roy S, Galarneau L, Belanger L. 2001. The mouse fetoprotein transcription factor (FTF) gene promoter is regulated by three GATA elements with tandem E box and Nkx motifs, and FTF in turn activates the Hnf3beta, Hnf4alpha, and Hnf1alpha gene promoters. J Biol Chem 276:13136-13144.
Peng N, Kim JW, Rainey WE, Carr BR, Attia GR. 2003. The role of the orphan nuclear receptor, liver receptor homologue-1, in the regulation of human corpus luteum 3beta-hydroxysteroid dehydrogenase type II. J Clin Endocrinol Metab 88:6020-6028.
Perissi V, Aggarwal A, Glass CK, Rose DW, Rosenfeld MG. 2004. A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 116:511-526.
Pichler A, Gast A, Seeler JS, Dejean A, Melchior F. 2002. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108:109-120.
Pichler A, Melchior F. 2002. Ubiquitin-related modifier SUMO1 and nucleocytoplasmic transport. Traffic 3:381-387.
Poukka H, Karvonen U, Janne OA, Palvimo JJ. 2000. Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc Natl Acad Sci U S A 97:14145-14150.
Prigge JR, Schmidt EE. 2006. Interaction of protein inhibitor of activated STAT (PIAS) proteins with the TATA-binding protein, TBP. J Biol Chem 281:12260-12269.
Rodriguez MS, Dargemont C, Hay RT. 2001. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem 276:12654-12659.
Sachdev S, Bruhn L, Sieber H, Pichler A, Melchior F, Grosschedl R. 2001. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev 15:3088-3103.
Schmidt D, Muller S. 2003. PIAS/SUMO: new partners in transcriptional regulation. Cell Mol Life Sci 60:2561-2574.
Seeler JS, Dejean A. 2001. SUMO: of branched proteins and nuclear bodies. Oncogene 20:7243-7249.
Sharrocks AD. 2006. PIAS proteins and transcriptional regulation--more than just SUMO E3 ligases? Genes Dev 20:754-758.
Shuai K, Liu B. 2005. Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat Rev Immunol 5:593-605.
Sirianni R, Seely JB, Attia G, Stocco DM, Carr BR, Pezzi V, Rainey WE. 2002. Liver receptor homologue-1 is expressed in human steroidogenic tissues and activates transcription of genes encoding steroidogenic enzymes. J Endocrinol 174:R13-17.
Takahashi Y, Iwase M, Konishi M, Tanaka M, Toh-e A, Kikuchi Y. 1999. Smt3, a SUMO-1 homolog, is conjugated to Cdc3, a component of septin rings at the mother-bud neck in budding yeast. Biochem Biophys Res Commun 259:582-587.
Tan J, Hall SH, Hamil KG, Grossman G, Petrusz P, Liao J, Shuai K, French FS. 2000. Protein inhibitor of activated STAT-1 (signal transducer and activator of transcription-1) is a nuclear receptor coregulator expressed in human testis. Mol Endocrinol 14:14-26.
Tirard M, Jasbinsek J, Almeida OF, Michaelidis TM. 2004. The manifold actions of the protein inhibitor of activated STAT proteins on the transcriptional activity of mineralocorticoid and glucocorticoid receptors in neural cells. J Mol Endocrinol 32:825-841.
Tugwood JD, Issemann,I. and Green,S. 1991. LRH-1: A nuclear hormone receptor active in the absence of exogenous ligands. GenBank M81385.
Ueda H, Sun GC, Murata T, Hirose S. 1992. A novel DNA-binding motif abuts the zinc finger domain of insect nuclear hormone receptor FTZ-F1 and mouse embryonal long terminal repeat-binding protein. Mol Cell Biol 12:5667-5672.
Valdez BC, Henning D, Perlaky L, Busch RK, Busch H. 1997. Cloning and characterization of Gu/RH-II binding protein. Biochem Biophys Res Commun 234:335-340.
Verger A, Perdomo J, Crossley M. 2003. Modification with SUMO. A role in transcriptional regulation. EMBO Rep 4:137-142.
Wang ZN, Bassett M, Rainey WE. 2001. Liver receptor homologue-1 is expressed in the adrenal and can regulate transcription of 11 beta-hydroxylase. J Mol Endocrinol 27:255-258.
Wu L, Wu H, Ma L, Sangiorgi F, Wu N, Bell JR, Lyons GE, Maxson R. 1997. Miz1, a novel zinc finger transcription factor that interacts with Msx2 and enhances its affinity for DNA. Mech Dev 65:3-17.
Xu PL, Shan SF, Kong YY, Xie YH, Wang Y. 2003. Characterization of a strong repression domain in the hinge region of orphan nuclear receptor hB1F/hLRH-1. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 35:909-916.
Yang SH, Sharrocks AD. 2004. SUMO promotes HDAC-mediated transcriptional repression. Mol Cell 13:611-617.
Yang SH, Sharrocks AD. 2005. PIASx acts as an Elk-1 coactivator by facilitating derepression. Embo J 24:2161-2171.
Zhou D, Zhou C, Chen S. 1997. Gene regulation studies of aromatase expression in breast cancer and adipose stromal cells. J Steroid Biochem Mol Biol 61:273-280.
Zhou J, Suzuki T, Kovacic A, Saito R, Miki Y, Ishida T, Moriya T, Simpson ER, Sasano H, Clyne CD. 2005. Interactions between prostaglandin E(2), liver receptor homologue-1, and aromatase in breast cancer. Cancer Res 65:657-663.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32447-
dc.description.abstract肝受器同族體-1 (liver receptor homolog-1; LRH-1) 屬於孤兒核受器NR5A的一員,會表現於類固醇生成的組織,具有調控類固醇生成基因表現的能力。本篇論文主要探討mouse LRH-1 (mLRH-1)轉錄活性的調控。
先前我們已證實mLRH-1可以調控CYP11A1啟動子的表現,且刪除N端後,mLRH-1的轉錄活性會提高2倍。為了解mLRH-1 C端的特性,我們建構了兩個刪除C端不同長度的mLRH-1。結果發現,刪除C端ligand binding domain的mLRH-11-240 ,其調控基因轉錄的活性幾乎完全喪失,並且對mLRH-1的轉錄活性有顯性抑制 (dominant negative) 的作用。 除LBD外,還刪除hinge region及部分DNA binding domain的mLRH 11-191,仍位於細胞核內,但不具顯性抑制的作用。
LRH-1會受small ubiquitin-related modifier-1 (SUMO-1) 轉譯後的修飾作用,我們藉由點突變mLRH-1上SUMO-1可能的結合位以了解SUMO-1修飾作用對mLRH-1轉錄活性的影響,結果顯示SUMO-1會與mLRH-1的lysine 289位置結合,並抑制其轉錄活性。而lysine 289分別與其他4個可能的SUMO-1結合位進行點突變的雙點突變與lysine 289的單點突變比較,則顯示雙點突變對mLRH-1調控基因轉錄的活性並沒有顯著差異性,證實了lysine 289是mLRH-1最主要的SUMO-1結合位置。
近來發現PIAS家族具有SUMO E3接合酶的活性,為了解PIAS家族是否參與SUMO-1對mLRH-1轉錄活性的調控,利用與mLRH-1共同轉染的實驗,發現PIAS家族的成員中PIASxα,PIASxβ和PIASy能有效地抑制mLRH-1轉錄活性,PIASy的抑制效果尤其明顯,而PIAS1及PIAS3則無顯著效果。藉由共同轉染的實驗,顯示lysine 289 及其他4個非SUMO-1結合位分別帶有點突變的mLRH-1仍會受到PIASy與PIASxα的抑制效果,表示PIASy或PIASxα可能不是透過mLRH-1 sumoylation抑制其轉錄活性。 此外,我們更進一步證明,PIASy與mLRH-1有直接的交互作用。
由本篇論文中我們發現:
1、mLRH-1其C端序列為其轉錄活性所需,且刪除mLRH-1 C端片段會增加mLRH-1的蛋白量。
2、SUMO-1對mLRH-1的修飾作用主要是藉由與mLRH-1的lysine 289結合,並造成其轉錄活性的下降。
3、具有SUMO E3接合酶活性的PIAS家族中,PIASxα,PIASxβ和PIASy會抑制mLRH-1轉錄活性,並且PIASy或PIASxα可能不是透過mLRH-1 sumoylation抑制其轉錄活性。
4、PIASy與mLRH-1有直接的交互作用。
zh_TW
dc.description.abstractLiver receptor homolog-1 (LRH-1) is a member of nuclear receptor 5A subfamily. LRH-1 is expressed in steroidogenic tissues and has been shown to possess the ability to regulate the expression of steroidogenic genes. The aim of this study is to evaluate the regulation of mouse LRH-1 (mLRH-1) transcriptional activity.
Our previous studies indicated that mLRH-1 stimulated the expression of human CYP11A1 promoter and N-terminal deletion of mLRH-1 enhanced the transcriptional activity of mLRH-1. In this study, two C-terminal deletions of mLRH-1 were constructed to examine the effect of C-terminus on mLRH-1. We found that mLRH-11-240 lacking of ligand binding domain almost lose transcriptional activity and had a dominant negative effect on mLRH-1 mediated transcription. The mLRH-11-191 with further deletion of hinge region and a part of DNA binding domain still located in the nucleus but had no dominant negative effect on mLRH-1-mediated transcription.
LRH-1 can be conjugated with a post-translational modifier protein, small ubiquitin-related modifier-1 (SUMO-1). By mutating the potential SUMO-1 binding sites, we found that the lysine 289 of mLRH-1 is the major SUMO-1 conjugation site. In addition, the sumoylation at lysine 289 may inhibit mLRH-1 transcriptional activity.
The members of PIAS family are recently known to be E3-like ligases that control the conjugation of SUMO-1 to target protein. Our cotransfection experiment showed that PIASxα, PIASxβ and PIASy can repress mLRH-1-induced transcription and PIASy had a most significant effect. And it’s suggested that PIASxαand PIASy-mediated repression of mLRH-1 is independent of mLRH-1 sumoylation. We further proved that mLRH-1 could interact with PIASy in vitro.
In this study we found that:
1、The C-terminus of mLRH-1 is necessary for its transcriptional activity. Deletion of C-terminus increases the protein amount of mLRH-1.
2、SUMO-1 is mainly conjugated to lysine 289 of mLRH-1 that represses the transcriptional activity of mLRH-1.
3、SUMO E3 ligase PIASxα, PIASxβ and PIASy can repress mLRH-1-induced transcription. The repression of mLRH-1 transcriptional activity mediated by PIASxαand PIASy is independent of mLRH-1 sumoylation.
4、PIASy can directly interact with mLRH-1.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:49:53Z (GMT). No. of bitstreams: 1
ntu-95-R93441012-1.pdf: 1421485 bytes, checksum: fbc26b8ed3f1ccbd3d8126087793e263 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents目錄................................................Ⅰ
圖次...............................................Ⅳ
中文摘要 ...........................................Ⅴ
英文摘要 ............................................Ⅶ
第一章、 序論.............................................1
一、 核受器NR5A家族.......................................1
二、 LRH-1之作用.........................................2
1、膽酸合成代謝...........................................2
2、影響胚胎發育與分化...............................2
3、調控類固醇生成基因................................3
三、 轉譯後修飾蛋白SUMO-1............................4
1、SUMO-1的特性........................................4
2、SUMO-1的作用......................................5
四、 PIAS家族............................................6
1、PIAS家族的特性 ....................................................................... 6
2、PIAS於sumoylation作用的角色 ............................................. 6
3、PIASy作為輔調控子 ................................................................ 7
五、 研究動機 .................................................................................... 9
第二章、 材料與方法 ................................................................................. 10
一、 質體建構 ..................................................................................... 10
二、 PCR定點突變 ........................................................................... 13
三、 細胞培養 ..................................................................................... 13
四、 暫時性轉染法 (Transient transfection) .................................... 14
五、 Luciferase 活性分析 .................................................................. 15
六、 免疫螢光染色法 ......................................................................... 15
七、 SDS-PAGE .................................................................................. 16
八、 Coomassie blue R-250 染色 ...................................................... 16
九、 西方墨染法 ................................................................................. 16
十、 GST重組蛋白於大腸桿菌內表現的誘導及分離 ................... 17
十一、 胞外轉錄、轉譯作用 ............................................................. 18
十二、 GST pull-down assay .............................................................. 18
第三章、 結果 ............................................................................................. 20
一、 mLRH-1 C端片段的特性 ......................................................... 20
1、蛋白質表現 ................................................................................ 20
2、轉錄活性 ..................................................................................... 20
二、 SUMO-1的轉譯後修飾作用對mLRH-1調控CYP11A1
之影響 ......................................................................................... 21
三、 PIAS對mLRH-1調控CYP11A1之影響 .................................... 22
四、 PIASy與mLRH-1之交互作用 .................................................... 22
1、PIASy抑制mLRH-1的轉錄活性與mLRH-1 sumoylation
無關 ........................................................................................... 23
2、PIASy與mLRH-1有直接的交互作用 ....................................... 23
(1) PIASy在E.coli的表現 ..................................................... 24
(2) 蛋白質純化 ........................................................................ 25
(3) GST pull-down .................................................................. 25
五、 LRH-1在乳癌細胞內的表現 ................................................... 26
第四章、 討論 ............................................................................................ 27
一、mLRH-1 C端片段影響其蛋白質穩定性及轉錄活性 ............... 27
二、SUMO-1的轉譯後修飾作用對mLRH-1調控CYP11A1
之影響 ........................................................................................... 28
三、PIAS對mLRH-1調控CYP11A1之影響 ..................................... 29
四、PIASy與mLRH-1之交互作用 ....................................................... 30
五、LRH-1在乳癌細胞內的表現 ..................................................... 33
參考文獻 ....................................................................................................... 34
圖 ................................................................................................................... 41
圖次
圖一、 mLRH-1及刪除C端片段的蛋白質表現 ……………………… 41
圖二、 mLRH-1及C端片段刪除在細胞內的分布 .............................. 42
圖三、 mLRH11-240調控人類CYP11A1啟動子的作用.......................... 43
圖四、 mLRH11-240對mLRH-1調控人類CYP11A1啟動子的影響 ..... 44
圖五、 mLRH11-191對mLRH-1調控人類CYP11A1啟動子的影響 ..... 45
圖六、 SUMO-1結合位單點突變對mLRH-1調控人類CYP11A1
啟動子的影響 ………....………………………………………... 46
圖七、 SUMO-1結合位雙重突變對mLRH-1調控人類CYP11A1
啟動子的影響 ............................................................................... 47
圖八、 PIAS家族對mLRH-1轉錄活性的影響 ..................................... 48
圖九、 PIASy抑制mLRH-1的轉錄活性 ………………………........... 49
圖十、 PIASy抑制mLRH-1的轉錄活性與mLRH-1 sumoylation
無關............ .................................................................................... 50
圖十一、PIASxα抑制mLRH-1 的轉錄活性與mLRH-1 sumoylation
無關 ............................................................................................... 51
圖十二、GST及GST-PIASy1-159蛋白於大腸桿菌之表現 ........................ 52
圖十三、GST及GST- PIASy1-159蛋白之純化 ......................................... 53
圖十四、PIASy1-159與mLRH-1蛋白交互作用之測試 ............................. 54
圖十五、LRH-1於乳癌細胞之表現 .......................................................... 55
dc.language.isozh-TW
dc.titleLRH-1轉錄活性調控之研究zh_TW
dc.titleRegulation of LRH-1 transcriptional activityen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張繼堯(Chi-Yao Chang),張淑芬(Shwu-Fen Chang),李立安(Lih-Ann Li)
dc.subject.keywordLRH-1,轉錄活性,zh_TW
dc.subject.keywordLRH-1,transcriptional activity,en
dc.relation.page55
dc.rights.note有償授權
dc.date.accepted2006-07-26
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
1.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved