Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32418
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor宋家驥
dc.contributor.authorShih-Husan Huangen
dc.contributor.author黃士軒zh_TW
dc.date.accessioned2021-06-13T03:48:11Z-
dc.date.available2014-08-02
dc.date.copyright2011-08-02
dc.date.issued2011
dc.date.submitted2011-07-28
dc.identifier.citation參考文獻
1. V. G. Veselago, ‘The electrodynamics of substances with simultaneously negative values of ε and μ’, Sov. Phys. Usp. 10, 509 (1968)
2. J. B. Pendry, ‘Negative Refraction Makes a Perfect Lens’, Phys. Rev. Lett. 85, 3966 (2000)
3. X. Zhang, and Z. Liu, ‘Negative refraction of acoustic waves in two-dimensional phononic crystals’, Appl. Phys. Lett. Vol. 85, No. 2, 341 (2004)
1. C. Qiu, X Zhang, and Z. Liu, ‘Far-field imaging of acoustic waves by a two-dimensional sonic crystal’,Phys. Rev. B Vol. 71, No.5, 054302 (2005)
2. J. Li, Z. Liu, and C. Qiu, ‘Negative refraction imaging of acoustic waves by a two-dimensional three-component phononic crystal’, Phys. Rev. B Vol. 73, No. 5,054302 (2006)
3. L. Feng, X. P. Liu, Y. B. Chen, Z. P. Huang, Y. W. Mao, Y. F. Chen, J. Zi, and Y. Y.Zhu, ‘Negative refraction of acoustic waves in two dimensional sonic crystals’,Phys.Rev. B Vol. 72, No. 3, 033108 (2005)
4. L. Feng, X. P. Liu, M. H. Lu, Y. B. Chen, Y. F. Chen, Y. W. Mao, J. Zi, Y. Y. Zhu, S. N.Zhu, and N. B. Ming, ‘Acoustic backward-wave negative refractions in the second band of a sonic crystal’, Phys. Rev. Lett. Vol. 96, No. 1, 014301 (2006)
5. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001)
6. A. Houck, J. B. Brock, and I. L. Chuang, Phys. Rev. Lett. 90, 137401 (2003)
7. C. G. Parazzoli, et al, Phys. Rev. Lett. 90, 107401 (2003)
8. A. Houck, J. B. Brock, and I. L. Chuang, Phys. Rev. Lett. 90, 137401 (2003)
9. P. V. Parimi, W.-T. Lu, P. Vodo, and S. Sridhar, Nature 426, 404 (2003)
10. E. Cubukcu, et al., Phys. Rev. Lett. 91, 207401 (2003)
11. M. M. Sigalas, ‘Elastic wave band gaps and defect statesin two-dimensional composites, J. Acoust. Soc. Amer. 2007; 101(3), 1256-1261
12. M. Kafesaki, M. M. Sigalas, N. Garcia, ‘Frequency Modulation in the Transmittivity of Wave Guides in Elastic-Wave Band-Gap Materials, Phys. Rev. Lett. 2000;85(19), 4044-4017
13. H. Chandra, P. A. Deymier, J. O. Vasseur, ‘Elastic wavepropagation along waveguides in three-dimensional phononic crystals, Phys. Rev. B. 2004; 70(5), 054302
14. F. R. Montero de Espinosa, E. Jim¨nez, and M. Torres, ‘Ultrasonic Band Gap in a Periodic Two-Dimensional Composite, Phys. Rev. Lett. 1998; 80(6), 1208-1211
15. Z. Wang, and Y. Xu, “Vibration energy harvesting device based on air-spaced piezoelectric cantilevers”, Appl. Phys. Lett. Vol. 90, No.26,263512 (2007)
16. Q. Zheng, and Y. Xu, “Asymmetric air-spaced cantilevers for vibration energy harvesting”, Smart Mater. Struct. Vol.17,No. 5, 055009 (2008)
17. Y. C. Zhao, and L. B. Yuan, “Characteristics of multi-point defect modes in 2D phononic crystals”, J. Phys. D: Appl. Phys. Vol. 42, No. 1, 015403,2009
18. ULTRASONICS HANDBOOK “超聲手冊”,ISBN 7-305-03354-5/O.237
19. CHENG Jian-chun, ZOU Xin-ye, “Artificial Acoustic Structure”, Technical Acoustics
20. M. M. Sigalas and C. M. Soukoulis, “Elastic-wave Propagation Through Disordered and/or Absorptive Layered Systems”, Physical Review B, vol. 51, p. 2780, 1995.
21. M. S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafari-Rouhani, “Acoustic Band Structure of Periodic Elastic Composites”, Physical Review Letters, vol. 71, p.2022, 1993.
22. 溫熙森,'光子/聲子晶體理論與技術' 第一章,3-4 頁,北京:科學出版社,2006 年6 月,初版。
23. COMSOL Multiphysics User’sGuide and Modeling Guide
24. J. N. Reddy, An introduction to the finite element method 3rd ed. McGraw-Hill, New York (2006)
25. C. M. Soukoulis (ed.), Photonic Crystals and Light Localization in the 21 st Century (NATO Advanced Study Institute on Photonic Crystals and Light localization).
26. 葉真,”關於左手物質和負折射現象”,物理雙月刊(廿六卷二期)2004年4月
27. 王偉仲,”Acoustic Energy Harvesting by Using Phononic Crystals with a Piezoelectric Beam in the Resonant Cavity”,成功大學機械工程研究所碩士論文
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32418-
dc.description.abstract本研究利用有限元素數值分析和實驗來驗證聲子晶體的負折射現象和濾波波導現象。在負折射部分利用有限元素套裝軟體模擬體聲波通過聲子晶體發生負折射的頻率和角度,並設計一組直徑6mm、填充率0.51,三角晶格排列共20x6的陣列來做模擬與實驗的驗證。而在濾波波導部分則利用聲子晶體內部不同形式的缺陷來討論濾波和波導的效果,首先我們利用有限元素軟體COMSOL計算出聲子晶體的頻溝區段,並在聲子晶體內製造不同的缺陷且分析這些缺陷對於濾波和波傳的影響,並設計一組直徑 6mm、填充率0.46,正方晶格排列之聲子晶體來做模擬與實驗的驗證,利用聲子晶體在以上的這些特性,未來我們可以製作出具有聲源聚焦、濾波和波傳功能…等之聲學元件,讓聲子晶體的應用更為多元。zh_TW
dc.description.abstractIn this study, finite element analysis and experimental verification were employed for the negative refraction, filtering and waveguide phenomenon in phononic crystals. The software COMSOL with bulk acoustic wave propagates through the phononic crystal was used to find out the frequency and incident angle for the occurrence of negative refraction.. A physical array of 20 x 6 triangular lattice, fill factor 0.51 , and 6mm diameter for each singular pillar was designed for experimental validation. The effectiveness of filtering and waveguide was investigated by using various forms of defects in phononic crystal.. First of all, we use COMSOL to calculate the band gap of the phononic crystals and analyze different types of defect in phononic crystals for the impact of filtering and wave propagation. A physical array of square lattice, fill factor 0.46 , and 6mm diameter for each singular pillar was designed for experimental validation.en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:48:11Z (GMT). No. of bitstreams: 1
ntu-100-R98525067-1.pdf: 4219507 bytes, checksum: 818bf0fabd81c97ed431f57b1f6c0871 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents目錄
摘要 Ⅰ
Abstrct Ⅱ
目錄 Ⅲ
表目錄 Ⅴ
圖目錄 Ⅵ
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-2-1 聲子晶體負折射現象 2
1-2-2 共振腔波導 3
1-3 本文結構簡介 4
第二章 理論基礎 7
2-1 平面波在流體中的波動方程 7
2-2 聲子晶體 9
2-3 有限元素法 10
第三章 聲子晶體負折射現象 17
3-1 前言 17
3-2 負折射折射角種類與判斷 17
3-3 負折射模擬參數 18
3-4 負折射模擬結果 20
3-4-1 入射角15度 20
3-4-2 入射角30度 21
3-4-3 入射角45度 22
3-5 實驗架構與方法 22
3-6 模擬與實驗結果比對 24
3-6-1 入射角15度 24
3-6-2 入射角30度 25
3-6-3 入射角45度 26
3-7 模擬與實驗誤差討論 27
第四章 聲子晶體共振腔波導 41
4-1 前言 41
4-2 共振腔波導模擬參數 41
4-3 聲子晶體局部缺線分析 43
4-3-1 前言 43
4-3-2 聲子晶體頻溝計算 43
4-3-3 聲子晶體線缺陷共振腔 44
4-3-4 聲子晶體點缺陷共振腔 45
4-4 共振腔波導模擬與分析 47
4-4-1 前言 47
4-4-2 L形波導 48
4-4-3 雙L形波導 49
4-5 實驗結果討論 50
第五章 結論 78
參考文獻 79
dc.language.isozh-TW
dc.subject波導zh_TW
dc.subject共振腔zh_TW
dc.subject負折射zh_TW
dc.subject聲子晶體zh_TW
dc.subjectwaveguideen
dc.subjectnegative refractionen
dc.subjectphononic crystalsen
dc.subjectresonant cavityen
dc.title利用聲子晶體探討共振腔波導與負折射現象zh_TW
dc.titleResonant Cavity Waveguide and Negative Refraction by Phononic Crystalen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃維信,羅如燕,黃智勇
dc.subject.keyword聲子晶體,負折射,共振腔,波導,zh_TW
dc.subject.keywordphononic crystals,negative refraction,resonant cavity,waveguide,en
dc.relation.page81
dc.rights.note有償授權
dc.date.accepted2011-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
4.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved