請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32353
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳昭瑩(Chao-Ying Chen) | |
dc.contributor.author | Hsien-Chieh Peng | en |
dc.contributor.author | 彭宣傑 | zh_TW |
dc.date.accessioned | 2021-06-13T03:44:26Z | - |
dc.date.available | 2011-07-27 | |
dc.date.copyright | 2006-07-27 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-26 | |
dc.identifier.citation | 吳詩敏. 2006. 葵百合LsGRP1及其同源基因之研究. 國立台灣大學植物病理與微生物學系碩士論文.台灣.台北.79頁。
黃祥恩. 1997. 水楊酸誘導百合系統性抗灰黴病之研究. 國立台灣大學植物病理學研究所碩士論文. 台灣. 台北. 66頁。 路幼妍. 2003. 葵百合誘導抗病性之研究. 國立台灣大學植物病理學研究所博士論文. 台灣. 台北. 115頁。 廖惠玲. 2000. 台灣植物癌腫病之PCR 鑑定及檢測. 國立台灣大學植物病理學研究所碩士論文. 台灣. 台北. 106頁。 Baulcombe, D. 2004. RNA silencing in plants. Nature 431: 356-363. Condit, C. M., McLean, B. G., and Meagher, R.B. 1990. Characterization of the expression of the petunia glycine-rich protein-1 gene product. Plant Physiol. 93:596-602. Cornels, H., Ichinose, Y., and Barz, W. 2000. Characterization of cDNAs encoding two glycine-rich proteins in chickpea (Cicer arietinum L.): accumulation in response to fungal infection and other stress factors. Plant Sci. 154:83-88. de Oliveira, D.E., Franco, L.O., Simoens, C., Seurinck, J., Coppieters, J., Botterman, J., and Van Montagu, M. 1993. Inflorescence-specific genes from Arabidopsis thaliana encoding glycine-rich proteins. Plant J. 3:495-507. Derks, A.F.L.M. 1995. Bulbs and corm crops. In: Loebenstein, G., Lawson, R.H., Brunt, A.A. (Eds.), Virus and Virus-like Diseases of Bulbs and Flower Crops. John Wiley and Sons, New York, pp. 541. Dykxhoorn, D., M., Novina, C., D., and Sharp, P., A. 2003. Killing the messenger:short RNAs that silence gene expression. Nature Rev. 4:457-467. Fusaro, A., Mangeon, A., Junqueira, R. M., Rocha, C. A. B., Coutinho, T. C., Margis, R., and Sachetto-Martins, G. 2001. Classification, expression pattern and comparative analysis of sugarcane expressedsequences tags (ESTs) encoding glycine-rich proteins (GRPs). Genet. Mol. Biol. 24:263-273. Gorlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Beckhove, U., Kogel, K., H., Oostendorp, M., Staub, T., Ward, E., Kessmann, H., and Ryals, J. 1996. Benzothiadiazole, a novel class of inducers of systemic acquired resistance,activates gene expression and disease resistance in wheat. Plant Cell 8:629-643. Hamilton, A., Voinnet, O., Louise, C., and Baulcombe, D. 2002. Two classes of short interfering RNA in RNA silencing. EMBO J. 21:4671-4679. Hamilton, A. J. and Baulcombe, D. C. 1999. A species of small antisense RNA in post-transcriptional gene silencing in plant. Science 286:950-952. Heath J. D., Boulton, M. I., Raineri, D. M., Doty, S. L., Mushegian, A. R., Charles, T. C., Davies, J.W., and Nester, E.W. 1997. Discrete regions of the sensor protein virA determine the strain-specific ability of Agrobacterium to agroinfect maize. Mol. Plant-Microbe Interact. 10:221-227. Hood, E., E., Helmer, G., L., Fraley, R., T., and Chiltom, M., D. 1986. The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. Bacteriol. J. 168:1291-1301. Hoshi Y., Kondo M., Mori, S., Adachi, Y., Nakano, M., and Kobayashi, H. 2004. Production of transgenic lily plants by Agrobacterium-mediated transformation. Plant Cell Rep. 22:359–364. Hsieh, T., F. and Huang, J., W., 1998. Factors affection disease development of Botrytis leaf blight of lily caused by Botrytis elliptica. Plant Prot. Bull. 40:227-240. Janssen, B. J. and Gardner, R. C. 1990. Localized transient expression of GUS in leaf discs following cocultivation with Agrobacterium. Plant Mol. Biol. 14:61-72. Joh, L., D., Wroblewski, T., Ewing, N., N., and Vander-Gheynst, J., S. 2005. High level transient expression of recombinant protein in lettuce. Biotechol. Bioeng. 91: 861-871. Joh, L., D., McDonald, K., A., and Vander-Gheynst, J. S. 2006. Evaluating extraction and storage of a recombinant protein produced in agroinfiltrated lettuce. Biotechnol. Prog. 22: 723-730. Kapila, J., Rycke, R., D., Montagu, M., V., and Angenon, G. 1997. An Agrobacterium -mediated transient gene expression system for intact leaves. Plant Sci. 122:101-108. Kapulnik, Y., Yalpani, N., and Raskin, I. 1992. Salicylic acid induces cyanide -resistant respiration in tobacco cell-suspension cultures. Plant Physiol. 100: 1921-1926. Keller, B., Sauer, N., and Lamb, C.J. 1988. Glycine-rich cell wall proteins in bean: gene structure and association of the protein with the vascular system. EMBO J. 7:3625-3633. Kessmann, H., Staub, T., Hofmann, C., Maetzke, T., Herzog, J., Ward, E., Uknes, S., and Ryals, J. 1994. Induced of systemic acuired disease resistance in plant by chemical. Annu. Rev. Phytopathol. 32:439-459. Khurana, J., Chugh, A., and Khurana, P. 2004. Regeneration from mature and immature embryos and transient gene expression via Agrobacterium-mediated transformation in emmer wheat (Triticum dicoccum Schuble). Indian J Exp. Biol. 40: 1295-1303. Kopertekh, L. and Schiemann, J. 2005. Agroinfiltration as a tool for transient expression of cre recombinase in vivo. Transgenic Res. 14:793-798. Koscianska, E., Kalantidis, K., Krzysztof, W., Sadowski, J., and Tabler, M. 2005. Analysis of RNA silencing in agroinfiltrated leaves of Nicotiana benthamiana and Nicotiana tabacum. Plant Mol. Biol. 59: 647-661. Mousavi, A. and Hotta, Y. 2005. Glycine-rich proteins: a class of novel proteins. Appl. Biochem. Biotechnol. 120:169-174. Molina, A., Mena, M., Carbonero, P., and Garcia-Olmedo, F. 1997. Differential expression of pathogen-responsive genes encoding two types of glycine-rich proteins in barley. Plant Mol. Biol. 33:803-810. Muller, A. J., Mendel, R. R., Schiemann, J., Simoens, C., and Inze, D. 1987. High meiotic stability of a foreign gene introduced into tobacco by Agrobacterium -mediated transformation. : Mol. Gen. Genet. 207: 171-175. Naylor, M., Murphy, A., M., Berry, J. O., and Carr, J. P. 1998. Salicylic acid can induce resistance to plant virus movement. Mol. Plant-Microbe Interact. 11:860-868. Orzaez, D., Mirabel, S., Wieland, W., H., and Granell, A. 2006. Agroinjection of tomato fruits. a tool for rapid functional analysis of transgenes directly in fruit. Plant Physiol. 140: 3-11. Palva, T. K., Hurtig, M., Saindrenan, P., and Palva, E. T. 1994. Salicylic acid induced resistance to Erwinia carotovora subsp. carotovora in tobacco. Mol. Plant-Microbe Interact. 7:356-363. Rachmawati, D., Hosaka, T., Inoue, E., and Anzai, H. 2004. Agrobacterium-mediated transformation of javanica rice cv. rojolele. Biosci. Biotechnol. Biochem. 68: 1193–1200. Rasmussen, J. B., Hammerschmidt, R., and Zook, M. N. 1991. Systemic induction of salicylic acid accumlation in cucumber after inoculation with Pseudomonas syringae pv. syringae. Plant Physiol. 97:1342-1347. Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.Y., and Hunt, M.D. 1996. Systemic acquired resistance. Plant Cell 8:1809-1819. Ryser, U. 2003. Protoxylem: the deposition of a network containing glycine-rich cell wall proteins starts in the cell corners in close association with the pectins of the middle lamella. Planta 216:854-864. Sachetto-Martins, G., Franco, L.O., and de Oliveira, D.E. 2000. Plant glycine-rich proteins: a family or just proteins with a common motif? Biochim. Biophys. Acta 1492:1-14. Schob, H., Kunz, C., and Meins, F. 1997. Silencing of transgenes introduced into leaves by agroinfiltration: a simple, rapid method for investigating sequence requirements for gene silencing. Mol. Gen. Genet. 256:581-585. Smart, L. B., Cameron1, K. D., and Bennett, A. B. 2000. Isolation of genes predominantly expressed in guard cells and epidermal cells of Nicotiana glauca. Plant Mol. Bio. 42: 857-869. Sticher, L., Mauch-Mani, B., and MetrauX, J. P. 1997. systemic acquired resistance. Annu. Rev. Phytopathol. 35:235-270. Ueki, S. and Citovsky, V. 2002. The systemic movement of a tobamovirus is inhibited by a cadmiumion-induced glycine-rich protein. Nature 4: 478-485. Vaucheret, H. and Fagard, M. 2001. Transcriptional gene silencing in plants: target, inducers and regulators. Trends Genet. 17:29-35. Vaucheret, H., Beclin, C., and Fagard, M. 2001. Post-transcriptional gene silencing in plants. J. Cell Sci. 114:3083-3091. Vernooij, B., Friedrich, L., Goy, P. A., Staub, T., Kessmann, H., and Ryals, J. 1995. 2,6-Dichloroisonicotinic acid-induced resistance to pathogens without the accumlation of Salicylic acid. Mol. Plant-Microbe Interact. 8:228-234. Wang, M. B. and Waterhouse, P. M. 2001. Application of gene silencing in plants. Plant Biol. 5:146-150. Yang, E. J., Oh, Y. A., Lee E. S., Park, A. R., Cho, S. K., Yoo, Y. J., and Park, O. K. 2003. Oxygen-evolving enhancer protein 2 is phosphorylated by glycine-rich protein 3/wall-associated kinase 1 in Arabidopsis. 2003. Biochem. Biophysi. Res. 305: 862-868. Ye, Z.H. and Varner, J.E. 1991. Tissue-specific expression of cell wall proteins in developing soybean tissues. Plant Cell 3:23-37. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32353 | - |
dc.description.abstract | 百合為無皮鱗莖類球根花卉,以灰黴病為其主要真菌性病害,病原菌為Botrytis elliptica。本實驗室發現以水楊酸誘導處理可以有效地增加東方型葵百合之抗病性,進而由差異性表現分析篩選出一cDNA片段,其全長cDNA (LsGRP1) 解碼一富含甘胺酸蛋白質;北方雜合分析顯示LsGRP1可於水楊酸誘導下增量表現。本論文擬於水楊酸誘導下,利用農桿菌注入法 (agroinfiltration), 使LsGRP1轉基因於葵百合葉片短暫表現 (transient expression) 及病原菌接種試驗,探討LsGRP1與水楊酸誘導抗病之相關性。首先以北方雜合分析觀察LsGRP1正股轉基因在農桿菌注入葵百合葉片6-120小時之表現,結果指出LsGRP1轉基因可於農桿菌注入後 72 小時有增強之偵測訊號,於 96 小時有明顯之表現。當以水楊酸澆灌處理葵百合根圈同時於葉片注入農桿菌菌株,三天後接種灰黴病菌,表現LsGRP1正股、反股及髮夾構型轉基因之葉片,LsGRP1訊息核酸量均較對照組少,病斑數目則較對照組多,顯示此三種構築對原有LsGRP1之誘導表現有基因靜默之作用,使葵百合對灰黴病之抗性減弱,故認為LsGRP1在水楊酸誘導之抗病性中扮演一重要的角色。 | zh_TW |
dc.description.abstract | Lilium is a bulbous crop, severely affected by a major fungal disease, gray mold, caused by Botrytis elliptica. As know, development of necrotic lesions in the leaves of Oriental lily cultivar Star Gazer could be suppressed by the application of salicylic acid (SA). A cDNA sequence, named LsGRP1, coding for a 138-amino acid protein has been identified via suppression subtractive hybridization and differential screening. When the lily plants were treated with SA solution, the amount of LsGRP1 transcript analyzed by Northern blot hybridization increased. In the study of the relatedness between LsGRP1 and salicylic acid-induced disease resistance, agroinfiltration was applied for analysis of LsGRP1 transient expression in the leaves of Lilium cv. Star Gazer. In Northern blot hybridization, LsGRP1 transcript increased 72 hours after agroinfiltration of sense strand LsGRP1–expressing Agrobacterium tumefaciens EHA101 strain and more obviously 96 hours after agroinfiltraion. When the lily plants were treated with SA solution, the amount of LsGRP1 mRNA decreased in ‘Star Gazer’ leaves infiltrated with A. tumefaciens EHA101 strains expressing sense, anti-sense and hairpin LsGRP1, but the lesion numbers increased as compared to that in the control. These results showed that a gene silencing reaction was induced by introducing sense, anti-sense or hairpin LsGRP1, that abated the resistance of ‘Star Gazer’ leaves to gray mold disease. Thus, LsGRP1 playing an important role in salicylic acid-induced disease resistance of lily wasconcluded. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T03:44:26Z (GMT). No. of bitstreams: 1 ntu-95-R92633010-1.pdf: 9409741 bytes, checksum: 4cb7f0810588f57594223509e9c06ccc (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 壹、中文摘要 3
貳、英文摘要 4 參、前言 5 肆、前人研究 7 一、百合 7 二、百合灰黴病 7 三、水楊酸誘導抗病性 8 四、同源性富含甘胺酸蛋白質及 LsGRP1 8 五、基因靜默 9 六、農桿菌注入法(Agroinfiltration) 11 七、單子葉植物之農桿菌介導轉化(Agrobacterium-mediated transformation) 12 伍、材料與方法 13 一、百合植株栽培 13 二、灰黴病菌接種原之製備 13 三、農桿菌載體構築 13 3-1 正股與反股LsGRP1載體構築 13 3-2髮夾型LsGRP1載體構築 14 3-3 β-Glucuronidase ( GUS ) 表現載體構築 14 四、大腸桿菌勝任細胞製備 15 五、大腸桿菌細胞轉形反應 15 六、聚合酵素連鎖反應 16 七、農桿菌電穿孔法(Agrobacterium electroporation) 16 八、農桿菌質體抽取 17 九、農桿菌注入法 17 十、葵百合葉片全RNA之萃取 18 十一、核酸探針之製備 19 十二、北方雜合分析(Northern blot hybridization) 19 十三、β-Glucuronidase ( GUS ) 活性於植物葉片上之檢測 20 十四、葵百合癒傷組織誘導及分化試驗 21 十五、葵百合基因轉殖試驗 21 陸、結果 22 一、LsGRP1農桿菌載體構築 22 1-1 正股與反股LsGRP1 (ssLsGRP1、asLsGRP1)表現載體 22 1-2 Hairpin LsGRP1 (hpLsGRP1) 表現載體 22 1-3 β-Glucuronidase 表現載體構築 22 二、葵百合短暫表現之β-Glucuronidase活性測試 23 三、A. tumefaciens EHA101 轉形株注入葵百合葉片之 LsGRP1 表現時間點測試 23 四、A. tumefaciens EHA101 轉形株注入之葵百合葉片 LsGRP1 表現分析 23 五、A. tumefaciens EHA101 轉形株注入葵百合葉片罹病度分析 24 六、葵百合癒傷組織及細胞分化誘導 24 七、葵百合 LsGRP1 轉型株之建構 25 柒、討 論 26 捌、參考文獻 29 玖、圖表集 35 表一、引子 36 表二、菌株與質體 37 圖一、 p35SNOS-sGRP1, p35SNOS-aGRP1大腸桿菌轉形株質體限制酶切分析 38 圖二、以pBS(35SNOS)表現正股或反股LsGRP1序列之質體 39 圖三、以pCAMBIA1300建構含LsGRP1序列之質體 40 圖四、A. tumefaciens轉形株之PCR產物 41 圖五、LsGRP1-intron之構築策略 42 圖六、建構LsGRP1-intron之PCR產物 43 圖七、pCAMBIA1300上髮夾型LsGRP1之構築 44 圖八、髮夾型LsGRP1之農桿菌轉形株質體檢測 45 圖九、p1300sGRP1及p1300aGRP1之LsGRP1序列 47 圖十、A. tumefaciens EHA101(pCAMBIA1300-GUS)之GUS表現分析 48 圖十一、農桿菌注入葵百合葉片之GUS表現分析 49 圖十二、農桿菌注入葵百合葉片LsGRP1訊息核酸之偵測 50 圖十三、水楊酸處理下A. tumefaciens EHA101 轉形株注入之葵百合葉片LsGRP1表現分析 51 圖十四、水楊酸處理下A. tumefaciens 轉形株注入葵百合葉片之罹病程度 52 圖十五、水楊酸處理下A. tumefaciens 轉形株注入葵百合葉片之罹病反應 53 圖十六、A. tumefaciens 轉形株注入葵百合葉片之抗病性分析 54 圖十七、葵百合癒傷組織及細胞分化誘導 55 拾、附錄 56 | |
dc.language.iso | zh-TW | |
dc.title | 利用農桿菌注入法探討葵百合LsGRP1與水楊酸誘導抗病之相關性 | zh_TW |
dc.title | Study on the relatedness of LsGRP1 to the salicylic acid-induced resistance of Lilium cv. Star Gazer by agroinfiltration | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳文希,賴爾? | |
dc.subject.keyword | 葵百合,LsGRP1,農桿菌注入法,基因靜默,短暫表現, | zh_TW |
dc.subject.keyword | Lilium cv. Star Gazer,LsGRP1,agroinfiltration,gene silencing,transient expression, | en |
dc.relation.page | 59 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-26 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 9.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。