請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32351完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉興華(Shing-Hwa Liu) | |
| dc.contributor.author | Cheng-Tien Wu | en |
| dc.contributor.author | 吳鎮天 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:44:19Z | - |
| dc.date.available | 2012-12-31 | |
| dc.date.copyright | 2011-10-07 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-29 | |
| dc.identifier.citation | [1] Gaut, J. R.; Hendershot, L. M. The modification and assembly of proteins in the
endoplasmic reticulum. Curr Opin Cell Biol 5:589-595; 1993. [2] Ruddock, L. W.; Molinari, M. N-glycan processing in ER quality control. J Cell Sci 119:4373-4380; 2006. [3] Szegezdi, E.; Logue, S. E.; Gorman, A. M.; Samali, A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7:880-885; 2006. [4] Kim, R.; Emi, M.; Tanabe, K.; Murakami, S. Role of the unfolded protein response in cell death. Apoptosis 11:5-13; 2006. [5] Blais, J. D.; Filipenko, V.; Bi, M.; Harding, H. P.; Ron, D.; Koumenis, C.; Wouters, B. G.; Bell, J. C. Activating transcription factor 4 is translationally regulated by hypoxic stress. Mol Cell Biol 24:7469-7482; 2004. [6] Tirasophon, W.; Lee, K.; Callaghan, B.; Welihinda, A.; Kaufman, R. J. The endoribonuclease activity of mammalian IRE1 autoregulates its mRNA and is required for the unfolded protein response. Genes Dev 14:2725-2736; 2000. [7] Nadanaka, S.; Okada, T.; Yoshida, H.; Mori, K. Role of disulfide bridges formed in the luminal domain of ATF6 in sensing endoplasmic reticulum stress. Mol Cell Biol 27:1027-1043; 2007. [8] van Huizen, R.; Martindale, J. L.; Gorospe, M.; Holbrook, N. J. P58IPK, a novel endoplasmic reticulum stress-inducible protein and potential negative regulator of eIF2alpha signaling. J Biol Chem 278:15558-15564; 2003. [9] Lee, A. H.; Iwakoshi, N. N.; Glimcher, L. H. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23:7448-7459; 2003. [10] Sriburi, R.; Bommiasamy, H.; Buldak, G. L.; Robbins, G. R.; Frank, M.; Jackowski, S.; Brewer, J. W. Coordinate regulation of phospholipid biosynthesis and secretory pathway gene expression in XBP-1(S)-induced endoplasmic reticulum biogenesis. J Biol Chem 282:7024-7034; 2007. [11] Hosokawa, N.; Wada, I.; Hasegawa, K.; Yorihuzi, T.; Tremblay, L. O.; Herscovics, A.; Nagata, K. A novel ER alpha-mannosidase-like protein accelerates ER-associated degradation. EMBO Rep 2:415-422; 2001. [12] Yoshida, H.; Matsui, T.; Hosokawa, N.; Kaufman, R. J.; Nagata, K.; Mori, K. A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell 4:265-271; 2003. [13] Kim, D. G.; You, K. R.; Liu, M. J.; Choi, Y. K.; Won, Y. S. GADD153-mediated anticancer effects of N-(4-hydroxyphenyl)retinamide on human hepatoma cells. J Biol Chem 277:38930-38938; 2002. [14] Oyadomari, S.; Mori, M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381-389; 2004. [15] Schroder, M. Endoplasmic reticulum stress responses. Cell Mol Life Sci 65:862-894; 2008. [16] Yoneda, T.; Imaizumi, K.; Oono, K.; Yui, D.; Gomi, F.; Katayama, T.; Tohyama, M. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 276:13935-13940; 2001. [17] Ellgaard, L.; Ruddock, L. W. The human protein disulphide isomerase family: substrate interactions and functional properties. EMBO Rep 6:28-32; 2005. [18] Atwal, R. S.; Truant, R. A stress sensitive ER membrane-association domain in Huntingtin protein defines a potential role for Huntingtin in the regulation of autophagy. Autophagy 4:91-93; 2008. [19] Marciniak, S. J.; Ron, D. Endoplasmic reticulum stress signaling in disease. Physiol Rev 86:1133-1149; 2006. [20] Nagata, T.; Ilieva, H.; Murakami, T.; Shiote, M.; Narai, H.; Ohta, Y.; Hayashi, T.; Shoji, M.; Abe, K. Increased ER stress during motor neuron degeneration in a transgenic mouse model of amyotrophic lateral sclerosis. Neurol Res 29:767-771; 2007. [21] Inagi, R.; Kumagai, T.; Nishi, H.; Kawakami, T.; Miyata, T.; Fujita, T.; Nangaku, M. Preconditioning with endoplasmic reticulum stress ameliorates mesangioproliferative glomerulonephritis. J Am Soc Nephrol 19:915-922; 2008. [22] Tumlin, J.; Stacul, F.; Adam, A.; Becker, C. R.; Davidson, C.; Lameire, N.; McCullough, P. A. Pathophysiology of contrast-induced nephropathy. Am J Cardiol 98:14K-20K; 2006. [23] Goldenberg, I.; Matetzky, S. Nephropathy induced by contrast media: pathogenesis, risk factors and preventive strategies. Cmaj 172:1461-1471; 2005. [24] Itoh, Y.; Yano, T.; Sendo, T.; Oishi, R. Clinical and experimental evidence for prevention of acute renal failure induced by radiographic contrast media. J Pharmacol Sci 97:473-488; 2005. [25] Ledneva, E.; Karie, S.; Launay-Vacher, V.; Janus, N.; Deray, G. Renal safety of gadolinium-based contrast media in patients with chronic renal insufficiency. Radiology 250:618-628; 2009. [26] Yano, T.; Itoh, Y.; Kubota, T.; Sendo, T.; Oishi, R. A prostacyclin analog beraprost sodium attenuates radiocontrast media-induced LLC-PK1 cells injury. Kidney Int 65:1654-1663; 2004. [27] Yano, T.; Itoh, Y.; Kubota, T.; Sendo, T.; Koyama, T.; Fujita, T.; Saeki, K.; Yuo, A.; Oishi, R. A prostacyclin analog prevents radiocontrast nephropathy via phosphorylation of cyclic AMP response element binding protein. Am J Pathol 166:1333-1342; 2005. [28] Xiong, X. L.; Jia, R. H.; Yang, D. P.; Ding, G. H. Irbesartan attenuates contrast media-induced NRK-52E cells apoptosis. Pharmacol Res 54:253-260; 2006. [29] Fung, J. W.; Szeto, C. C.; Chan, W. W.; Kum, L. C.; Chan, A. K.; Wong, J. T.; Wu, E. B.; Yip, G. W.; Chan, J. Y.; Yu, C. M.; Woo, K. S.; Sanderson, J. E. Effect of N-acetylcysteine for prevention of contrast nephropathy in patients with moderate to severe renal insufficiency: a randomized trial. Am J Kidney Dis 43:801-808; 2004. [30] Gill, N. K.; Piccione, E. A.; Vido, D. A.; Clark, B. A.; Shannon, R. P. Gender as a risk factor for contrast nephropathy: effects of hydration and N-acetylcysteine. Clin Cardiol 27:554-558; 2004. [31] Goldenberg, I.; Shechter, M.; Matetzky, S.; Jonas, M.; Adam, M.; Pres, H.; Elian, D.; Agranat, O.; Schwammenthal, E.; Guetta, V. Oral acetylcysteine as an adjunct to saline hydration for the prevention of contrast-induced nephropathy following coronary angiography. A randomized controlled trial and review of the current literature. Eur Heart J 25:212-218; 2004. [32] Zager, R. A.; Johnson, A. C.; Hanson, S. Y. Radiographic contrast media-induced tubular injury: evaluation of oxidant stress and plasma membrane integrity. Kidney Int 64:128-139; 2003. [33] Bakris, G. L.; Burnett, J. C., Jr. A role for calcium in radiocontrast-induced reductions in renal hemodynamics. Kidney Int 27:465-468; 1985. [34] Hizoh, I.; Haller, C. Radiocontrast-induced renal tubular cell apoptosis: hypertonic versus oxidative stress. Invest Radiol 37:428-434; 2002. [35] Pabla, N.; Dong, Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73:994-1007; 2008. [36] Hanigan, M. H.; Devarajan, P. Cisplatin nephrotoxicity: molecular mechanisms. Cancer Ther 1:47-61; 2003. [37] Yao, X.; Panichpisal, K.; Kurtzman, N.; Nugent, K. Cisplatin nephrotoxicity: a review. Am J Med Sci 334:115-124; 2007. [38] Chirino, Y. I.; Pedraza-Chaverri, J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol 61:223-242; 2009. [39] Davis, C. A.; Nick, H. S.; Agarwal, A. Manganese superoxide dismutase attenuates Cisplatin-induced renal injury: importance of superoxide. J Am Soc Nephrol 12:2683-2690; 2001. [40] Liu, H.; Baliga, R. Cytochrome P450 2E1 null mice provide novel protection against cisplatin-induced nephrotoxicity and apoptosis. Kidney Int 63:1687-1696; 2003. [41] Liu, H.; Baliga, R. Endoplasmic reticulum stress-associated caspase 12 mediates cisplatin-induced LLC-PK1 cell apoptosis. J Am Soc Nephrol 16:1985-1992; 2005. [42] Peyrou, M.; Hanna, P. E.; Cribb, A. E. Cisplatin, gentamicin, and p-aminophenol induce markers of endoplasmic reticulum stress in the rat kidneys. Toxicol Sci 99:346-353; 2007. [43] Boyce, M.; Bryant, K. F.; Jousse, C.; Long, K.; Harding, H. P.; Scheuner, D.; Kaufman, R. J.; Ma, D.; Coen, D. M.; Ron, D.; Yuan, J. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307:935-939; 2005. [44] Schewe, D. M.; Aguirre-Ghiso, J. A. Inhibition of eIF2alpha dephosphorylation maximizes bortezomib efficiency and eliminates quiescent multiple myeloma cells surviving proteasome inhibitor therapy. Cancer Res 69:1545-1552; 2009. [45] Lewerenz, J.; Maher, P. Basal levels of eIF2alpha phosphorylation determine cellular antioxidant status by regulating ATF4 and xCT expression. J Biol Chem 284:1106-1115; 2009. [46] Wu, C. T.; Sheu, M. L.; Tsai, K. S.; Weng, T. I.; Chiang, C. K.; Liu, S. H. The role of endoplasmic reticulum stress-related unfolded protein response in the radiocontrast medium-induced renal tubular cell injury. Toxicol Sci 114:295-301; 2010. [47] Kern, J. C.; Kehrer, J. P. Acrolein-induced cell death: a caspase-influenced decision between apoptosis and oncosis/necrosis. Chem Biol Interact 139:79-95; 2002. [48] Ohse, T.; Inagi, R.; Tanaka, T.; Ota, T.; Miyata, T.; Kojima, I.; Ingelfinger, J. R.; Ogawa, S.; Fujita, T.; Nangaku, M. Albumin induces endoplasmic reticulum stress and apoptosis in renal proximal tubular cells. Kidney Int 70:1447-1455; 2006. [49] Suzuki, T.; Lu, J.; Zahed, M.; Kita, K.; Suzuki, N. Reduction of GRP78 expression with siRNA activates unfolded protein response leading to apoptosis in HeLa cells. Arch Biochem Biophys 468:1-14; 2007. [50] Agmon, Y.; Peleg, H.; Greenfeld, Z.; Rosen, S.; Brezis, M. Nitric oxide and prostanoids protect the renal outer medulla from radiocontrast toxicity in the rat. J Clin Invest 94:1069-1075; 1994. [51] Goldfarb, M.; Rosenberger, C.; Ahuva, S.; Rosen, S.; Heyman, S. N. A role for erythropoietin in the attenuation of radiocontrast-induced acute renal failure in rats. Ren Fail 28:345-350; 2006. [52] Yokomaku, Y.; Sugimoto, T.; Kume, S.; Araki, S.; Isshiki, K.; Chin-Kanasaki, M.; Sakaguchi, M.; Nitta, N.; Haneda, M.; Koya, D.; Uzu, T.; Kashiwagi, A. Asialoerythropoietin prevents contrast-induced nephropathy. J Am Soc Nephrol 19:321-328; 2008. [53] Sokka, A. L.; Putkonen, N.; Mudo, G.; Pryazhnikov, E.; Reijonen, S.; Khiroug, L.; Belluardo, N.; Lindholm, D.; Korhonen, L. Endoplasmic reticulum stress inhibition protects against excitotoxic neuronal injury in the rat brain. J Neurosci 27:901-908; 2007. [54] Bi, B.; Schmitt, R.; Israilova, M.; Nishio, H.; Cantley, L. G. Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol 18:2486-2496; 2007. [55] Pallet, N.; Bouvier, N.; Bendjallabah, A.; Rabant, M.; Flinois, J. P.; Hertig, A.; Legendre, C.; Beaune, P.; Thervet, E.; Anglicheau, D. Cyclosporine-induced endoplasmic reticulum stress triggers tubular phenotypic changes and death. Am J Transplant 8:2283-2296; 2008. [56] Weidemann, A.; Bernhardt, W. M.; Klanke, B.; Daniel, C.; Buchholz, B.; Campean, V.; Amann, K.; Warnecke, C.; Wiesener, M. S.; Eckardt, K. U.; Willam, C. HIF activation protects from acute kidney injury. J Am Soc Nephrol 19:486-494; 2008. [57] Chiang, C. K.; Sheu, M. L.; Hung, K. Y.; Wu, K. D.; Liu, S. H. Honokiol, a small molecular weight natural product, alleviates experimental mesangial proliferative glomerulonephritis. Kidney Int 70:682-689; 2006. [58] Bertolotti, A.; Zhang, Y.; Hendershot, L. M.; Harding, H. P.; Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2:326-332; 2000. [59] Fels, D. R.; Koumenis, C. The PERK/eIF2alpha/ATF4 module of the UPR in hypoxia resistance and tumor growth. Cancer Biol Ther 5:723-728; 2006. [60] Vaidya, V. S.; Ferguson, M. A.; Bonventre, J. V. Biomarkers of acute kidney injury. Annu Rev Pharmacol Toxicol 48:463-493; 2008. [61] Haller, C.; Hizoh, I. The cytotoxicity of iodinated radiocontrast agents on renal cells in vitro. Invest Radiol 39:149-154; 2004. [62] Rauschert, N.; Brandlein, S.; Holzinger, E.; Hensel, F.; Muller-Hermelink, H. K.; Vollmers, H. P. A new tumor-specific variant of GRP78 as target for antibody-based therapy. Lab Invest 88:375-386; 2008. [63] Prachasilchai, W.; Sonoda, H.; Yokota-Ikeda, N.; Oshikawa, S.; Aikawa, C.; Uchida, K.; Ito, K.; Kudo, T.; Imaizumi, K.; Ikeda, M. A protective role of unfolded protein response in mouse ischemic acute kidney injury. Eur J Pharmacol 592:138-145; 2008. [64] Fu, H. Y.; Minamino, T.; Tsukamoto, O.; Sawada, T.; Asai, M.; Kato, H.; Asano, Y.; Fujita, M.; Takashima, S.; Hori, M.; Kitakaze, M. Overexpression of endoplasmic reticulum-resident chaperone attenuates cardiomyocyte death induced by proteasome inhibition. Cardiovasc Res 79:600-610; 2008. [65] Drager, L. F.; Andrade, L.; Barros de Toledo, J. F.; Laurindo, F. R.; Machado Cesar, L. A.; Seguro, A. C. Renal effects of N-acetylcysteine in patients at risk for contrast nephropathy: decrease in oxidant stress-mediated renal tubular injury. Nephrol Dial Transplant 19:1803-1807; 2004. [66] Itoh, Y.; Yano, T.; Sendo, T.; Sueyasu, M.; Hirano, K.; Kanaide, H.; Oishi, R. Involvement of de novo ceramide synthesis in radiocontrast-induced renal tubular cell injury. Kidney Int 69:288-297; 2006. [67] Yano, T.; Itoh, Y.; Sendo, T.; Kubota, T.; Oishi, R. Cyclic AMP reverses radiocontrast media-induced apoptosis in LLC-PK1 cells by activating A kinase/PI3 kinase. Kidney Int 64:2052-2063; 2003. [68] Romano, G.; Briguori, C.; Quintavalle, C.; Zanca, C.; Rivera, N. V.; Colombo, A.; Condorelli, G. Contrast agents and renal cell apoptosis. Eur Heart J 29:2569-2576; 2008. [69] Hitomi, J.; Katayama, T.; Taniguchi, M.; Honda, A.; Imaizumi, K.; Tohyama, M. Apoptosis induced by endoplasmic reticulum stress depends on activation of caspase-3 via caspase-12. Neurosci Lett 357:127-130; 2004. [70] Larner, S. F.; Hayes, R. L.; Wang, K. K. Unfolded protein response after neurotrauma. J Neurotrauma 23:807-829; 2006. [71] Kshirsagar, A. V.; Poole, C.; Mottl, A.; Shoham, D.; Franceschini, N.; Tudor, G.; Agrawal, M.; Denu-Ciocca, C.; Magnus Ohman, E.; Finn, W. F. N-acetylcysteine for the prevention of radiocontrast induced nephropathy: a meta-analysis of prospective controlled trials. J Am Soc Nephrol 15:761-769; 2004. [72] Halliday, G. M.; Pond, S. M.; Cartwright, H.; McRitchie, D. A.; Castagnoli, N., Jr.; Van der Schyf, C. J. Clinical and neuropathological abnormalities in baboons treated with HPTP, the tetrahydropyridine analog of haloperidol. Exp Neurol 158:155-163; 1999. [73] Arjona, D.; Rey, J. A.; Taylor, S. M. Early genetic changes involved in low-grade astrocytic tumor development. Curr Mol Med 6:645-650; 2006. [74] Luo, S.; Mao, C.; Lee, B.; Lee, A. S. GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Mol Cell Biol 26:5688-5697; 2006. [75] Dong, D.; Ni, M.; Li, J.; Xiong, S.; Ye, W.; Virrey, J. J.; Mao, C.; Ye, R.; Wang, M.; Pen, L.; Dubeau, L.; Groshen, S.; Hofman, F. M.; Lee, A. S. Critical role of the stress chaperone GRP78/BiP in tumor proliferation, survival, and tumor angiogenesis in transgene-induced mammary tumor development. Cancer Res 68:498-505; 2008. [76] Wek, R. C.; Jiang, H. Y.; Anthony, T. G. Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34:7-11; 2006. [77] Brewer, J. W.; Hendershot, L. M.; Sherr, C. J.; Diehl, J. A. Mammalian unfolded protein response inhibits cyclin D1 translation and cell-cycle progression. Proc Natl Acad Sci U S A 96:8505-8510; 1999. [78] Hamanaka, R. B.; Bennett, B. S.; Cullinan, S. B.; Diehl, J. A. PERK and GCN2 contribute to eIF2alpha phosphorylation and cell cycle arrest after activation of the unfolded protein response pathway. Mol Biol Cell 16:5493-5501; 2005. [79] Schroder, M.; Kaufman, R. J. The mammalian unfolded protein response. Annu Rev Biochem 74:739-789; 2005. [80] Yung, H. W.; Calabrese, S.; Hynx, D.; Hemmings, B. A.; Cetin, I.; Charnock-Jones, D. S.; Burton, G. J. Evidence of placental translation inhibition and endoplasmic reticulum stress in the etiology of human intrauterine growth restriction. Am J Pathol 173:451-462; 2008. [81] Reijonen, S.; Putkonen, N.; Norremolle, A.; Lindholm, D.; Korhonen, L. Inhibition of endoplasmic reticulum stress counteracts neuronal cell death and protein aggregation caused by N-terminal mutant huntingtin proteins. Exp Cell Res 314:950-960; 2008. [82] Kessel, D. Protection of Bcl-2 by salubrinal. dhkessel@med.wayne.edu. Biochem Biophys Res Commun 346:1320-1323; 2006. [83] Rabik, C. A.; Fishel, M. L.; Holleran, J. L.; Kasza, K.; Kelley, M. R.; Egorin, M. J.; Dolan, M. E. Enhancement of cisplatin [cis-diammine dichloroplatinum (II)] cytotoxicity by O6-benzylguanine involves endoplasmic reticulum stress. J Pharmacol Exp Ther 327:442-452; 2008. [84] Suzuki, M.; Endo, M.; Shinohara, F.; Echigo, S.; Rikiishi, H. Enhancement of cisplatin cytotoxicity by SAHA involves endoplasmic reticulum stress-mediated apoptosis in oral squamous cell carcinoma cells. Cancer Chemother Pharmacol 64:1115-1122; 2009. [85] Cnop, M.; Ladriere, L.; Hekerman, P.; Ortis, F.; Cardozo, A. K.; Dogusan, Z.; Flamez, D.; Boyce, M.; Yuan, J.; Eizirik, D. L. Selective inhibition of eukaryotic translation initiation factor 2 alpha dephosphorylation potentiates fatty acid-induced endoplasmic reticulum stress and causes pancreatic beta-cell dysfunction and apoptosis. J Biol Chem 282:3989-3997; 2007. [86] Ladriere, L.; Igoillo-Esteve, M.; Cunha, D. A.; Brion, J. P.; Bugliani, M.; Marchetti, P.; Eizirik, D. L.; Cnop, M. Enhanced signaling downstream of ribonucleic Acid-activated protein kinase-like endoplasmic reticulum kinase potentiates lipotoxic endoplasmic reticulum stress in human islets. J Clin Endocrinol Metab 95:1442-1449; 2010. [87] Drexler, H. C. Synergistic apoptosis induction in leukemic cells by the phosphatase inhibitor salubrinal and proteasome inhibitors. PLoS One 4:e4161; 2009. [88] Cribb, A. E.; Peyrou, M.; Muruganandan, S.; Schneider, L. The endoplasmic reticulum in xenobiotic toxicity. Drug Metab Rev 37:405-442; 2005. [89] Inagi, R. Endoplasmic reticulum stress as a progression factor for kidney injury. Curr Opin Pharmacol 10:156-165; 2010. [90] Peyrou, M.; Cribb, A. E. Effect of endoplasmic reticulum stress preconditioning on cytotoxicity of clinically relevant nephrotoxins in renal cell lines. Toxicol In Vitro 21:878-886; 2007. [91] Pourahmad, J.; Hosseini, M. J.; Eskandari, M. R.; Shekarabi, S. M.; Daraei, B. Mitochondrial/lysosomal toxic cross-talk plays a key role in cisplatin nephrotoxicity. Xenobiotica 40:763-771; 2010. [92] Baliga, R.; Ueda, N.; Walker, P. D.; Shah, S. V. Oxidant mechanisms in toxic acute renal failure. Drug Metab Rev 31:971-997; 1999. [93] Taguchi, T.; Nazneen, A.; Abid, M. R.; Razzaque, M. S. Cisplatin-associated nephrotoxicity and pathological events. Contrib Nephrol 148:107-121; 2005. [94] Abdelrahman, A. M.; Al Salam, S.; AlMahruqi, A. S.; Al husseni, I. S.; Mansour, M. A.; Ali, B. H. N-acetylcysteine improves renal hemodynamics in rats with cisplatin-induced nephrotoxicity. J Appl Toxicol 30:15-21; 2010. [95] Jiang, M.; Wei, Q.; Pabla, N.; Dong, G.; Wang, C. Y.; Yang, T.; Smith, S. B.; Dong, Z. Effects of hydroxyl radical scavenging on cisplatin-induced p53 activation, tubular cell apoptosis and nephrotoxicity. Biochem Pharmacol 73:1499-1510; 2007. [96] Luo, J.; Tsuji, T.; Yasuda, H.; Sun, Y.; Fujigaki, Y.; Hishida, A. The molecular mechanisms of the attenuation of cisplatin-induced acute renal failure by N-acetylcysteine in rats. Nephrol Dial Transplant 23:2198-2205; 2008. [97] Jia, Z.; Wang, N.; Aoyagi, T.; Wang, H.; Liu, H.; Yang, T. Amelioration of cisplatin nephrotoxicity by genetic or pharmacologic blockade of prostaglandin synthesis. Kidney Int 79:77-88. [98] Kim, H. J.; Lee, J. H.; Kim, S. J.; Oh, G. S.; Moon, H. D.; Kwon, K. B.; Park, C.; Park, B. H.; Lee, H. K.; Chung, S. Y.; Park, R.; So, H. S. Roles of NADPH oxidases in cisplatin-induced reactive oxygen species generation and ototoxicity. J Neurosci 30:3933-3946. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32351 | - |
| dc.description.abstract | 內質網壓力 (Endoplasmic Reticulum Stress, ER stress) 為細胞受到外在壓力時所產生的訊息反應,與很多疾病的產生有關如:神經退化疾病、糖尿病、缺血再灌流反應及急性腎衰竭等等。目前有越來越多的文獻指出內質網壓力訊息會參與在化學物質引起的腎臟傷害過程中,但其作用機轉並不清楚。會造成腎傷害的毒性化學物質很多如:顯影劑(Contrast medium),主要作用在腎臟近曲小管部位,會引發急性腎衰竭使腎臟過濾能力降低,尤其對腎功能已受損的病患(如糖尿病患者、慢性腎臟病變病人或需洗腎的病患)傷害更為明顯。亦如帝鉑注射液 (Cisplatin),本身為廣泛使用的抗癌藥物可以有效的治療睪丸癌、卵巢癌、膀胱癌及頭頸癌等癌症,但對腎臟卻有嚴重的副作用,易造成腎小管細胞凋亡且有產生急性腎衰竭的可能性。這樣的傷害除了透過氧化壓力 (oxidative stress)、細胞循環 (cell cycle) 調控失衡外,許多文獻認為內質網壓力訊息改變可能也參與腎臟傷害。因此本實驗將探討內質網壓力參與在腎臟毒性中的機轉。
實驗結果顯示在細胞實驗中處裡40-60 mg I/ml 的顯影劑後會促進 GRP78, GRP94 表現及Caspase 12 cleaved,同時以GRP78 SiRNA 轉染實驗發現GRP78表現扮演著保護的角色。而在PERK-eIF2α路徑中PERK和eIF2α會被磷酸化,利用eIF2α去磷酸化酶抑制劑salubrinal 則會減少細胞凋亡的產生。雖然salubrinal 在細胞實驗中可以保護顯影劑對近曲小管細胞的傷害。但在動物實驗中是否仍有療效在未來則要進一步加以探討。而在帝鉑注射液 (cisplatin) 的細胞實驗中亦發現salubrinal 可以保護細胞凋亡的生成。但在進行動物實驗後卻意外發現salubrinal 會增加帝鉑注射液所誘發的血中 尿素氮 (BUN) 和血清肌酸酐 (Creatinine) 的比例。腎臟傷害指標kidneyinjury marker (kim-1) 也會增加。病理切片上則發現salubrinal 會使腎小管壞疽細胞及空泡狀細胞增加、刷狀緣掉落、呈扁平狀的情形增,且細胞凋亡螢光染色 (TUNEL, fluorescence stain) 也有增加的情況。在帝鉑注射液造成腎臟傷害的過程中以西方點墨法檢測發現ER stress 相關之peIF2α、ATF4、CHOP、aspase cascade 等訊息有增加的情形。接著以MDA 檢測腎臟中產生脂質過氧化 (lipidperoxidation) 的現象發現ROS 可能扮演著很重要的角 色。此外並非透過CYP2E1 的影響而是透過 NOX4 的表現增加而促進 ROS 的生成,並進一步加強帝鉑注射液造成的腎臟傷害。綜合上述我們發現顯影劑無論在動物或細胞實驗中皆可誘發內質網壓力相關訊息產生。同時在細胞實驗中,以內質網壓力修飾試劑salubrinal 處裡後發現其具有保護腎臟傷害的作用。但在順鉑注射液處裡的動物模式中salubrinal 卻沒有防止細胞凋亡達到保護腎臟的能力。在未來我們還需要再透過修飾不同內質網壓力的調控路徑去減少臨床化學藥物對腎臟傷害的目的。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:44:19Z (GMT). No. of bitstreams: 1 ntu-100-D94447001-1.pdf: 1355367 bytes, checksum: f363d24f1dc175ed1aa8da82ee7bab03 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員審定書 …………………………………………………. I
誌謝 ………………………………………………………………. II 中文摘要 …………………………………………………………. III Abstract …………………………………………………………… V List of Abbreviation ………………………………………………VII I. Introduction …………………………………………………….. 1 1.1 Endoplasmic Reticulum Stress Related Signals and Disorder 1 1.2 Chemicals-Induced Nephrotoxicity and Endoplasmic Reticulum Stress Signals……………………………………………………. 3 1.2.1 Contrast medium-induced renal injury……………………………... 3 1.2.2 Anti-cancer agent, cisplatin, induced renal toxicity………………… 4 1.2.3 The roles of ER stress protection agents……………………………... 5 1.3 The Aims of This Study………………………………………… 6 II. Methods and Materials ………………………………………… 10 2.1 Contrast medium-induced nephropathy……………………… 10 2.1.1 Cell culture and chemical treatment…………………………………. 10 2.1.2 Cell viability assay…………………………………………………….. 10 2.1.3 Acridine orange/ethidium bromide dual staining…………………… 10 2.1.4 Hochest 33258 staining………………………………………………… 11 2.1.5 Immunoblotting analysis……………………………………………… 11 2.1.6 GRP78 SiRNA Transfection………………………………………….. 12 2.1.7 Contrast medium-induced renal toxicity in rat……………………… 12 2.2 Salubrinal Enhances Cispaltin-induced nephropathy………. 13 2.2.1 Cisplatin-induced acute renal injury in mice………………………. 13 2.2.2 Real-time RT-PCR…………………………………………..……….. 14 2.2.3 Histological assessment of renal injury……………………………... 15 2.2.4 TUNEL staining for apoptosis……………………………..………... 15 2.2.5 Caspase 3 activity assay……………………………..……………….. 15 2.2.6 Immunoblotting analysis…………………………..………………… 16 2.2.7 Tissue oxidative injury assessment: Malondialdehyde (MDA) assay 16 2.2.8 Statistical analysis…………………………..……………………….. 17 III. Results………………………………………………………… 18 3.1 Contrast medium induced ER stress response in the tubular cells …………………………………………………………..…… 18 3.1.1. CM induces cell death in the renal tubular cell line NRK52E….. 18 3.1.2 CM induces the ER stress response……………..………………… 18 3.1.3 PERK/elF2α activation rescued CM-induced tubular cell apoptosis 19 3.1.4 Effect of GRP78 knockdown on the CM-induced apoptosis…….. 20 3.1.5 CM induces ER stress response in the animal model……………. 20 3.2 Salubrinal mediated cisplatin-induced renal injury..……... 21 3.2.1 Salubrinal prevents the cisplatin-induced renal injury in the renal tubular cells…………………………..……………………… 21 3.2.2 Salubrinal enhances the cisplatin-induced renal injury in animal model…………………………..…………………………..………… 21 3.2.3 Salubrinal enhances cisplatin-induced renal tubular cell apoptosis 22 3.2.4 Salubrinal enhances cisplatin-induced oxidative stress in the kidneys 23 IV. Discussion …………………………………………………… 25 4.1 The ER stress involves in the contrast medium, Urographin 25 4.2 The ER stress effects in the chemical reagent, cispltin……. 27 V. Summary and Perspective …………………………………… 33 Reference …………………………………………………………. 34 Appendix …………………………………………………………. 75 1. List of Publication: …………………………………………… 75 Figure 3-1. Effects of urografin (CM, 20–60 mg I/ml) on cell viability and apoptosis in renal tubular cells. ……………..………………….. 47 Figure 3-2. Effects of urografin on necrosis in renal tubular cells. ..……….. 49 Figure 3-3. Effects of urografin on ER stress expressions in renal tubular cells. 50 Figure 3-4. Urografin-induced ER stress signals PERK/eIF2α in renal Tubular cells. ……………………………………………………. 51 Figure 3-5. Effects of iopromide on ER stress expressions in renal tubular cells. ……………………………..……………….……… 52 Figure 3-6. Salubrinal decreased urografin-induced apoptosis was detected by flow cytometry. .……………………………..……………….. 53 Figure 3-7. Salubrinal decreased urografin-induced apoptosis was detected by Hoechst staining. …………………………………..…………….... 55 Figure 3-8. Effects of GRP78 RNA interference on urografin-induced apoptosis of renal tubular cells. …………………………………..…………….. 57 Figure 3-9. Effects of salubrinal on apoptosis and expressions of GRP78 and phospho-eIF2α in GRP78-siRNA–transfected renal tubular cells. 58 Figure 3-10. Effects of urographin in the rats. ………………………………. 60 Figure 3-11.Effects of salubrinal on apoptosis in the renal tubular cells. … 62 Figure 3-12. Schematic representation of the experimental procedure. ….. 64 Figure 3-13. Enhancement of salubrinal on cisplatin-induced injury. ……. 65 Figure 3-14. Enhancement of salubrinal on renal histomorphological changes in cisplatin-treated mice.…………………………….. 66 Figure 3-15. Enhancement of salubrinal on apoptosis and caspase 3 activity induction in the kidneys of cisplatin-treated mice. …. 67 Figure 3-16. Enhancement of salubrinal on the induction of ER stress-related XI molecules in the kidneys of cisplatin-treated mice. ……………… 68 Figure 3-17. Enhancement of salubrinal on the induction of oxidative stress in the kidneys of cisplatin-treated mice. …...………………… 70 Figure 3-18. The enhancement of salubrinal on cisplatin-induced increased expressions of phospho-eIF2α, CHOP, cleaved caspase 9, cleaved caspase 12, and Bax, and decreased expression of Bcl-2 in the kidneys could be reversed by NAC. ………………………………………………….. 72 Figure 3-19. Antioxidant NAC reverses the enhancement of salubrinal on cisplatin-induced increased serum BUN and creatinine levels and renal caspase 3 activity in mice. …………………………………………. 74 | |
| dc.language.iso | en | |
| dc.subject | 氧化壓力 | zh_TW |
| dc.subject | 薩伯利 | zh_TW |
| dc.subject | 顯影劑誘發腎臟病變 | zh_TW |
| dc.subject | 內質網壓力 | zh_TW |
| dc.subject | 急性腎衰竭 | zh_TW |
| dc.subject | 顯影劑 | zh_TW |
| dc.subject | 帝鉑注射液 | zh_TW |
| dc.subject | AKI | en |
| dc.subject | Endoplasmic Reticulum Stress | en |
| dc.subject | Contreat medium | en |
| dc.subject | Cisplatin | en |
| dc.subject | Salubrina | en |
| dc.subject | Nephrotoxicity | en |
| dc.subject | Acute kidney injury | en |
| dc.title | 內質網壓力在化學物誘導之腎臟毒性的角色探討 | zh_TW |
| dc.title | The Role of Endoplasmic Reticulum Stress in the Chemicals-Induced Nephrotoxicity | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 蕭水銀(Shoei-Yn Lin-Shiau),楊榮森(Rong-Sen Yang),林石化(Shih-Hua Lin),姜至剛(Chih-Kang Chiang) | |
| dc.subject.keyword | 內質網壓力,顯影劑,帝鉑注射液,氧化壓力,薩伯利,諾,顯影劑誘發腎臟病變,急性腎衰竭, | zh_TW |
| dc.subject.keyword | Endoplasmic Reticulum Stress,Contreat medium,Cisplatin,Salubrina,Nephrotoxicity,Acute kidney injury,AKI, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-29 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 1.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
