Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32344
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳秋男
dc.contributor.authorLi-Hsin Huangen
dc.contributor.author黃莉欣zh_TW
dc.date.accessioned2021-06-13T03:43:54Z-
dc.date.available2011-07-29
dc.date.copyright2006-07-29
dc.date.issued2006
dc.date.submitted2006-07-26
dc.identifier.citationAllen, J. C. 1976. A modivied sine wave method for calculating detree days. Environ. Entomol. 5: 388-396.
Altieri, M. A. 1984. Patterns of insect diversity in monocultures and polycultrues of brussels sprouts. Prot. Ecol. 6: 227-232.
Altieri, M. A. 1994. Biodiversity and pest management in agroecosystems. Food Products Press, an imprint of The Haworth Press, Inc., New York. 185 pp.
Ananthakrishnan, T. N. 1984. Bioecology of thrips. Indira Publishing House, Michigan. 233 pp.
Andow, D. A. 1991a. Vegetational diversity and arthropod population response. Annu. Rev. Entomol. 36: 561-586.
Andow, D. A. 1991b. Yield loss to arthropods in vegetationally diverse agroecosystems. Environ. Entomol. 20: 1228-1235.
Anonym. 1997. Vegetable IPM in Taiwan. Council of Agriculture and PDAF, Taiwan. 19-29 ( Fruit Vegetable) (in Chinese)
Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24: 1-15.
Balmford, A., A. H. M. Jayasuriya and M. J. B. Green. 1996. Using higer-taxon richness as a surrogate for species richness: II. local applications. Proc. R. Soc. Lond. B 263: 1571-1575.
Bei, Y. W., X. H. Gu, C. X. Gao and H. P. Chen. 1996. The effect of temperatures on the growth and development of Thrips palmi Karny. Acta Agriculturae Zhejiangensis 8: 312-315. (in Chinese with English Abstract).
Birch, L. C. 1948. The intrinsic rate of natural increase of an insect population. J. Anim. Ecol. 17: 15-26.
Blondel, J. 2003. Guilds or functional groups: does it matter? Oikos 100: 223-231.
Campell, A., B. D. Frazer, N. Gilbert, A. P. Gutierrez and M. Mackauer. 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11: 431-438.
Carey, J. R. 1993. Applied demography for biologists with special emphasis on insects. Oxford University Press, New York. 206 pp.
Carey, J. R. and J. W. Bradley. 1982. Developmental rates, vital schedules, sex ratios, and life tables for Tetranychus urticae, T. trukestani and T. pacificus (Acarina: Tetranychidae) on cotton. Acarologia 23: 333-345.
Caswell, H. 2001. Matrix population models: Construction, analysis, and interpretation. Sinauer Associates, Inc., Sunderland, Mass. 722 pp.
Chang, N. T., T. Hua and J. S. Liu. 1995. Observation of the morphology and feeding behavior of predacious thrips, Aleurodothrips fasciapennis (Franklin) (Thysanoptera, Phlaeothripidae). Plant Prot. Bull. 37: 403-411. (in Chinese with English Abstract).
Chang, N. T., C. T. Hung, T. Hua and C. C. Ho. 1993. Notes on predatory natural enemies of Thrips palmi Karny (Thysanoptera: Thripidae) on eggplant. Plant Prot. Bull. 35: 239-243. (in English with Chinese Abstract).
Chen, C. N. and W. Y. Su. 1982. Influence of temperature on development and leaf consumption of three caterpillars on cauliflower. Plant Prot. Bull. (Taiwan) 24: 131-141.
Chen, W. H. and C. C. Ho. 1993. Life cycle, food consumption, and seasonal fluctuation of Oligota flavicornis (Boisduval & Lacordaire) on eggplant. Chinese J. Entomol. 13: 1-8. (in Chinese with English Abstract).
Chi, H. 1988. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 17: 26-34.
Chi, H. 2005. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. http://140.120.197.173/Ecology/Download/Twosex-MsChart.zip.
Chi, H. and H. Liu. 1985. Two new methods for the study of insect population ecology. Bull. Inst. Zool. Academia Sinica 24: 225-240.
Chou, F. I. 2000. Rapid identification of the silverleaf whitefly (Bemisia argentifolii Bellows & Perring) and its population parameters. Master's Thesis. Graduate Institute of Plant Pathology and Entomology. National Taiwan University. 134 pp. (in Chinese).
Cole, L. C. 1954. The population consequences of life history phenomena. Quart. Rev. Biol. 29: 103-137.
Davis, P. M. 1994. Statistics for describing populations. pp. 33-54. in Handbook of sampling methods for arthropods in agriculture. Pedigo, L. P. and G. D. Buntin. eds. CRC Press, Boca Raton.
Ennos, R. A., G. C. French and P. M. Hollingsworth. 2005. Conserving taxonomic complexity. Trends in Ecology & Evolution 20: 164.
Evans, G. O. 1992. Principles of acarology. CAB International, UK. 563 pp.
Fauth, J. E., J. Bernardo, M. Camara, J. Resetarits, W. J., J. Van Buskirk and S. A. McCollum. 1996. Simplifying the jargon of community ecology: a conceptual approach. Am. Nat. 147: 282-286.
Fisher, R. A. 1958. The genetical theory of natural selection. Dover, New York. 258 pp.
Fisher, R. A., A. S. Corbet and C. B. Williams. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol. 12: 42-58.
Good, I. J. 1953. The population frequencies of species and the estimation of population parameters. Biometrika 40: 237-264.
Goodman, D. 1982. Optimal life histories, optimal notation, and the value of reproductive value. Am. Nat. 119: 803-823.
Green, R. H. 1966. Measurement of non-randomness in spatial distributions. Res. Popul. Ecol. 8: 1-7.
Gu, X. H., Y. W. Bei, C. X. Gao and H. P. Chen. 2000. Population growth, distribution pattern and sampling technique of Thrips palmi on eggplant. Chinese J. Appl. Ecol. 11: 866-868. (in Chinese with English Abstract).
Hardin, G. 1960. The competitive exclusion principle. Science 131: 1292-1297.
Hazan, A., U. Gerson and A. S. Tahori. 1973. Life history and life tables of the carmine spider mite. Acarologia 15: 414-440.
Hilsenhoff, W. L. 1987. An improved biotic index of organic stream pollution. The Great Lakes Entomol. 20: 31-39.
Hilsenhoff, W. L. 1988. Rapid field assessment of organic pollution with a family-level biotic index. J. N. Am. Benthol. Soc. 7: 65-68.
Ho, C. C. 1993. Dispersion statistics and sample size estimates for Tetranychus kanzawai (Acari: Tetranychidae) on mulberry. Environ. Entomol. 22: 21-25.
Ho, C. C. and W. H. Chen. 1992. Species survey of spider mites and seasonal occurance of Thrips palmi, Chlorita biguttula biguttula, and Tetranychus cinnabarinus on eggplant. Chinese J. Entomol. 12: 259-268. (in Chinese with English Abstract).
Ho, C. C. and W. H. Chen. 1993a. Distribution and estimates of the optimal sample size of Thrips palmi Karny (Thysanoptera: Thripidae) on eggplant. Chinese J. Entomol. 13: 293-303. (in Chinese with English Abstract).
Ho, C. C. and W. H. Chen. 1993b. Seasonal fluctuation, distribution and control of spider mites on eggplant. The Plant Protection Society of The Repulic of China, Special Publication 1: 117-134. (in Chinese with English Abstract).
Ho, C. C. and W. H. Chen. 1996. Improvement on the chemical control of the spider mites of eggplant. J. Agric. Res. China 45: 285-296.
Ho, C. C. and W. H. Chen. 1998. Life history, food consumption, and seasonal occurence of Feltiella minuta (Diptera: Cecidomyiidae) on eggplant. Chinese J. Entomol. 18: 27-37. (in Chinese with English Abstract).
Ho, C. C. and W. H. Chen. 1999a. Comparsion of developmental period, fecundity and feeding amount of three phytoseiids mites (Acari: Phytoseiidae). Chinese J. Entomol. 19: 193-199. (in Chinese with English Abstract).
Ho, C. C. and W. H. Chen. 1999b. Evaluation of feeding and ovipositing responses of three phytoseiid mites to amounts of Kanzawa spider mite eggs (Acari: Phytoseiidae, Tetranychidae). Chinese J. Entomol. 19: 257-264. (in English with Chinese Abstract).
Ho, C. C. and W. H. Chen. 2001a. Evaluation of feeding and ovipositing responses of Scolothrips indicus (Thysanoptera: Aeolothripidae). Plant Prot. Bull. 43: 165-172. (in Chinese with English Abstract).
Ho, C. C. and W. H. Chen. 2001b. Life history and feeding amount of Amblyseius asetus and A. maai (Acari: Phytoseiidae) on Thrips palmi (Thysanoptera: Thripidae). Formosan Entomol. 21: 321-328. (in Chinese with English Abstract).
Ho, C. C. and W. H. Chen. 2002a. Evaluation of feeding and ovipositing responses of Feltiella minuta (Diptera: Ceccidomyiidae) to different amounts of Kanzawa spider mite eggs (Acari: Tetranychidae). Formosan Entomol. 22: 19-26. (in Chinese with English Abstract).
Ho, C. C. and W. H. Chen. 2002b. Evaluation of feeding and ovipositing responses of Oligota flavicornis (Coleoptera: Staphylinidae) to amounts of Kanzawa spider mite eggs (Acari: Tetranychidae). Plant Prot. Bull. 44: 15-20. (in Chinese with English Abstract).
Ho, C. C., W. H. Chen and C. C. Cheng. 1993. Distribution and estimates of the optimal sample size of Tetranychus cinnabarinus (Acari: Tetranychidae) on eggplant. Chinese J. Entomol. 13: 125-140. (in Chinese with English Abstract).
Ho, C. C., K. C. Lo and W. H. Chen. 1995a. Comparative biology, reproductive compatibility, and geographical distribution of Amblyseius longispinosus and A. womersleyi (Acari: Phtoseiidae). Environ. Entomol. 24: 601-607.
Ho, C. C., K. C. Lo and W. H. Chen. 1995b. Spider mites injurious to economic plants in Taiwan and the toxicity of twelve acaricides to two major species. J. Agric. Res. China 44: 157-165. (in Chinese with English Abstract).
Ho, C. C., K. C. Lo and W. H. Chen. 1997. Spider mite (Acari: Tetranychidae) on various crops in Taiwan. Jour. Agric. Res. China 46: 333-346. (in Chinese with English Abstract).
Hoskins, W. M., A. D. Borden and A. E. Michelbacher. 1939. Recommendations for a more discriminating use of insecticides. Proc. 6th Pac. Sci. Congr. 5: 119-123.
Hou, Y. M. and J. Che. 1998. The insect community structure and pest control strategy in rape feilds. Acta Agriculturae Boreali-occidentalis Sinica 7: 51-54. (in Chinese).
Hou, Y. M., X. F. Pang, G. W. Liang and M. S. You. 2001. Effect of chemical insecticides on the diversity of arthropods in vegetable fields. Acta Ecologica Sinica 21: 1262-1268. (in Chinese with English abstract).
Hsu, J. C., H. T. Feng and Y. J. Huang. 2002. Susceptibility of Thrips palmi to insecticides recommended in Taiwan. Formosan Entomol. 22: 83-93. (in Chinese with English Abstract).
Huang, K. C. 1989. The population fluctuation and trapping of Thrips palmi in waxgourd. Bulletin of Taichung District Agricultural Research and Extension Station, Taiwan 25: 35-41. (in Chinese with English Abstract).
Huang, L. H. and W. Y. Su. 1994. Methods of extracting and counting thrips from samples of eggplant leaf. Plant Prot. Bull. (Taiwan) 36: 259-270. (in Chinese with English Abstract).
Huang, L. H. and W. Y. Su. 1997. Improvement of the consecutive rearing methods of Thrips palmi Karny (Thysanoptera: Thripidae) in the laboratory. Plant Prot. Bull. (Taiwan) 39: 281-287. (in Chinese with English Abstract).
Hurlbert, S. H. 1971. The nonconcept of species diversity: A critique and alternative parameters. Ecology 52: 577-586.
Hurlbert, S. H. 1990. Spatial distribution of the montane unicorn. Oikos 58: 257-271.
Hutchins, S. H., L. G. Higley and L. P. Pedigo. 1988. Injury equivalency as a basis for developing multiple-species economic injury level. J. Econ. Entomol. 81: 1-8.
Ikeda, F., S. Kubota and T. Ishikawa. 1984. Pupating sites of Thrips palmi in the musk melon green house. Proc. Knto-Tosan Pl. Prot. Soc. 31: 143-144 (in Japanese).
Isaac, N. J. B., J. Mallet and G. M. Mace. 2004. Taxonomic inflation: its influence on macroecology and conservation. TRENDS Ecol. Evol. 19: 464-469.
Iwao, S. 1968. A new regression method for analyzing the aggregation pattern of animal populations. Res. Popul. Ecol. 10: 1-20.
Jaksić, F. M. 1981. Abuse and misuse of the term 'guild' in ecological studies. Oikos 37: 397-400.
Jin, C. X. and Y. Wu. 1992. Arthropod commuinty structure and stability in paddy fields. Chinese J. Entomol. 12: 147-159 (in Chinese with English Abstract).
Jones, V. P. and R. D. Brown. 1983. Reproductive responses of the broad mite, Polyphagotarsonemus latus (Acari: Tarsonemidae), to constant temperature-humidity regimes. Ann. Entomol. Soc. Am. 76: 466-469.
Kawai, A. 1985. Studies on population ecology of Thrips palmi Karny. VII. Effect of temperature on population growth. Jpn. J. Appl. Entomol. Zool. 29: 140-143. (in Japanese with English Summary).
Kawai, A. 1986. Studies on population ecology of Thrips palmi Karny. X. Differences in population growth on various crops. Jpn. J. Appl. Entomol. Zool. 30: 7-11. (in Japanese with English Summary).
Kawai, A. 1988. Studies on population ecology of Thrips palmi Karny. 16. Distribution among leaf, flower and fruit on eggplant and sweet pepper. Jpn. J. Appl. Entomol. Zool. 32: 291-296. (in Japanese with English Summary).
Kawai, A. and C. Kitamura. 1987. Studies on population ecology of Thrips palmi Karny XV. Evaluation of effectiveness of control methods using a simulation model. Appl. Entomol. Zool. 22: 292-302.
Kawai, A. and C. Kitamura. 1990. Studies on population ecology of Thrips palmi Karny 18. Evaluation of effectiveness of control methods of thrips on eggplant and sweet pepper using a simulation model. Appl. Entomol. Zool. 25: 161-175.
Kitamura, C. Y. and A. Kawai. 1984. Studies on population ecology of Thrips palmi Karny IV. Distribution pattern on eggplants in greenhouse. Jpn. J. Appl. Entomol. Zool. 28: 181-183. (in Japanese with English Summary).
Kogan, M. 1988. Ingetrated pest management theory and practice. Entomol. Exp. Appl. 49: 59-70.
Kogan, M. 1998. Integrated pest management: Historical perspectives and contemporary developments. Annu. Rev. Entomol. 43: 243-270.
Krebs, C. J. 1999. Ecological methodology. Addson Wesley Longman, Inc. 620 pp.
Krebs, C. J. 2001. Ecology: The experimental analysis of distribution and abundance. Benjamin Cummings, an imprint of Addison Wesley Longman, Inc., New York. 695 pp.
Lee, M. S. Y. 1997. Documenting present and past biodiversity: conservation biology meets palaeontology. TRENDS Ecol. Evol. 12: 132-133.
Letourneau, D. K. and B. Goldstein. 2001. Pest damage and arthropod community structure in organic vs. conventional tomato production in California. J Appl. Ecol. 38: 557-570.
Lewis, T. 1973. Thrips : their biology, ecology and economic importance. Academic Press Inc., New York. 349 pp.
Lewis, T. 1997. Flight and dispersal. pp. 175-196. in Thrips as crop pests. Lewis, T. eds. CAB Interational, New York.
Liu, Y. C. and J. J. Perng. 1987. Population growth and temperature-dependent effect of cotton aphid, Aphis grossyii Glover. Chinese J. Entomol. 7: 95-111. (in Chinese with English Abstract).
Lloyd, M. 1967. Mean crowding. J. Anim. Ecol. 36: 1-30.
Lo, Z. Y. 1982. Diversity analysis of arthropoda community in cotton fields of Sheshan districted and diversity effect made by inseticides. Acta Ecologica Sinica 2: 255-266. (in Chinese with English abstract).
Lotka, A. J. 1922. The stability of the normal age distribution. Proc. Natl. Acad. Sci. USA 8: 339-345.
Lu, F. M. and H. S. Lee. 1987. Seasonal occurence of the insect pests on eggplants. Plant Prot. Bull. (Taiwan) 29: 61-70. (in Chinese with English Abstract).
Magurran, A. E. 1988. Ecological diversity and its measurement. Croom Helm Limite, London. 179 pp.
Magurran, A. E. 2004. Measuring biological diversity. Blackwell Science Ltd., MA. 256 pp.
McDonald, J. R., J. S. Bale and K. F. A. Walters. 1999. Temperature, development and establishment potential of Thrips palmi (Thysanoptera: Thripidae) in the United Kingdom. Eur. J. Entomol. 96: 169-173.
Metcalf, R. L. and W. H. Luckmann. 1975. Introduction to insect pest management. John Wiley and Sons. 587 pp.
Mound, L. A. and G. Kibby. 1998. Thysanoptera: An indentification guide. CAB International New York. 70 pp.
Myers, J. H. 1978. Selecting a measure of dispersion. Environ. Entomol. 7: 619-621.
Nagai, K. 1989. Developmental duration of Orius sp. (Hemiptera: Anthocoridae) reared on Thrips palmi Karny (Thysanoptera: Thripidae). Jpn. J. Appl. Entomol. Zool. 33: 260-262. (in Japanese with English Summary).
Nagai, K. 1990. Effect of insecticides on Orius sp. the natural enemy of Thrips palmi Karny. Jpn. J. Appl. Entomol. Zool. 34: 321-324. (in Japanese with English Summary).
Nagai, K. 1991. Predatory characteristics of Orius sp. on Thrips palmi Karny, Tetranychus kanzawai Kishida and Aphis gossypii Glover. Jpn. J. Appl. Ent. Zool. 35: 269-274.
Nagai, K. and E. Yano. 2000. Predation by Orius sauteri (Poppius) (Heteroptera: Anthocoridae) on Thrips palmi Karny (Thysanoptera: Thripidae): Functional response and selective. Appl. Entomol. Zool. 35: 565-574.
Nishino, T. and K. Ono. 1984. Control of Thrips palmi Karny by sticky ribbon traps (Seiryu). Kyushu Agric. Res. 46: 124 (in Japanse).
Nonaka, K., K. Nagai and E. Yamamoto. 1982a. Ecology and control of the thrips infesting fruit vegetables. 4. Resistance of Thrips palmi to cold and heat. Kyushu Agric. Res. 44: 119. (in Japanese).
Nonaka, K., S. Teramoto and K. Nagai. 1982b. Ecology and control of thrips infesting fruit vegetables. 5. Developmental velocity of Thrips palmi. Proc. Assoc. Pl. Prot. Kyushu 28: 126-127. (in Japanese).
Nordlund, D. A., R. B. Chalfant and W. J. Lewis. 1984. Arthropod populations, yeild and damage in monocultures and polycultures of corn, beans and tomatoes. Agriculture, Ecosystems and Environment 11: 353-367.
Odum, E. P. 1983. Basic ecology. CBS College Publishing, New York. 613 pp.
Ohno, K. and H. Takemoto. 1997. Species composition and seasonal occurrence of Orius spp. (Heteroptera: Anthocoridae), predacious natural enemies of Thrips palmi (Thysanoptera: Thripidae) in eggplant fields and surrounding habitats. Appl. Entomol. Zool. 32: 27-35.
Pedigo, L. P. and G. D. Buntin, Eds. 1994. Handbook of sampling methods for arthropods in agriculture. CRC Press, Boca Raton. 714 pp.
Pedigo, L. P., S. H. Hutchins and L. G. Higley. 1986. Economic injury levels in theory and practice. Annu. Rev. Entomol. 31: 341-368.
Peeters, P. J. 2002. Correlations between leaf structural traits and the densities of herbivorous insect guilds. Biol. J. Linn. Soc. 77: 43-65.
Pielou, E. C. 1969. An introduction to mathematical ecology. John Wiley & Sons, Inc., New York. 286 pp.
Pimentel, D. 1961. Species diversity and insect population outbreaks. Ann. Entomol. Soc. Am. 54: 76-86.
Power, A. G. 1987. Plant community diversity, herbivore movement, and an insect-transmitted disease of maize. Ecology 68: 1658-1669.
Price, P. W. 1997. Insect ecology. John Wiley & Sons, Inc., New York. 874 pp.
Prokopy, R. J. 1993. Stepwise progress toward IPM and sustainable agriculture. The IPM Practitioner 15: 1-4.
Putman, R. J. 1994. Community ecology. Chapman & Hall, UK. 178 pp.
Richardson, A. D., S. P. Duigan and G. P. Berlyn. 2002. An evaluation of nonivasive methods to estimate foliar chlorophyll content. New Phytologist 153: 185-194.
Riddle, M. J. 1989. Precision of the mean and the design of benthos sampling. Mar. Biol. (Berlin) 103: 225-230.
Rieske, L. K. and L. J. Buss. 2001. Influence of site on diversity and abundance of ground- and litter-dwelling Coleoptera in Appalachian Oak-Hickory Forests. Environ. Entomol. 30: 484-494.
Risch, S. J. 1981. Insect herbivore abundance in tropical monocultures and polycultures: an experimental test of two hypotheses. Ecology 62: 1325-1340.
Risch, S. J., D. Andow and M. A. Altieri. 1983. Agroecosystem diversity and pest control: data, tentative conclusions, and new research directions. Environ. Entomol. 12: 625-629.
Root, R. B. 1967. The niche exploitation pattern of the blue-gray gnatcatcher. Ecol. Monogr. 37: 317-350.
Root, R. B. 1973. Organization of a plant-arthropod association in simple and diverse habitats: The fauna of collards (Brassica oleracea). Ecol. Monogr. 43: 95-124.
Routledge, R. D. and T. B. Swartz. 1991. Taylors power law re-examined. Oikos 60: 107-112.
Saito, T. 1991. A field trial of an entomopathogenic fungus Beavueria bassiana Bals. & Vull. for the control of Thrips palmi Karny (Thysanoptera: Thripidae). Jpn. J. Appl. Entomol. Zool. 35: 80-82. (in Japanese with English Summary).
Saito, T., S. Kubota and M. Shimazu. 1989. A first record of the entomopathogenic fungus, Neozygites parvispora (MacLeod and Carl) Rem, & Kell., on Thrips palmi Karny (Thysanoptera: Thripidae). Jpn. J. Appl. Entomol. Zool. 24: 233-235.
Schowalter, T. D. 2000. Insect ecology : An ecosystem approach. Academic Press, California. 483 pp.
Shelton, A. M. and J. T. Trumble. 1991. Monitoring insect populations. pp. 45-55. in Handbook of Pest Management in Agriculture. Pimentel, D. eds. CRC Press, Boca Raton.
Shi, G. L., H. Cao, F. Ge, N. B. Xia and Z. Y. Li. 2002. Studies on the diversity and insect community in different intercropped and managed jujube yard ecosystems. Scientia Silvae Sinicae 38: 94-101.
Simberloff, D. and T. Dayan. 1991. The guild concept and the structure of ecological communities. Annu. Rev. Ecol. Syst. 22: 115-143.
Simpson, E. H. 1949. Measurement of diversity. Nature 163: 688-689.
Slobodkin, L. B. 1961. Growth and regulation of animal populations. Holt, Rinehart and Winston, Inc., New York. 184 pp.
Smith, B. and J. B. Wilson. 1996. A consumer's guide to evenness indices. Oikos 76: 70-82.
Sokal, R. R. and F. J. Rohlf. 1995. Biometry. W. H. Freeman San Francisco. 887 pp.
Southwood, T. R. E. and P. A. Henderson. 2000. Ecological methods. Blackwell Science Ltd., MA. 575 pp.
Stern, V. M., R. F. Smith, R. van den Bosch and K. S. Hagen. 1959. The integrated control concept. Hilgardia 29: 81-101.
Su, C. Y., T. S. Chiu and Y. J. Lin. 1985. Study of population fluctuation of Thrips palmi and its insecticidal control in the field on eggplant. Chinese J. Entomol. 5: 101-118 (in Chinese with English Abstract).
Tahvanainen, J. O. and R. B. Root. 1972. The influence of vegetational diversity on the population ecology of a specialized herbivore, Phyllotreta cruciferae (Coleoptera: Chrysomelidae). Oecologia 10: 321-346.
Taylor, L. R. 1961. Aggregation, variance and the mean. Nature 189: 732-735.
Taylor, L. R. 1984. Assessing and interpreting the spatial distributions of insect populations. Annu. Rev. Entomol. 29: 321-357.
Tokeshi, M. 1995. On the mathematical biasis of the variance-mean power relationship. Res. Popul. Ecol. 37: 42-48.
Tsai, J. H. and K. Wang. 1996. Development and reproduction of Bemisia argentifolii (Homoptera: Aleyrodidae) on five host plants. Environ. Entomol. 25: 810-816.
Tsai, J. H., B. Yue, S. E. Webb, J. E. Funderburk and H. T. Hsu. 1995. Effects of host plant and temperature on growth and reproduction of Thrips palmi (Thysanoptera: Thripidae). Environ. Entomol. 24: 1598-1603.
Tsai, S. M., K. S. Kung and C. I. Shih. 1989. The effect of temperature on life history and population parameters of Kanzawa spider mite, Tetranychus kanzawai Kishida (Acarina: Tetranychidae), on tea. Plant Prot. Bull. 31: 119-130 (in Chinese with English Abstract).
van Tongeren, O. F. R. 2002. Cluster Analysis. pp. 299. in Data analysis in community and landscape ecology. Jongman, R. H. G., C. J. F. Ter Braak and O. F. R. van Tongeren. eds. Cambridge University Press, UK.
Walker, B. 1995. Conserving biological diversity through ecosystem resilience. Conser. Biol. 9: 747-752.
Walker, B. H. 1992. Biodiversity and ecological redundancy. Conserv. Biol. 6: 18-23.
Wan, F. H. and C. M. Chen. 1986. Studies on the structure of the rice pest-natural enemy community and diversity under IPM area and chemical control area. Acta Ecol. Sinica 6: 159-170. (in Chinese with English abstract).
Wang, C. L. 1994. The predacious capacity of two natural enemies of Thrips palmi Karny, Campylomma chinensis Schuh (Hemiptera: Miridae) and Orius sauteri (Poppius) (Hemiptera: Anthocoridae). Plant Prot. Bull. (Taiwan) 36: 141-154. (in Chinese with English Abstract).
Wang, C. L. 1998. Two predacious Orius flower bug (Hempitera: Anthocoridae) in Taiwan. Chinese J. Entomol. 18: 199-202.
Wang, C. L. 2002. Thrips of Taiwan: biology and taxonomy. Taiwan Agricultural Research Institute, Taichung, Taiwan. 328 pp. (in Chinese).
Wang, C. L. and W. S. Chen. 1993. Control of Thrips palmi Karny (Thysanoptera: Terebrantia). The Plant Protection Society of the Repulic of China, Special Publication 1: 183-195. (in Chinese with English Summary).
Wang, C. L. and Y. I. Chu. 1986. Rearing method of southern yellow thrips, Thrips palmi Karny, in Laboratory. Plant Prot. Bull. (Taiwan) 28: 407-411. (in Chinese with English Abstract).
Wang, C. L. and Y. I. Chu. 1990. The reproductive mechanism of Thrips palmi. II. Comparison of male reproduced parthenogenetically and bisexually. Chinese J. Entomol. 10: 79-87. (in Chinese with English Abstract).
Wang, C. L., Y. I. Chu and K. C. Lo. 1989. The reproductive mechanism of Thrips palmi Karny. I. The female ovipositional behavior. Chinese J. Entomol. 9: 251-261. (in Chinese with English Abstract).
Wang, C. L., Y. J. Wu, M. Y. Hsu, C. T. Yseng and Y. F. Chang. 1999. Selection of proper food materials for rearing Orius strigicollis (Poppius) (Hemiptera: Anthocoridae). Chinese J. Entomol. 19: 319-329. (in Chinese with English Abstract).
Wang, K. and J. H. Tsai. 1996. Temperature effect on development and reproduction of silverleaf whitefly (Homoptera: Aleyrodidae). Ann. Entomol. Soc. Am. 89: 375-384.
Wen, H. C. and H. S. Lee. 1982. Field studies on cucurbit thrips (Thrips flavus) and its control. J. Agric. Res. China 31: 89-96 (in Chinese).
Wertheim, B., J. G. Sevenster, I. E. M. Eijs and J. J. M. Van Alphen. 2000. Species diversity in a mycophagous insect community: the case of spatial aggregation vs. resource partitioning. J. Anim. Ecol. 69: 335-351.
Williams, P. H. and K. J. Gaston. 1994. Measuring more of biodiversity: Can higher-taxon richness predict wholesale species richness? Biol. Conserv. 67: 211-217.
Wilson, E. O. and W. H. Bossert. 1971. A primer of population biology. Sinaurer Associates, Inc., Sunderland, Mass. 192 pp.
Wilson, J. B. 1999. Guilds, functional types and ecological groups. Oikos 86: 507-522.
Wu, J. J., W. Q. Zhang and G. W. Liang. 1995. The effect of temperatures on the development and fecundity of Thrips palmi Karny. J. South China Agr. Univ. 16: 14-19. (in Chinese with English Abstract).
Wu, Y. and T. S. Chin. 1982. Structure and dynamics of soil insect community in grassland I. The structure of soil ecosystem and the character of soil insect communities. Acta Ecol. Sinica 2: 151-157. (in Chinese with English Abstract).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32344-
dc.description.abstract本論文從群聚的角度探討茄子(Solanum melongena L.)上植食性及捕食性昆蟲與蟎類在茄園內的群聚結構,採用科為分類的基本單位,取樣單位為葉、花、果實三部位,其中葉部又分為未展開葉及展開葉二部位。依相對豐量及群集分析的結果顯示,常見植食性種類有薊馬科(Thripidae)、蚜蟲科 (Aphididae)、粉蝨科(Aleyrodidae)、葉蟎總科(Tetranychoidea)及細蟎科(Tarsonemidae)。捕食性種類以捕植蟎科(Phytoseiidae)為主要種類,其次為花椿象科 (Anthocoridae)、盲椿象科 (Miridae)及癭蚋科 (Cecidomyiidae)。葉蟎總科及粉蝨科在中、老葉的分布較多;細蟎科主要棲息在嫩葉及果實花萼內為害,造成葉片組織厚化,阻礙茄株的生長;薊馬科則在葉、花及果實上均有很高的發生率,屬全株型的害蟲。茄花若受薊馬取食為害,會造成落花或果實表皮上有褐色條斑的食痕,若於果實期為害,茄果會呈彎曲之畸型狀或表皮上有白色條斑或褐色條斑,影響市場的商品價值甚大,因此,認為薊馬科及細蟎科應列為茄株上不可輕忽的二大重要有害生物。薊馬科主要發生種類為南黃薊馬 (Thrips palmi Karny),細蟎科僅發現茶細蟎 (Polyphagotarsonemus latus Banks)一種。
連續四年在不同栽培管理模式的茄園內進行昆蟲蟎類群聚多樣性的研究,顯示栽培管理模式會影響昆蟲蟎類群聚的結構。從生物多樣性的分析,發現茄園除不除草管理對茄株上之物種豐富度的影響大於施藥管理者。然而,施藥次數愈多,會降低害蟲蟎類的族群數量及其均勻度,故生物多樣性指數也低。捕食性天敵在不施藥的茄園內可與其他種類的天敵維持一定的消長變化,但在施藥田的消長變化則大於不施藥區,顯示藥劑防治的確會影響茄園內捕食性天敵的活動。
茄株種植期均不施藥的情況下,以粉蟎總科(Acaroidea)及姬葉蟬科(Typhlocybidae)的生態席位寬度值最高,表示這二類害蟲在茄株各部位的分布極為均勻,而粉蝨科、潛蠅科(Agromyzidae)及葉蟎總科則最低,主要是因這三類害蟲集中分布在展開葉上,故分布最窄。細蟎科及管尾薊馬科(Phlaeothripidae)在施藥區的生態席位寬度高於不施藥區者。薊馬科、粉蝨科、姬葉蟬科、蚜科、夜蛾科(Noctuidae)、潛蠅科、葉蟎總科間的重疊性相當高,可見其在茄株上的資源利用極為相近。捕食性天敵花椿象科及盲椿象科的生態席位重疊性相當高,捕食性薊馬科僅發現印度食蟎薊馬(Scolothrips indicus Priesner)一種,其與癭蚋科的重疊度高達99.8%。現存於茄園內之捕食性天敵與細蟎科的重疊度最低,尤其在施藥區,顯示茄園內應沒有細蟎的主要天敵存在。
本論文嘗試以feeding guild的方式來整合害蟲蟎種類,將其分為咀嚼者(chewers)、刺吸者(suckers)及內吸收者(internal suckers)三大類。其中刺吸者再區分為昆蟲類(sucking-insects)及蟎類(sucking-mites),分析其在茄株上的空間分布型,進而建立茄園蟲害管理的取樣技術。不同feeding guild的s2/m值及Lloyd’s mean crowding (m*) 隨時間變化的走勢與單一種族群極為雷同。但index of patchiness (m*/m) 分析結果則與單一族群略有不同,施藥區某些害蟲蟎類在展開葉上的指數值有小於1者,然而以feeding guild歸類者,各群的聚集度均大於1,但指數值卻較單一種族群為低,以展開葉的分析結果最為明顯。以不施藥區之密度調查資料,依Taylor’s power law分析之a與b值來估算每一取樣單位上平均密度在5-200隻的取樣數,結果顯示以展開葉所需的取樣數最多。當展開葉上密度達10隻時,估算薊馬需取257片展開葉,蚜蟲則需649片,粉蝨需209片。若以sucking-insects為單元來估算密度時,當密度為10隻下,最適取樣數為123片展開葉,低於單一種族群者。
南黃薊馬是造成茄果商品價值降低的關鍵性害蟲,故本論文也特別就溫度對南黃薊馬生活史特徵及族群介量的影響進行研究。卵在35℃下僅有4-8%可存活發育至成蟲,存活之成蟲其平均壽命僅2.8-2.9日,且無法產下任何卵粒以延續族群,由此推測35℃已接近其發育與生殖臨界高溫。南黃薊馬在15、21、25、30℃下飼養,卵至成蟲所需發育時間分別為29.9、19.6、12.3及10.4日。雌蟲壽命隨溫度的升高而縮短,分別為21.6、20.2、15.4及9.7日。雌蟲總產卵數及產卵速率以飼養在25℃下者為最大,但其產卵期最短約21日,平均每隻雌蟲的產卵數為57.1 ± 4.9粒。利用溫度與發育速率的直線迴歸模式估算發育臨界低溫為7.7 ± 0.2℃,有效積溫為227.2 ± 3.3°D。利用1999-2002年農業試驗所霧峰氣象站每日的平均氣溫估算南黃薊馬在台灣中部一年可能發生25-26代。從齡別存活率(age-specific survival rate)、齡別繁殖率(age-specific fecundity) 及齡別繁殖值 (age-specific maternity) 曲線表現來看,南黃薊馬在25℃下的繁殖速率最快。在15-25℃下,內在增殖率(the intrinsic rate of increase, r) 隨溫度的上升而增加,但在30℃時則下降,其r 值分別為0.033, 0.046, 0.157及 0.118 day-1 (15、21、25、30℃)。25℃下之平均世代時間(T)及淨繁殖率(R0)分別為18.6日及18.5 eggs,均高於15、21及30℃者。綜合以上結果顯示,25- 30℃為南黃薊馬族群增長較適合的溫度。
zh_TW
dc.description.abstractI studied the community structure of arthropod herbivores and predators on eggplant (Solanum melongena L.) in central Taiwan. The leaves, flowers and fruits of eggplant were sampled, among them, the leaves were divided into spire leaves and expanded leaves. The insects and mites were identified to their families and their numbers counted. Relative abundance and cluster analysis indicated that Thripidae, Aphididae, Aleyrodidae, Tetranychoidea and Tarsonemidae were common herbivores on the eggplant. Phytoseiidae was the major predator, followed by Anthocoridae, Miridae and Cecidomyiidae. Tetranychoidea and Aleyrodidae mainly inhabited on the moderate and aged leaves. Tarsonemidae preferred the spire leaves and the calyx of fruit to the expanded leaves and flowers. The color of spire leaves turned dark green and tissue became thickening after injury by Tarsonemidae, so that the eggplant growth was obstructed. Thripidae frequently occurred on leaves, flowers and fruit of eggplant and they were more prevalent than others. Injury of flowers and fruit by Thripidae caused the flowers to fall and fruits with some white or brown narrow strip scars and deformities, hence decreasing yields and marketability of the eggplant. Therefore, I suggested both of Thripidae and Tarsonemidae were two key pests on the eggplant. Thrips palmi Karny was the dominant species in Thripidae and Polyphagotarsonemus latus Banks the only species of Tarsonemidae found on eggplant.
The differences in crop management practices could drastically affect the insect-mite community in eggplant fields. The family richness in the eggplant field with pesticides application was lower than the weeded one. The more the pesticides applied, the less was the evenness, and hence the biological diversity was lower. The fluctuation of predators in plot without pesticides application was more stable than that with pesticides application.
The niche breadth of Acaroidea and Typhlocybidae in eggplant plot without pesticides application were the widest, indicating that these two families distributed evenly on each parts of eggplant. Aleyrodidae, Agromyzidae and Tetranychoidea mainly concentrated on the expanded leaves. Therefore, their niche breadth was narrower. The niche breadth of Tarsonemindae and Phlaeothripidae in plot with pesticides application was wider than that in the plot without pesticides application. However, those of other herbivores were in the contrary. Analysis revealed that Thripidae, Aleyrodidae, Typhlocybidae, Aphididae, Noctuidae, Agromyzidae and Tetranychoidea had higher niche overlap. This result suggested that resource utilization of these herbivores on three parts of eggplant was very similar. In predator both of Anthocoridae and Miridae had higher niche overlap. Niche overlap of Scolothrips indicus Priesner, with Cecidomyiidae was 98.8%. It is also noted that the niche overlap between all predators and Tarsonemidae was the least, suggesting that there were no predators against Tarsonemidae in the eggplant fields.
From the view of injury-damage type, I tried to use feeding guild to group the herbivores as chewers, sucking-insects, sucking-mites and internal suckers in order to develop a practical sampling technique for the eggplant IPM program. The fluctuation trend of the value of s2/m and Lloyd’s mean crowding (m*) of various feeding guild weekly was the same as the ones of single population, but they were different on index of patchiness (m*/m). The index weekly was partly less than 1.0 for single population in plot with pesticides application; however, the index weekly was all more than 1.0 for feeding guild. Taking the data collected from plot without pesticides application to estimate the optimal sample size for density ranging from 5 to 200 individuals on each part of eggplant according Taylor’s power law, it indicated that the sample size required for expanded leaves was the most. When there are 10 individuals on an expanded leaf, we need to sample 257, 649, and 209 leaves for Thripidae, Aphididae, and Aleyrodidae, respectively. When to estimate sucking-insects on expanded leaves, 123 expanded leaves have to be sampled based on 10 individuals per leaf. The results showed that the optimal sample size of the feeding guild was lower than single population.
Because T. palmi was the key pest on eggplant, special attention was also paid to the effect of temperature on its life history traits and population parameters. Cohorts of T. palmi were reared on eggplant leaf at 15, 21, 25, 30 and 35℃ in growth chambers for three generations continuously. The results showed that survival rate of T. palmi from egg to adult was only 4 - 8% at 35℃, and the adult female and male lived only 2.9 and 2.8 days, respectively, without laying any eggs. Under the four temperatures the pre-adult stage took respectively 29.9, 19.6, 12.3, and 10.4 days to complete the development. The longevity of adult female became shorter as the rearing temperature increased, being 21.6, 20.2, 15.4 and 9.7days, respectively. The female had the highest fecundity (57.1 eggs/female) at 25℃, but its oviposition period was the shortest (ca. 21 days). A simple linear regression of developmental rate on temperature ranging from 15 to 30℃ showed that the lower developmental threshold (T0) was 7.7℃ (SE = 0.2℃) and the cumulated effective temperature ( K) was 227.2°D (SE = 3.3°D) for T. palmi to complete development from egg to adult. Based on the above value of T0 and K, and the 1999 to 2002 meteorological data of the Taiwan Agr. Res. Inst. at Wufong, we estimated that this thrips could complete 25 to 26 generations a year in central part of Taiwan. The results indicated that the age-specific fecundity ( mx ), the daily fecundity (fx5 ), and the age-specific maternity ( lxmx) was highest at 25℃. The intrinsic rate of increase (r) rose from 15, to 21 to 25℃, and fell at 30℃, being 0.033, 0.046, 0.157, and 0.118 day-1, respectively. The net reproductive rate (R0) was highest at 25℃ at 18.6 eggs. The mean generation time (T) shortened gradually from 15 to 30˚C; at 30℃ it was only one day shorter than 25℃. Consequently, we concluded that 25-30℃ is optimal for population growth of T. palmi on eggplant.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:43:54Z (GMT). No. of bitstreams: 1
ntu-95-D88632004-1.pdf: 3376918 bytes, checksum: c9fcf8388e566b990b9fd741084c2321 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents誌謝----------------------------------------------------i
中文摘要-----------------------------------------------iii
英文摘要---------------------------------------------- vi
表次-------------------------------------------------- xiv
圖次-------------------------------------------------- xvi
第一章 緒言----------------------------------------- 1
第二章 往昔研究-------------------------------------- 5
一、茄園害蟲蟎及天敵種類、發生分布與防治-------------- 5
二、群聚生態學與蟲害管理------------------------------ 10
三、生物多樣性與蟲害管理------------------------------ 12
四、害蟲為害指標 ─ 經濟為害水平、作物為害同功群及共食群 15
五、空間分布與最適取樣數------------------------------- 18
六、族群介量與蟲害管理--------------------------------- 20
第三章 台灣中部茄園昆蟲與蟎類群聚結構及族群之消長------ 23
一、前言------------------------------------------------ 23
二、材料與方法----------------------------------------- 24
田間茄葉大小取樣標準之建立----------------------------- 24
茄葉株上蟲蟎相調查------------------------------------- 25
資料分析----------------------------------------------- 26
三、結果--------------------------------------------------------------------------------- 27
田間茄葉大小取樣標準之建立------------------------------------------------- 27
昆蟲蟎類群聚在茄株上空間與時間的組成結構---------------------------- 29
茄園內重要害蟲蟎及捕食性天敵之消長------------------------------------- 33
四、討論--------------------------------------------------------------------------------- 35
昆蟲蟎類群聚在茄株上空間與時間的組成結構---------------------------- 35
茄園內重要害蟲蟎及捕食性天敵之密度消長------------------------------- 39
第四章 化學藥劑對茄園植食者與捕食者科級多樣性的影響----------- 67
一、前言--------------------------------------------------------------------------------- 67
二、材料與方法------------------------------------------------------------------------ 67
試驗田的規劃---------------------------------------------------------------------- 67
茄株上蟲蟎種類調查------------------------------------------------------------- 68
資料分析---------------------------------------------------------------------------- 69
三、結果--------------------------------------------------------------------------------- 71
茄園施藥與不施藥管理之茄園其昆蟲及蟎類之比較---------------------- 71
茄園施藥與不施藥管理對昆蟲蟎類密度與茄果產量的影響------------- 73
茄園施藥與不施藥管理蟲蟎類生態席位寬度及重疊度的比較--- 75
不同時間、地點及藥劑防治對茄園昆蟲蟎類物種多樣性的影響- 77
四、討論--------------------------------------------------------------------------------- 79
施藥與不施藥管理茄園內發生的昆蟲與蟎種類及其對茄果產量的影響---------------------------------------------------------------------
79
施藥與不施藥管理茄園內蟲蟎相生態席位寬度及重疊度的比較 82
不同時間、地點及藥劑防治對茄園昆蟲及蟎類物種多樣性的影響---------------------------------------------------------------------------
84

第五章 害蟲蟎類共食群在茄株上之空間分布型及最適取樣數--------- 108
一、前言-------------------------------------------------------------------------------- 108
二、材料與方法----------------------------------------------------------------------- 109
試驗田位置------------------------------------------------------------------------- 109
茄株上蟲蟎種類調查------------------------------------------------------------- 109
空間分布之分析及取樣數之估算-------------------------------------- 110
取樣數之估算------------------------------------------------------------ 111
三、結果--------------------------------------------------------------------------------- 112
茄園內重要害蟲蟎類在茄株上之空間分布-------------------------- 112
茄園內植食性種類不同共食群在茄株上之垂直分布--------------- 115
茄園內植食性種類不同共食群在茄株上之空間分布--------------- 117
取樣數之估計-------------------------------------------------------------- 118
四、討論--------------------------------------------------------------------------------- 119
茄園內重要害蟲蟎類在茄株上之空間分布-------------------------- 119
茄園內重要害蟲蟎類不同共食群之空間分布及取樣數決定------ 121
第六章 茄葉上南黃薊馬生活史特徵及族群介量-------------------------------- 140
一、前言--------------------------------------------------------------------------------- 140
二、材料與方法------------------------------------------------------------------------ 140
供試茄株之培植---------------------------------------------------------- 140
供試薊馬之飼育觀察---------------------------------------------------- 141
有效積溫及發育臨界低溫之估算-------------------------------------- 142
南黃薊馬在田間年發生代數之估算----------------------------------- 144
生命表的分析------------------------------------------------------------- 144
三、結果--------------------------------------------------------------------------------- 145
不同溫度下各齡期之存活率與發育時間----------------------------- 145
不同溫度下成蟲壽命及雌蟲產卵能力-------------------------------- 146
不同溫度下南黃薊馬之齡別-齡期存活率---------------------------- 147
不同溫度下之繁殖介量------------------------------------------------- 147
不同溫度下之齡別-齡期結構------------------------------------------ 149
各齡期之發育臨界低溫及有效積溫----------------------------------- 149
四、討論--------------------------------------------------------------------------------- 150
第七章 綜合討論及結論-------------------------------------------------------------- 171
綜合討論-------------------------------------------------------------------------------- 171
一、茄園內昆蟲蟎群聚生態學與蟲害管理的關係--------------------------- 171
二、關鍵害蟲南黃薊馬族群介量與蟲害管理的關係------------------------ 177
結論-------------------------------------------------------------------------------------- 179
參考文獻----------------------------------------------------------------------------------- 182





表次
表3.1 不同大小茄葉其小圓葉(直徑0.8 cm)之取樣數------------------------ 43
表3.2 不同地點不同管理方式之茄園其茄株上植食性與捕食性種類所調查的科級數目-------------------------------------------------------------
43
表4.1 台中縣大里茄園施藥與不施藥管理其茄果產量及外觀性狀之比較-------------------------------------------------------------------------------
85
表4.2 施藥管理之茄園植食性種類在茄株上生態席位重疊的情形------- 86
表4.3 不施藥管理之茄園植食性種類在茄株上生態席位重疊的情形---- 87
表4.4 施藥管理之茄園捕食性種類在茄株上生態席位重疊的情形------- 88
表4.5 不施藥管理之茄園捕食性種類在茄株上生態席位重疊的情形---- 88
表4.6 施藥管理之茄園捕食天敵與植食性種類在茄株上生態席位重疊的情形-------------------------------------------------------------------------
89
表4.7 不施藥管理之茄園捕食性天敵與植食性種類在茄株上生態席位重疊的情形-------------------------------------------------------------------
89
表4.8 不同年度不同管理的茄園內植食性昆蟲之均勻度及多樣性指數- 90
表4.9 不同年度不同管理的茄園內捕食性昆蟲之均勻度及多樣性指數- 91
表5.1 台中縣大里茄園不施藥區植食性種類在茄葉及花上之Iwao’s m*-m regression及Taylor’s power law的係數值-----------------------
124
表5.2 台中縣大里茄園施藥區植食性種類在茄葉及花上之Iwao’s m*-m regression及Taylor’s power law的係數值------------------------------
125
表5.3 台中縣大里茄園內植食性種類共食群之分類------------------------- 126
表5.4 台中縣大里茄園不施藥區植食性種類不同共食群在茄葉及花上之Iwao’s m*-m regression及Taylor’s power law的係數值----------
127
表5.5 台中縣大里茄園施藥區植食性種類不同共食群在茄葉及花上之Iwao’s m*-m regression及Taylor’s power law的係數值--------------
128

表 5.6 依Taylor’s power law 模式估算比較大里茄園不施藥區重要害蟲蟎類及不同共食群之最適取樣數-------------------------------------
129
表6.1 不同溫度下連續飼養南黃薊馬三代其各齡期平均存活率及其性比-------------------------------------------------------------------------------
158
表6.2 不同溫度下以茄葉連續飼育南黃薊馬三代,其各蟲期之平均發育時間-------------------------------------------------------------------------
159
表6.3 不同溫度下以茄葉連續飼育南黃薊馬三代,成蟲平均壽命、雌蟲產卵前期及產卵數-------------------------------------------------------
160
表6.4 不同溫度下南黃薊馬以茄葉飼養之各族群介量值------------------- 161
表6.5 南黃薊馬各期發育之溫度需求------------------------------------------- 162
表6.6 以台中縣霧峰農試所農業氣象站之每日平均氣溫估算南黃薊馬在台灣中部一年可能發生的世代數-------------------------------------
163
附表3.1 中部茄園茄株上主要害蟲蟎之族群介量及其發育時間與繁殖率比較--------------------------------------------------------------------------
65
附表3.2 幾種捕食天敵對神澤氏葉蟎及南黃薊馬上重要害蟲之捕食能力 66
附表4 茄果外觀特性等級訂定準則--------------------------------------------- 107






圖次
圖3.1 茄葉中肋長與葉綠素含量之迴歸模式------------------------------------ 44
圖3.2 茄子種植期間茄葉大小的頻度分布--------------------------------------- 45
圖3.3 台中縣霧峰茄園 (2000年) 未除草區及除草區內植食性種類各科級在茄株不同棲所上之相對豐量-----------------------------------------
46
圖3.4 台中縣霧峰茄園 (2000年) 未除草區及除草區內捕食性種類各科級在茄株不同棲所上之相對豐量-------------------------
47
圖3.5 台中縣霧峰及彰化縣永靖茄園內植食性種類各科級在茄株不同棲所上之相對豐量---------------------------------------------------------------
48
圖3.6 台中縣霧峰及彰化縣永靖茄園內茄花上植食性薊馬種類之發生頻度---------------------------------------------------------------------------------
49
圖3.7 台中縣霧峰及彰化縣永靖茄園內捕食性種類各科級在茄株不同棲所上之相對豐量---------------------------------------------------------------
50
圖3.8 台中縣霧峰及彰化縣永靖茄園內植食性昆蟲蟎在茄株上之生態席位寬度--------------------------------------------------------------------------
51
圖3.9 台中縣霧峰及彰化縣永靖茄園內捕食性昆蟲蟎在茄株上之生態席位寬度--------------------------------------------------------------------------
52
圖3.10 台中縣霧峰及彰化縣永靖茄園內植食性種類在茄株葉、花、果實上之群集分析------------------------------------------------------------------
53
圖3.11 台中縣霧峰及彰化縣永靖茄園內捕食性種類在茄株葉、花、果實上之群集分析------------------------------------------------------------------
54
圖3.12 台中縣霧峰及彰化縣永靖茄園內植食性種類在茄葉上之群集分析------------------------------------------------------------------------------------
55
圖3.13 台中縣霧峰及彰化縣永靖茄園內植食性種類在茄花上之群集分析 56
圖3.14 台中縣霧峰及彰化縣永靖茄園內植食性種類在茄果上之群集分析 57
圖3.15 台中縣霧峰及彰化縣永靖茄園內捕食性種類在茄葉上之群集分析 58
圖3.16 台中縣霧峰及彰化縣永靖茄園內捕食性種類在茄花上之群集分析 59
圖3.17 台中縣霧峰及彰化縣永靖茄園內捕食性種類在茄果上之群集分析 60
圖3.18 台中縣霧峰茄園內重要植食性種類在葉、花及果實上之數目消長 61
圖3.19 彰化縣永靖茄園內重要植食性種類在葉、花及果實上之數目消長 62
圖3.20 台中縣霧峰茄園內重要捕食性種類在葉、花及果實上之數目消長 63
圖3.21 彰化縣永靖茄園內重要捕食性種類在葉、花及果實上之數目消長 64
圖4.1 台中縣大里茄園施藥及不施藥管理其植食性種類各科級在茄株不同棲所上之相對豐量---------------------------------------------------------
92
圖4.2 台中縣大里茄園施藥及不施藥管理其捕食性種類各科級在茄株不同棲所上之相對豐量---------------------------------------------------------
93
圖4.3 台中縣大里茄園施藥及不施藥區植食性薊馬種類之發生頻度------ 94
圖4.4 台中縣大里茄園施藥及不施藥管理其重要植食性種類在葉部隨時間之消長變化------------------------------------------------------------------
95
圖4.5 台中縣大里茄園施藥及不施藥管理其重要植食性種類在花部隨時間之消長變化------------------------------------------------------------------
96
圖4.6 台中縣大里茄園施藥及不施藥管理其重要植食性種類在果實花萼隨時間之消長變化------------------------------------------------------------
97
圖4.7 台中縣大里茄園施藥及不施藥管理其重要捕食性種類在葉部隨時間之消長變化------------------------------------------------------------------
98
圖4.8 台中縣大里茄園施藥及不施藥管理其重要捕食性種類在花部隨時間之消長變化------------------------------------------------------------------
99
圖4.9 台中縣大里茄園施藥及不施藥管理其重要捕食性種類在果實花萼隨時間之消長變化------------------------------------------------------------
100
圖4.10 台中縣大里茄園施藥與不施藥區每週茄果產量及外觀品質的變化 101
圖4.11 台中縣大里茄園施藥及不施藥區植食性種類之生態席位寬度------ 102
圖4.12 台中縣大里茄園施藥及不施藥管理捕食性種類之生態席位寬度--- 103
圖4.13 台中縣大里茄園施藥及不施藥區內植食性及捕食性種類科級數、多樣性指數、均勻度及優勢種指數隨時間的變化---------------------
104
圖4.14 不同年度不同管理的茄園植食性及捕食性昆蟲蟎類群聚相似性分析---------------------------------------------------------------------------------
105
圖4.15 台中縣大里市茄園施藥區與不施藥區茄株生長情形----------------- 106
圖5.1 台中縣大里茄園施藥及不施藥區內植食性種類在未展開葉上的空間分散指數隨時間的變化---------------------------------------------------
130
圖5.2 台中縣大里茄園施藥及不施藥區內植食性種類在展開葉上的空間分散指數隨時間的變化------------------------------------------------------
131
圖5.3 台中縣大里茄園施藥及不施藥區內植食性種類在茄株花上的空間分散指數隨時間的變化------------------------------------------------------
132
圖5.4 台中縣大里茄園施藥區及不施藥區植食性種類不同共食群在茄株不同部位上之相對豐量------------------------------------------------------
133
圖5.5 台中縣大里茄園施藥及不施藥區內植食性種類不同取食同功群在未展開葉上隨時間之消長變化---------------------------------------------
134
圖5.6 台中縣大里茄園施藥及不施藥區內植食性種類不同取食同功群在展開葉上隨時間之消長變化------------------------------------------------
135
圖5.7 台中縣大里茄園施藥及不施藥區內植食性種類不同取食同功群在花上隨時間之消長變化------------------------------------------------------
136
圖5.8 台中縣大里茄園施藥及不施藥區內植食性種類不同共食群在未展開葉上的空間分散指數隨時間的變化------------------------------------
137
圖5.9 台中縣大里茄園施藥及不施藥區內植食性種類不同共食群在展開葉上的空間分散指數隨時間的變化---------------------------------------
138
圖5.10 台中縣大里茄園施藥及不施藥區內植食性種類不同共食群在花上的空間分散指數隨時間的變化---------------------------------------------
139
圖6.1 不同溫度下南黃薊馬雌蟲每日產卵數及累積頻度-------------------- 164
圖6.2 不同溫度下南黃薊馬之齡別-齡期存活率------------------------------- 165
圖6.3 不同溫度下南黃薊馬齡別存活率、齡別繁殖率、齡別繁殖值及雌成蟲之齡別-齡期繁殖值-----------------------------------------------------
166
圖6.4 不同溫度下南黃薊馬齡別-齡期繁殖值----------------------------------- 167
圖6.5 不同溫度下南黃薊馬之穩定齡別-齡期分布----------------------------- 168
圖6.6 台灣中部每月累積可供南黃薊馬成蟲前期發育所需的有效積溫估算值------------------------------------------------------------------------------
169
附圖6 1999-2002年農業試驗所台中縣霧峰農業氣象站每月最高、最低及平均氣溫之變化------------------------------------------------------------
170
dc.language.isozh-TW
dc.subject南黃薊馬zh_TW
dc.subject茄園zh_TW
dc.subject蟲害管理zh_TW
dc.subject群聚生態學zh_TW
dc.subjectcommunity ecologyen
dc.subjectThrips palmien
dc.subjecteggplanten
dc.subjectIPMen
dc.title台灣中部茄園蟲害管理之群聚生態學探討zh_TW
dc.titleA community approach to the eggplant integrated pest management in central Taiwanen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree博士
dc.contributor.oralexamcommittee洪淑彬,朱耀沂,張念台,吳文哲,李後晶
dc.subject.keyword茄園,蟲害管理,群聚生態學,南黃薊馬,zh_TW
dc.subject.keywordeggplant,IPM,community ecology,Thrips palmi,en
dc.relation.page194
dc.rights.note有償授權
dc.date.accepted2006-07-26
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept昆蟲學研究所zh_TW
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
3.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved