請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32315完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林啟萬(Chii-Wann Lin) | |
| dc.contributor.author | Yan-You Lin | en |
| dc.contributor.author | 林彥佑 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:42:21Z | - |
| dc.date.available | 2006-10-23 | |
| dc.date.copyright | 2006-07-31 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-26 | |
| dc.identifier.citation | [1] C. W. Macosko, “Rheology principles measurements and applications,” New York: VCH, 1993, ch. 6.
[2] P. L. O’Neill, G. W. Stachowiek, “A high shear rate, high pressure micro viscometer,” Tribology International, Vol. 29, pp. 547-557, 1996. [3] N. D. Cristescu, B. P. Conrad, R. Tran-Son-Tay, “A closed form solution for falling cylinder viscometers,” International Journal of Engineering Science, Vol. 40, pp. 605-620, 2002. [4] S. K. Kawatra, A. K. Bakshi, T. E. Miller Jr., “Rheological characterization of mineral suspensions using a vibrating sphere and a rotational viscometer,” International Journal of Mineral Processing, Vol. 44-45, pp. 155-165, 1996. [5] C. Leyh, R. C. Ritter, “New viscosity measurement: the oscillating magnetically suspended sphere,” Rev. Sci. Instrum., Vol. 55, pp. 570, 1984. [6] H. H. Hull, “The band viscometer,” J. Coll. Sci., Vol. 7, pp. 316, 1952. [7] G. R. Paul, “Optical determination of the high pressure refractive index and viscosity of liquids entrapped in point contacts,” Ph.D. Thesis, University of London, 1972. [8] http://www.gardco.com/navigation.html [9] M. Madou, “Fundamentals of Microfabrication,” Boca Raton, FL: CRC, 1997, ch. 9. [10] G. T. A. Kovacs, “Micromachined Transducers Sourcebook,” New York: McGraw- Hill, 1998, ch. 9. [11] C. -M. Ho, “Fluidics-the link between micro and nano sciences and technologies-,” Proc. IEEE Int. Conf. MEMS, Interlaken, Switzerland, pp. 375–384, Jan. 2001. [12] J. Lee, H. Moon, J. Fowler, T. Schoellhammer, C. J. Kim, “Electrowetting and electrowetting- on- dielectric for microscale liquid hadling,” Sensors and Actuators, Physics A, Vol. 95, pp. 259-268, 2002. [13] S. K. Cho, H. Moon, C. J. Kim, “Creating, Transporting, Cutting, and Merging Liquid Droplet by Electrowetting- Based Actuation for Digital Microfluidic Circuits,” Journal of MEMS, Vol. 12, pp. 70-79, 2003. [14] J. Lee, C. J. Kim, “Surface- Tension- Driven Microactuation Based on Continuous Electrowetting,” Journal of MEMS, Vol. 9, pp. 171-180, 2000. [15] H. Moon, S. K. Cho, R. L. Garrell, C. J. Kim, “Low voltage electrowetting on dielectric,” Journal of Applied Physics, Vol. 92, No. 7, pp. 4080-4087, Oct. 2002. [16] P. Paik, V. K. Pamula, M. G. Pollack, R. B. Fair, “Electrowetting- based droplet mixers for microfluidic system,” Lab Chip, Vol. 3, pp. 28-33, 2002. [17] M. G. Pollack, A. D. Shenderov, R. B. Fair, “Electrowetting- based actuation of droplets for integrated microfluidics,” Lab Chip, Vol. 2, pp. 96-101, 2002. [18] R. Feynman, R. B. Leighton, M. L. Sands, “The Flow of Wet Water,” The Feynman Lectures on Physics, Massachusetts: Addison- Wesley, 1964, ch. 41. [19] Y. F. Kuo, “Electrical and Optical Properties of Radio- Frequency Magnetron Sputtered High Dielectric Constant Oxide Films,” Ph.D. Thesis, National Chiao Tung University, 1999. [20] http://www2.dupont.com/DuPont_Home/en_US/ [21] http://ibme.mc.ntu.edu.tw/TBproject/NP-Frameset.htm [22] J. Lienemann, A. Greiner, J. G. Korvink, “Electrode Shapes for Electrowetting Arrays,” Nanotech, Vol. 1, pp. 94-97, 2003. [23] C. H. Lin, G. B. Lee, B. W. Chang, G. L. Chang, “A new fabrication process for ultra- thick microfluidic microstructures utilizing SU- 8 photoresist,” Journal of Micromechanics and Microengineering, Vol. 12, pp. 590-597, 2002. [24] R. J. Wojnarowski, H. S. Cole, R. J. Saia, T. B. Gorczyca, E. W. Balch, “Systems for patterning dielectrics by laser ablation,” U.S. Patent 5302547, Apr. 12, 1994. [25] http://hypertextbook.com/physics/matter/viscosity/ | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32315 | - |
| dc.description.abstract | 在目前的生醫檢測上,所要求待測物的量越來越少,而檢測儀器也相對需要微型化的設計。傳統黏滯計的設計,大部份是利用機械力或是電磁力的方式驅動流體,而在這篇研究裡,所設計的微型化黏滯計則以Electrowetting on Dielectric (EWOD)的方法,施加電場改變流體與流道間的表面張力使液體流動,並利用液體在微流道裡的速度梯度,可以量測約10 μl溶液的黏滯係數。
我們設計兩種不同的晶片,晶片面積均為2.3 cm × 2.3 cm,分別為直線形與弧形的流道,各有四種不同大小的電極和三種不同寬度的流道,以標準的微機電製程製作晶片,量取不同的流速梯度套入公式中求得黏滯係數。EWOD中的介電層是一種高介電係數的材料—BST (Ba0.7Sr0.3TiO3),可以降低所需要供給的電壓,其介電係數範圍從120到200,並在表面塗佈一層斥水性的聚合物—鐵氟龍。從數值的模擬模擬結果,外加20伏特電壓,可以量測溶液的流速範圍是5 ~ 140 mm/sec,而黏滯係數範圍為0.5×10-3 ~ 2×10-3 Pa-s。實驗結果則是以生理食鹽水在直線形的流道中施加15伏特的電壓,得到的流速0.3167~0.66 mm/s以及粘滯係數40.26 Pa-s。 | zh_TW |
| dc.description.abstract | Nowadays, the bio- medical analysis requires fewer amount of sample, and the analysis device should be scaled down as well. The traditional viscometers utilize mechanical forces from the motors and electro- magnetic forces in the channel mostly. However, in this study, the micro viscometer uses Electrowetting on Dielectric (EWOD) to change the surface tension between liquid and channel and uses liquid velocity gradient in the channel to find the viscosity coefficient with the volume of 10 μl.
In this paper, we use electrowetting on dielectric (EWOD) to drive the liquids. There are four different sizes of electrode on a 2.3 cm× 2.3 cm chip, and two kinds of channel to measure the velocity gradient for the viscosity coefficient. The device is fabricated by means of micro electro mechanic system (MEMS) technology. The dielectric layer of EWOD is a high dielectric constant material — BST (Ba0.7Sr0.3TiO3), which ranges from 120 to 200 therefore reducing the required applied voltage, with hydrophobic polymer (Teflon® AF) coated on surface. Our simulation results indicate the feasibility of this device for various solutions with viscosity coefficient in the range of 0.5×10-3 ~ 2×10-3 Pa-s, which corresponds to the velocity ranging from 5 to 140 mm/sec by applying 20 volts to the devices. The experiment results show that saline can be pulled in linear channels by applying a voltage of 15 volts with a velocity 0.3167~0.66 mm/s and viscosity coefficient 40.26 Pa-s. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:42:21Z (GMT). No. of bitstreams: 1 ntu-95-R93921058-1.pdf: 6868265 bytes, checksum: a49ef6c106d37df2b743dd24404e5839 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 中 文 摘 要 i
Abstract ii 誌 謝 iii Contents iv Table & Chart Captions vi Figure Captions vii Abbreviations and Symbols ix Chapter 1 Introduction 1 1.1 General Background 1 1.2 Motivation 3 Chapter 2 Theory and Principle 4 2.1 Viscosity Coefficient 4 2.1.1 Static State Model 4 2.1.2 Dynamic State Model 5 2.1.3 Circular Model 6 2.2 Electrowetting Methods 7 2.2.1 Continuous Electrowetting 9 2.2.2 Electrowetting 10 2.2.3 Electrowetting on Dielectric 12 2.2.4 Comparison 13 Chapter 3 Experiment Procedure 15 3.1 Material 15 3.1.1 BST (Ba0.7Sr0.3TiO3) 15 3.1.2 Teflon® AF 16 3.2 Equipments 17 3.2.1 E-beam Evaporator 18 3.2.2 Sputtering System 18 3.2.3 Scanning Electron Microscopy (SEM) 19 3.2.4 Ellipsometer (EP3) 19 3.3 Device Design and Layout 20 3.3.1 Electrodes Design 20 3.3.2 Channel Design 21 3.3.3 Layouts and Masks 23 3.4 Fabrication Process 28 3.4.1 Substrate Cleaning Process 30 3.4.2 Spin Coating Process 31 3.4.3 Photolithography Process 34 3.4.4 Etching Process 36 3.4.5 Device Bonding 37 Chapter 4 Results and Discussion 39 4.1 Simulation Results 39 4.2 Experiment Results 41 4.2.1 BST Results 41 4.2.2 Teflon® AF Results 44 4.2.3 Process Results 45 4.2.4 Functional Results 50 4.3 Discussions 54 Chapter 5 Conclusions 58 References 59 | |
| dc.language.iso | en | |
| dc.subject | 電濕潤 | zh_TW |
| dc.subject | 黏滯計 | zh_TW |
| dc.subject | 微機電 | zh_TW |
| dc.subject | 微流道 | zh_TW |
| dc.subject | Electrowetting | en |
| dc.subject | viscometer | en |
| dc.subject | MEMS | en |
| dc.subject | microfluid channel | en |
| dc.title | 電濕潤微黏滯計之研發 | zh_TW |
| dc.title | Research and Development of ElectroWetting Micro Viscometer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊龍杰(Lung-Jieh Yang),范士岡(Shih-Kang Fan),王安邦,莊曜宇(Eric Y. Chuang),謝豐舟 | |
| dc.subject.keyword | 電濕潤,黏滯計,微機電,微流道, | zh_TW |
| dc.subject.keyword | Electrowetting,viscometer,MEMS,microfluid channel, | en |
| dc.relation.page | 61 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-26 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 6.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
