請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32309完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 關秉宗(Biing Tzung Guan) | |
| dc.contributor.author | Jing-Ling Weng | en |
| dc.contributor.author | 翁菁羚 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:42:02Z | - |
| dc.date.available | 2006-11-13 | |
| dc.date.copyright | 2006-07-31 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-25 | |
| dc.identifier.citation | 林珈吟。2003。塔塔加地區土壤中氮的礦化與硝化作用。國立臺灣大學森林學研究所碩士論文。
洪維鍊。2001。塔塔加土壤微生物多樣性及族群之探討。國立臺灣大學農業化學研究所碩士論文。p. 52-53。 Anderson, J.M., and T. Spencer. 1991. Carbon, Nutrient and Water Balances of Tropical Rainforests Subject to Disturbance UNESCO, Paris, France. Benbi, D.K., and J. Richter. 2002. A critical review of some approaches to modelling nitrogen mineralization. Biology and Fertility of Soils 35:168-183. Boer, W.D., and G.A. Kowalchuk. 2001. Nitrification in acid soil: micro-organisms and mechanisms. Soil Biology and Biochemistry 33:853-866. Bohn, H.L., B.L. Mcneal, and G.A. O' Connor. 1985. Soil chemistry. 2 nd ed. John Wiley & Sons. Bonde, T.A., and T. Rosswall. 1987. Seasonal-variation of potentially mineralizable nitrogen in 4 cropping systems. Soil Science Society of America Journal 51:1508-1514. Bremmer, J.M. 1965. Total nitrogen, In: C.A. Black et al. (eds.) Methods of Soil Analysis Part 2 Chemical and Microbological Properties. Soil Sci Soc. Am., Madison, WI, pp. 1149-1178. Broadbent, F.E. 1986. Empirical Modeling of Soil-Nitrogen Mineralization. Soil Science 141:208-213. Curtin, D., and G. Wen. 1999. Organic matter fractions contributing to soil nitrogen mineralization potential. Soil Sci Soc Am J 63:410-415. De Willigen, P. 1991. Nitrogen turnover in the soil-crop system - comparison of 14 simulation-models. Fertilizer Research 27:141-149. Deans, J.R., J.A.E. Molina, and C.E. Clapp. 1986. Models for predicting potentially mineralizable nitrogen and decomposition rate constants. Soil Science Society of America Journal 50:323-326. Dicostya, R.J., D.P. Welikyb, S.J. Andersonc, and E.A. Pauld. 2003. 15N-CPMAS nuclear magnetic resonance spectroscopy and biological stability of soil organic nitrogen in whole soil and particle-size fractions. Organic Geochemistry 34:1635-1650. Eno, C.F. 1960. Nitrate production in the field by incubating the soil in polyethylene bags. Soil. Sci. Soc. Am. Proc. 24:277-279. Gee, G.W., and J.W. Bauder. 1986. Particle-size analysis, In: A Klute (eds.) Method of soil analysis. Part 1. Physical and Mineralogical Methods, 2 nd ed. Soil Sci Soc. Am., Madison, WI, pp. 404-408. Hart, S.C., J.M. Stark, E.A. Davidson, and M.K. Firestone. 1994. Nitrogen mineralization, immobilization, and nitrification, In: (eds.) Methods of Soil Analysis, Part 2. Microbiological and Biochemical Properties, Vol. 5. Soil Sci Soc. Am., Madison, WI, pp. 985-1018. Hawker, L.E., and A.H. Linton. 1979. Micro-organisms : function, form, and environment. 2nd ed. Edward Arnold, London. Hopkins, W.G. 1999. Introduction to Plant Physiology John Wiley and Sons, New York, NY. Ivarson, K.C., and M. Schnitzer. 1979. Biodegradability of the unknown soil-nitrogen. Canadian Journal of Soil Science 59:59-67. Jaffe, D.A. 1992. The nitrogen cycle, In: G.V. Wolfe (eds.) Global Biogeochemistry Cycles. Academic Press, New York, NY, pp. 263-284. Janzen, H.H., S.A. Campbell, G.P. Brandt, Lafond, and S. L.T. 1992. Light fraction organic matter in soils from long term rotations. Soil Sci Soc Am J 56:1799-1806. Jeschke, G., and M. Jansen. 1998. High-resolution 14N solid-state NMR spectroscopy. Angewandte Chemie International Edition 37:1282-1283. Jokic, A., J.N. Cutler, D.W. Anderson, and F.L. Walley. 2004. Detection of heterocyclic N compounds in whole soils using N-XANES spectroscopy. Canadian Journal of Soil Science 84:291-293. Jones, C.A. 1984. Estimation of an active fraction of soil nitrogen. Commun. in Soil Sci Plant Anal. 15:23-32. Jones, D.L., A.G. Owen, and J.F. Farrar. 2002. Simple method to enable the high resolution determination of total free amino acids in soil solutions and soil extracts. Soil Biology and Biochemistry 34:1893-1902. Keeney, D.R., and D.W. Nelson. 1982. Nitrogen-inorganic forms, In: Page A.L. et al. (eds.) Methods of Soil Analysis. Part 2 Chemical and Microbological Properties, 2 nd ed. Soil Sci Soc. Am., Madison, WI, pp. 643-698. Kelemen, S.R., M. Afeworki, M.L. Gorbaty, and P.J. Kwiatek. 2002. XPS and 15N NMR study of nitrogen forms in carbonaceous solids. Energy and Fuels 16:1507-1515. Killham, K. 1994. Soil Ecology Cambridge University Press, Cambridge, New York. Kozlowski, T.T. 1985. Tree growth in response to environment stresses. J. Arboric 11:97-111. Krom, M.D. 1980. Spectrophotometric determination of ammonia - a study of a modified berthelot reaction using salicylate and dichloroisocyanurate. ANALYST 105:305-316. Learch, R.N., K.A. Barbarick, L.E. Sommers, and D.G. Westfall. 1992. Sewage sludge proteins as a labile carbon and nitrogen sources. Soil Science Society of America Journal 51:946-951. Leinweber, P., and H.R. Schulten. 1997. Nonhydrolyzable organic nitrogen in soil size seprates: Changes due to management practices and identification by analytical pyrolysis. Soil Science Society of America Journal. Leinweber, P., and H.R. Schulten. 2000. Nonhydrolyzable forms of soil organic nitrogen: Extractability and composition. Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 163:433-439. Marion, G.M., and C.H. Black. 1987. The effect of time and temperature on nitrogen mineralization in arctic tundra soils. Soil Science Society of America Journal 51:1501-1508. Mcdowell, W.H. 2003. Dissolved organic matter in soils - future directions and unanswered questions. Geoderma 113:179-186. Mclean, E.O. 1982. Soil pH and lime requirment, In: A.L. Page et al. (eds.) Methods of Soil Analysis. Part 2 Chemical and Microbological Properties, 2 nd ed. Soil Sci Soc. Am., Madison, WI, pp. 199-223. Mengel, K. 1996. Turnover of organic nitrogen in soils and its availability to crops. Plant and Soil 181:83-93. Molina, J.A.E., C.E. Clapp, and W.E. Larson. 1980. Potentially mineralizable nitrogen in soil - the simple exponential model does not apply for the first 12 weeks of incubation. Soil Science Society of America Journal 44:442-443. Mulvaney, R.L. 1996. Nitrogen-Inorganic forms, In: D.L. Sparks et al. (eds.) Methods of soil analysis, Part 3. Chemical Methods. SSSA and ASA, Madison, WI, pp. 1123-1184. Mulvaney, R.L., and S.A. Khan. 2001. Diffusion methods to determine different forms of nitrogen in soil hydrolysates. Soil Science Society of America Journal 65:1284-1292. Murphy, D.V., A.J. Macdonald, E.A. Stockdale, K.W.T. Goulding, S. Fortune, J.L. Gaunt, P.R. Poulton, J.A. Wakefield, C.P. Webster, and W.S. Wilmer. 2000. Soluble organic nitrogen in agricultural soils. Biology and Fertility of Soils 30:374-387. Nadelhoffer, K.J., J.D. Aber, and J.M. Melillo. 1983. Leaf-litter production and soil organic-matter dynamics along a nitrogen-availability gradient in southern Wisconsin. Canadian Journal of Forest Research 13:12-21. Olson, R.A., and L.T. Kurtz. 1982. Crop nitrogen requirments, utilization, and fertilization, In: F.J. Stevenson (eds.) Nitrogen in Agricultural Soils. American Society of Agronomy, Madison, WI, pp. 567-604. Paul, E.A., and F.E. Clark. 1996. Soil Microbiology and Biochemistry. 2nd ed. Academic press, USA. Pinheiro, J.C., and D.M. Bates. 2000. Mixed-Effects Models in S and S-Plus Springer-Verlag, New York. Pinheiro, J.C., D.M. Bates, S. Debroy, and D. Sarkar. 2005. nlme: Linear and nonlinear mixed effects models. R package version 3.1-65. Post, W.M., J. Pastor, P.J. Zinke, and A.G. Stangenberger. 1985. Global patterns of soil-nitrogen storage. Nature 317:613-616. R Development Core Team. 2005. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria [online]. Available from http://www.r-project.org. Reddy, K.S., M. Singh, A.K. Tripathi, and M.N. Saha. 2003. Changes in amount of organic and inorganic fractions of nitrogen in an Eutrochrept soil after long-term cropping with different fertilizer and organic manure inputs. Journal of Plant Nutrition and Soil Science 166:232-238. Rhoades, J.D. 1982. Cation exchangeable capacity, In: A.L. Page et al. (eds.) Methods of Soil Analysis. Part 2 Chemical and Microbological Properties, 2nd ed. Soil Sci Soc. Am., Madison, WI., pp. 149-157. Schmiers, H., J. Friebel, P. Streubel, R. Hesse, and R. Kopsel. 1999. Change of chemical bonding of nitrogen of polymeric N-heterocyclic compounds during pyrolysis. Carbon 37:1965-1978. Schulten, H.R., and M. Schnitzer. 1998. The chemistry of soil organic nitrogen: a review. Biology and Fertility of Soils 26:1-15. Standford, G., and C.J. Smith. 1976. Estimation potentially mineralizable soil nitrogen from a chemical index of soil nitrogen availability. Soil Sci 122:71-76. Stevenson, F.J. 1982. Nitrogen-Organic forms, In: A.L. Page et al. (eds.) Methods of Soil Analysis. Part 2 Chemical and Microbological Properties, 2 nd ed. Soil Sci Soc. Am., Madison, WI, pp. 625-641. Stevenson, F.J. 1994. Humus chemistry: Genesis, Composition, Reactions. 2nd ed. John Wiley and Sons, New York. Sylvia, D.M., J.J. Fuhrmann, P.G. Hartel, and D.A. Zuberer. 2005. Principles and Applications of Soil Microbiology. 2 nd ed. Prentice Hall, Englewood Cliffs, NY. Tate, R.L. 1995. Soil Microbiology John Wiley and Sons, New York. Thomas, G.W. 1982. Exchangeable cation, In: A.L. Page et al. (eds.) Methods of Soil Analysis. Part 2 Chemical and Microbological Properties, 2nd ed. Soil Sci Soc. Am., Madison, WI, pp. 149-157. Waggoner, P.J., and D.A. Zuberer. 1996. Response of nitrification and nitrifying bacteria in mine spoil to urea or ammonium sulfate. Soil Science Society of America Journal 60:477-486. Wang, W.J., C.J. Smith, P.M. Chalk, and D.L. Chen. 2001. Evaluating chemical and physical indices of nitrogen mineralization capacity with an unequivocal reference. Soil Science Society of America Journal 65:368-376. Wang, W.J., C.J. Smith, and D. Chen. 2003. Towards a standardised procedure for determining the potentially mineralisable nitrogen of soil. Biology and Fertility of Soils 37:362-374. Wang, W.J., C.J. Smith, and D. Chen. 2004. Predicting soil nitrogen mineralization dynamics with a modified double exponential model. Soil Science Society of America Journal 68:1256-1265. Waring, R.H., and W.H. Schlesinger. 1985. Forest Ecosystems-Concepts and Management Academic Press, Orlando, Fla. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32309 | - |
| dc.description.abstract | 森林生態系內,氮常成為植物生長的限制因子。而可供植物利用的無機態氮來自於氮礦化作用的進行,因此評估森林土壤的氮礦化潛勢,可作為管理林地生產力的指標。本研究目的在於研究造成塔塔加地區三林區內氮礦化速率差異的主要因子,期望將來能夠藉由控制林地氮礦化速率來提高林地生產力。本研究先進行一年的現地孵育試驗以瞭解雲杉林區、鐵杉林區以及二葉松林區氮礦化速率的差異,結果顯示雲杉林區的氮礦化速率最高。而後分析三林區土壤的基本理化性質及有機態氮組成,再進行短期室內孵育以評估各林區的氮礦化潛勢及氮礦化速率,以探討礦化基質與氮礦化作用的關係,最後再以此為依據討論造成三林區氮礦化速率差異的主因。觀察各樣點四週室內孵育的無機態氮濃度與土壤基本理化性質及氮劃分間的相關性,四週礦化出的無機態氮濃度與全碳及陽離子置換容量呈正相關(r2=0.88, 0.79, p<0.01),與黏粒含量呈負相關(r2=-0.71, p<0.01)。而氮劃分方面,除了水解未知氮,與各類型有機態氮皆呈正相關(r2=0.77~0.87, p<0.01)。除此之外,不同於傳統簡單函數模式估算法,本研究利用三參數漸進混合效應模式估算四週無機態氮濃度隨時間的變化,估算結果顯示所有樣點氮礦化潛勢在時間無限大時會趨近一個定值,而影響氮礦化速率的最顯著的因子為胺基酸態氮含量,此外本模式較傳統估算法多了初始礦化濃度的估算,而影響初始礦化濃度最顯著的因子為全碳量。綜合以上結果與其他在塔塔加地區的相關研究,探討造成現地雲杉林區氮礦化速率較高的原因。由室內孵育結果顯示,雲杉林區與二葉松林區的全碳量及各有機氮的含量皆比鐵杉林區高,因此造成礦化速率較高。而室內孵育結果顯示二葉松林區因含有較高的胺基酸態氮而使氮礦化速率較雲杉林區高,然現地的雲杉林區土壤較二葉松林區有較高的通氣量及含水量,使得硝化速率較快,因此造成現地的氮礦化速率以雲杉林區最高。 | zh_TW |
| dc.description.abstract | Nitrogen mineralization is the soil process which organic nitrogen converted to inorganic nitrogen. The purposes of this study are to investigate the effects of soil organic N forms on N mineralization of three coniferous forests, Morrison spruce forest (Picea morrisonicola Hay.), Chinese hemlock forest (Tsuga chinensis var. formosana), Taiwan red pine forest (Pinus taiwanensis Hay.) in the Ta-Ta-Chia area, central taiwan. First, the N mineralization rate of mineral soil (10-20 cm) in spruce, hemlock and pine forest sites was monitored by field incubation for one year. Secondly, the content of different organic N forms, including total hydrolysable N, acid insoluble N, ammonium N, amino sugar N, amino acid N, hydrolysable unknown N, of three forest soils was analyzed. Thirdly, a short term lab incubation under 25oC and 55% WHC was used to determine the kinetics of N mineralization of three forest soils. The N mineralization potential and N mineralization rate constant is estimated through fitting N mineralization curve by the three parameter asymptotic mix effect model. The relationship between different organic N forms with N mineralization under lab incubation was evaluated to find out the major factor for soil N mineralization. Finally, the observation in lab incubation was adapted to explain the effect of different N species on the N mineralization in field. The results of lab incubation show the most important factor influencing the N mineralization rate is the content of amino acid N. However, the N mineralization rate by field incubation showed following trends : spruce forest > pine forest ≒ hemlock forest. Although the content of amino acid N in pine forest was higher than that of spruce forest, the N mineralization rate was still lower than spruce forest. It may be because spruce forest soils has better aeration and higher water content leading higher mineralization and nitrification rates. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:42:02Z (GMT). No. of bitstreams: 1 ntu-95-R92625029-1.pdf: 1371595 bytes, checksum: adb639cdf1325f0b8c3a8e2961077269 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 目錄
中文摘要 -------------------------------------------- I Abstract -------------------------------------------- II 目錄 ------------------------------------------------- III 表次 ------------------------------------------------- VI 圖次 ------------------------------------------------- V 第一章、 前言 第一節、氮對植物的重要性及其循環途徑 ----------------- 1 第二節、氮礦化作用------------------------------------- 4 (一)、銨化作用 --------------------------------------- 4 (二)、硝化作用 --------------------------------------- 7 第三節、土壤中有機態氮的測定 -------------------------- 8 (一)、有機態氮的劃分 --------------------------------- 8 (二)、其他測定有機態氮的方法 -------------------------- 8 第四節、土壤氮礦化潛勢的預測 -------------------------- 10 第五節、研究目的 ------------------------------------- 12 第二章、材料與方法 第一節、試驗地描述 ----------------------------------- 13 第二節、土壤採樣及樣本處理 ---------------------------- 17 第三節、土壤基本理化性質分析 ------------------------- 18 第四節、有機氮劃分 ----------------------------------- 21 第五節、室內孵育實驗 --------------------------------- 24 第六節、野外孵育試驗 --------------------------------- 25 第七節、統計與分析 ---------------------------------- 27 第三章、塔塔加地區土壤分析結果 第一節、土壤基本理化性質 ----------------------------- 28 第二節、有機氮劃分 ----------------------------------- 31 第三節、以室內孵育結果預測氮礦化潛勢 ------------------ 36 第四章 討論 第一節、土壤性質對塔塔加地區氮礦化作用的影響 --------- 43 第二節、土壤有機質對氮礦化的影響 --------------------- 45 第三節、影響野外孵育氮礦化作用的因子 ----------------- 51 第五章 結論與建議 ------------------------------------- 55 參考文獻 ---------------------------------------------- 56 附錄 -------------------------------------------------- 62 | |
| dc.language.iso | zh-TW | |
| dc.subject | 非線性混合效應模式 | zh_TW |
| dc.subject | 土壤有機氮 | zh_TW |
| dc.subject | 氮劃分 | zh_TW |
| dc.subject | 氮礦化 | zh_TW |
| dc.subject | nonlinear mix-effect model | en |
| dc.subject | soil organic nitrogen | en |
| dc.subject | nitrogen fraction | en |
| dc.subject | N mineralization | en |
| dc.title | 土壤有機氮形態對臺灣中部三種針葉林土壤氮礦化作用之影響 | zh_TW |
| dc.title | Effects of Soil Organic Nitrogen forms on Nitrogen Mineralization of Three Coniferous Forests Types in Central Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 王明光(Ming-Kuang Wang) | |
| dc.contributor.oralexamcommittee | 金恆鑣(Hen-Biau King),邱志郁(Chih-Yu Chiu),楊秋忠(Chiou-Jung Young) | |
| dc.subject.keyword | 土壤有機氮,氮劃分,氮礦化,非線性混合效應模式, | zh_TW |
| dc.subject.keyword | soil organic nitrogen,nitrogen fraction,N mineralization,nonlinear mix-effect model, | en |
| dc.relation.page | 66 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-26 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
