請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32300完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 童慶斌 | |
| dc.contributor.author | YUN JU CHEN | en |
| dc.contributor.author | 陳韻如 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:41:33Z | - |
| dc.date.available | 2007-07-28 | |
| dc.date.copyright | 2006-07-28 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-26 | |
| dc.identifier.citation | Aarts, E. H. L., P. J. M. Van Laarhoven, 1985, “Statistical Cooling: A General Approach to Combinatorial Optimization Problems”, Philips Journal Research, v.40, p.193-226.
American Public Health Association, Inc., 1985, “Standard methods for the examination of water and wastewater”, American Public Health Association (16th edition). Ayers, M. A., D. M. Wolock, G. J. McCabe, L.E. Hay, and G. D. Tasker, 1994, “Sensitivity of Water Resources in the Delaware River Basin to Climate Variability and Change”, U. S. Geological Survey Water Supply Paper 2442. Baginska, B., W. Milne-Home, and P. S. Cornish, 2003, “Modelling nutrient transport in Currency Creek, NSW with AnnAGNPS and PEST”, Environ. Model. & Software, v.18, p.801–808. Barbier, E. B., 1989, “Economics, natural-resource scarcity and development: Conventional and alternative views”, London: Earthscan. Bayer, M. B., 1977, “A modeling method for evaluating water quality policies in nonserial river streams”, Water Resources Bulletin, 13(6), p.1141-1151. Bicknell, B.R., J.C. Imhoff, J.L. Kittle, Jr., A.S. Donigian, Jr., and Johanson, R.C., 1997, “Hydrological Simulation Program--Fortran: User's manual for version 11”: U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, Ga., EPA/600/R-97/080. Boonyatharokol W, W. R. Walker, 1979, “Evapotranspiration under. depleting soil moisture”, J Irrig Drain Div ASCE, v.105, p.391-402. Brill, ED, Jr., JC Liebman, and. C. S. ReVelle, 1976, “Equity. measures for exploring water. quality. management alternatives”, Water Resour. Res., v.12, p.845-851. Brown, L. and T. O. Barnwell, Jr., 1987. “The Enhanced stream water quality models QUAL2E and QUAL2E-UNCAS: Documentation and user manual”, EPA/600/3-870007. U.S. Environmental Protection Agency. Burn, D. H. and J. S. Yulianti, 2004, “Waste-load allocation using genetic algorithms, Environmental Geology”, v.45, p.323-338 Chapra, S. C., 1977, “Surface Water-Quality Modeling”, McGraw-Hill Book Co. Churchill, M.A., H.L. Elmore and R.A. Buckingham, 1962, “The prediction of stream reaeration rates”, International Journal of air and water pollution, v.6, p.467-504. Commission of the European Communities, 2002, “Report COM407: The Implementation of Council Directive 91/676/EEC concerning the Protection of Waters against Pollution caused by Nitrates from Agricultural Sources. Commonwealth Environment Protection Agency, 1994, “Assessment of Cumulative Impacts and Strategic Assessment in Environmental Impact Assessment”, Commonwealth Environmental Protection Agency, Barton, ACT 2600, Australia. Council on Environmental Quality, 1997, “Considering cumulative effects under the National Environmental Policy Act”. Di Toro, D.M., 1969, “Stream Equations and Method of Characteristics”, J. Sanitary Division. ASCE (95), p.699-703. Dobbin, W. E.., 1964, “BOD and Oxygen relationship in Stream, J. Sanit Eng. Div., ASCE, 90(SA3), p.53-78”. Dougherty, D. E. and R. A. Marryott, 1991, “Optimal groundwater management, 1, Simulated annealing”, Water resources research, 27(10), p.2493-2508. Drocl, A. and J. Z Koncan, 1999, “Calibration of QUAL2e model for the Sava River (Slovenia)”, Water Science and Technology, 40(10), p.111-118. Eheart, J. W., 1980, “Cost efficiency of transferable discharge permits for the control of BOD discharges”, Water Resour. Res., v.16, p.980–989. Ellis, J. H., 1987, “Stochastic water quality optimization using imbedded chance constraints”, Water Resour. Res., 23(12), p.2227–2238. European Commission, 2000, “Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy”, Official Journal of the European Union L327, 1 /72, 22nd December. European Commission, 2001, “SEA and Integration of the Environment into Strategic Decision-Making Final Report Volume 1, 2, & 3. European Commission, 2001, “The SEA Directive 2001/42/EC of the European Parliament and of the Council on the Assessment of the Effects of Certain Plans and Programmes on the Environment’, the Official Journal L197. Feldmann L., M. Vanderhaegen, C. Pirotte, 2001, “The EU's SEA Directive: status and links to integration and sustainable development”, Environmental Impact Assessment Review,v.21, p.203-222 Ghosh, N. C. and E. A. Mcbean, 1998, “Water quality modeling of the Kali River, India”, Water, Air and Soil Pollution, v.102, p.91-103. Haith, D. A. and L. L. Shoemaker, 1987, ”Generalized Watershed Loading Functions for Stream Flow Nutrients”, Water Resources Bulletin, 23(3), p.471-478. Hamon, W. R., 1961, “Estimating potential evapotranspirtation”, Proceedings of the American Society of Civil Engineers, Journal of the Hydraulics Division 87(HY3), p.107-120. Hulsurkar, S., M. P.Biswal, and S. B. Sinha, 1997“Fuzzy programming approach to multi-objective stochastic linear programming problems”, Fuzzy Sets and Systems, v.88, p 173-181. HydroQual, Inc., 1983, “Before and after comparisons of water quality following Municipal treatment plant improvements”, USEPA, Office of Water Prog. Operations, Facility Requirements Div., Washington, D.C. IPCC, Working Group I., 2001 : Climate change ,2001-The Scientific Basis:“Contribution of Working Group I, to the third Assessment Report of the Intergovernmental Panel on Climate Change “,Edited by J.T. Houghton, Y. Ding ,D.J.Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, C.A. Johnson, Cambridge University Press , Cambridge.. IUCN/UNEP/WWF, 1991. “Caring for the Earth.A Strategy for Sustainable Living”, London: Earthscan. Jarvie, M., B. Solomon, 1998, “Point-nonpoint effluent trading in watersheds: a review and critique - Nonpoint source pollution demonstration project on lower Boulder Creek, Colorado”, Environmental Impact Assessment Review, 18(2), p.135-157. Kirkpatrick, S., 1984, “Optimization by simulated annealing: Quantitative Studies”, J. Stat. Phys, 34(5/6), p.671-680. Kirkpatrick, S., Gelatt, C., M. Vecchi, 1983, “Optimization by simulated annealing”, Science ,v.220, p.671-680. Lawrence, D. P., 1997, “Integrating sustainability and environmental impact assessment”,.Environmental Management, v.21, p.23-42. Leopold, L. B., and T. Jr. Maddock, 1953, “The Hydraulic Geometry of Stream Channels and Some Physiographic Implications”, U.S. Geological Survey Professional Paper 252, Washington, D. C. Liebman, J. C. and W. R. Lynn, 1966, “The optimal allocation of stream dissolved oxygen”, Water Resour. Res., 2(3), p.581-591. Lohani, B. N. and Adulbhan, P., 1979, “A multi-objective model for regional water quality management”, Water Resources Bulletin, 15(4), p.1028-1038. Loucks, D. P., C. S. ReVelle, and W. R. Lynn, 1967, “Linear programming models for water pollution control”, Mgmt. Sci., 14(4), p.B-166–B-181. Mays, L.W. A. and Y. K. Tung, 1992, “Hydrosystems Engineering and Management”, McGraw-Hill Book Co.. Meadows, D.H., D. L. Meadows, J. Randers, and W. W. Behrens, 1972, “The Limits to Growth”, Universe Books, New York. Mimikou, M.A., E. Baltas, E. Varanou and K. Pantazis, 2000, ”Regional impacts of climate change on water resources quantity and quality indicators”, Journal of Hydrology, v.234, p.95–109. Morrill, J. C., R. C. Bales, and M. H. Conklin, 2005, “Estimating stream temperature from air temperature: Implications for future water quality”, Journal of Environmental Engineering, 131(1), p.139-146. Murdoch, P. S., J. S. Baron and T. L. Miller, 2000, “Potential effects of climate change on surface-water quality in North America.”, Journal of the American Water Resources Association, 36(2), p.347-366. Neitsch, S.L., J.G. Arnold, J.R. Kiniry, and J.R. Williams, 2001, “Soil and Water Assessment Tool User's Manual Version 2000”, U.S. Department of Agriculture, Agricultural Research Service, Temple, TX. Ng, T. L. and J. W. Eheart, 2005, “Effects of Discharge Permit Trading on Water Quality Reliability”, Journal of Water Resources Planning and Management, 131(2),p.81-88. O’Connor, D. J., 1963, “Oxygen Balance of an Estuary”, J. of Sani. Eng. Div., ASCE, 86(SA3), p.35-55. O’Connor, D. J., 1967, “The Temporal and Spatial Distribution of Dissolved Oxygen in Stream”, J. Sanit Eng. Div., ASCE, 93(SA1), p.1-46. O'Connor, D.J., and W.E., 1958, “Dobbins, Mechanism of Reaeration in Natural Streams”, Trans, ASCE, v.123, p.641-684. Ogrosky, H. O. and V. Mockus, 1964, “Hydrology agricultural lands”, In: Handbook of Applied Hydrology, McGraw-Hill, New York, New York. Partidario, M., 1996, 'Strategic environmental assessment: Key issues emerging from recent practice', Environmental Impact Assessment Review, v.16, p.31-55. Sadler, B., 1994, “Environmental assessment and development policy-making”, In Environmental Assessment and Development-An IAIA-World Bank Symposium, R. Goodland and V. Edmundson (eds), Washington, DC: The World Bank. Senhorst, H.A.J. and J.J.G. Zwolsman, 2005, Climate change and effects on water quality: a first impression”, Water Science & Technology, 51(5), p.53-59. Shoemaker, L. M., M. Lahlou, M. Bryer, D. Kummar, and K. Kratt, 1997, ” Compendium of Tools for Watershed Assessment and TMDL Development”, EPA 841-B-97-006, U.S. Environmental Protection Agency, Office of Water. Washington, D.C. Sobel, M. J., 1965, “Water quality improvement programming problems”, Water Resour. Res., 1(4), p.477-487. Srivastava, P., J. M. Hamlett, P. D. Robillard, and R. L. Day, 2002, “Watershed optimization of best management practices using AnnAGNPS and a genetic algorithm”, Water Resour. Res. 38(3):1021. Streeter, H. W. and E. B. Phelps. 1925, “A study of the pollution and natural purification of the Ohio River”. Public Health Bulletin146, U.S. Public Health Service. Takyi, A. K., and B. J. Lence, 1999, “Surface water quality management using a multiple-realization chance constraint method”, Water Resour. Res., 35(5), p.1657–1670. Thomann, R. V., 1964, “Mathematical Model for Dissolved Oxygen”, J. Sanit. Eng. Div., ASCE, 89(SA45), p.1-30. Thomann, R.V and Mueller J.A., 1987, “Principles of Surface Water Quality Modeling and Control”, Harper & Row Publishers, New York. Thomann, R.V., 1972, “Systems analysis and water quality management”, New York, McGraw-Hill. Tung, C. P. and D. A. Haith, 1995, “Global Warming Effects on New York Ssreamflows”, Journal of Water Resources Planning and Management, 121(2), p.216-225. U.S.EPA., 1999, “Draft Guidance for Water Quality-based Decisions:The TMDL Process (Second Edition)”, EPA 841-D-99-001, U.S.Environmental Protection Agency, Washington, DC. U.S.EPA., 2001, “Better Assessment Science Integrating Point and Nonpoint Sources (BASINS Version 3): User's Manual. EPA 823-B-01-001. U.S. Environmental Protection Agency, Washington, DC. U.S.EPA., 2001, “Protocol for Developing Pathogen TMDLs”, EPA 841-R-00-002. U.S. Environmental Protection Agency, Washington, DC. UNCED , 1992. ”Agenda 21”, New York: United Nations General Assembly. Williams, J.R. 1975. “Sediment routing for agricultural watersheds”, Water Resour. Bull. 11(5), p.965-974. World Commission on Environment and Development (WCED), 1987, Our common future, Oxford University Press, Oxford U.K. Yuan, Y., R. L. Bingner, and R. A. Rebich, 2001. “Evaluation of AnnAGNPS on Mississippi Delta MSEA Watersheds”, Trans. ASAE. 44(5), p.1183-1190. 包祥甫,1993,「季節性總量管制之建立及風險評估」,國立中央大學環境工程研究所碩士論文。 台灣省政府環境保護處,1998,「建立台灣省河川流域性飲用水水源水質保護實施計畫」。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32300 | - |
| dc.description.abstract | 為了符合永續發展,流域水質管理制度應考量累積性衝擊不可超過環境承載力以及世代公平性之原則。本研究依據此原則建立永續性河川水質總量管制方法。
此方法架構是先建立永續發展願景與水質目標,進而提出總量管理策略,再藉由水質模式之建立並與最佳化模式結合,評估流域內允許最大BOD污染排放量。最後再以各集污區之面積,推求各區域內之單位面積污染負荷,以此作為河川水質管理之審查依據,以及政策環評與計畫環評相互承接的準則,簡化計畫環評之審查過程。對於落實永續性總量管制方法於現行環評制度可能遭遇之困難與解決方案,研究中研擬一決策流程說明現有開發案與新開發案加入的管理方式,以提供決策者參考。本研究於水質模式之檢定與驗證的評估過程,結合模擬退火演算法,以優選最佳的水質參數組合,進而以此參數推求水質承載力(最大涵容能力)。 研究中並進一步根據氣候變遷之預設情境,應用GWLF流量模式模擬流量可能之衝擊,依據流量衝擊之結果進而由水質模式評估河川允許污染排放量與單位面積負荷可能之影響,以提供決策者提出因應氣候變遷衝擊水質管理策略之參考。本研究並將此永續性河川水質總量管制架構與方法,應用於頭前溪流域作為研究案例說明。 | zh_TW |
| dc.description.abstract | In order to achieve sustainable development, the principles of cumulative impacts not exceeding environmental carrying capacity and equality among generations should be considered in watershed water quality management. Based on these two principles, this study establishes sustainable total mass control method in water quality.
This study integrates a water quality simulation model with an optimization model to assess the allowable maximum BOD pollutant discharges. And then, the unit area pollutant load of each subwatershed could be estimated from the allowable BOD pollutant. The unit area pollutant load can be a criterion for watershed water quality management and can be used to link strategic environmental assessment and environmental impact assessment, which can simplify the inspection process of project environmental impact assessment. The possible difficulties and solutions to apply the unit area pollutant load in practice are also addressed in this study. To develop sustainable total mass control method, the parameters of water quality simulation model need to be determined. Thus, simulated annealing algorithm is applied to identify parameters. The climate change impacts are also assessed. First, the GWLF model is used to simulate the impacts on streamflows based on several climate scenarios derived from GCMs’ predictions. Then, the water quality model and an optimization model with possible changes of streamflows are further applied to evaluate the climate change impacts on water quality and unit area pollutant load, which can provide valuable references for decision makers to develop sustainable water quality management strategies. The TouChen River was taken as a case study to explain the framework and procedures of developing the total mass control method of sustainable water quality. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:41:33Z (GMT). No. of bitstreams: 1 ntu-95-D90622006-1.pdf: 2427714 bytes, checksum: 8541b9df38db7bf4145d61b9fef14235 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 第一章 前言
1.1研究動機 1 1.2研究目的 3 1.3研究流程 4 1.4章節說明 6 第二章 文獻回顧 2.1 永續發展與永續性 7 2.2 政策環評(SEA)與計畫環評(EIA) 10 2.3 總量管制方法 13 2.4 水質模式 25 2.5 排放交易制度 33 2.6氣候變遷衝擊 35 第三章 永續性河川水質總量管理架構 3.1 永續性河川水質總量管理架構說明 38 3.2 永續性願景與目標 40 3.3 永續性水質管理策略 41 3.4 永續性水質管理方法探討 41 3.5 永續性水質管理準則 43 3.6 水質監測 45 第四章 永續性河川水質總量管制基準之建立 4.1永續性總量管制之水質模擬模式 48 4.2永續性總量管制之最佳化模式 66 4.3單位面積負荷之推估 70 第五章 永續性水質總量管理制度之執行 5.1落實水質永續性總量管制可能遭遇之問題 72 5.2永續性水質總量管制之落實 73 5.3污染排放交易權 76 第六章 不確定性分析 6.1參數敏感度分析 82 6.2氣候變遷對水質衝擊之評估 83 6.3承載力與單位面積負荷可能範圍之評估 93 第七章 案例研究 7.1研究區域說明 96 7.2水質模式檢定與驗證 99 7.3單位面積污染負荷 107 7.4排放交易比 117 7.5水質參數敏感度分析 119 7.6 氣候變遷對頭前溪水質衝擊 120 7.7應用區間分析評估水質參數之不確定性與承載力可能之範圍 137 第八章 結論與建議 8.1結論 152 8.2建議 155 參考文獻 157 附錄一水質模式之水質參數 A-1 附錄二 GWLF模式說明 A-6 附錄三 模擬退火演算法 A-10 圖目錄 圖1.3.1 研究流程 5 圖2.3.1 TMDL推估程序之各項元件 19 圖2.3.2 日本總污染負荷控制系統概要圖說 22 圖3.1.1水質永續性總量管制之評估架構 39 圖3.4.1 累積衝擊與環境承載力之關係 42 圖4.1永續性總量管制審查基準之推估流程 47 圖4.1.1多點源線性疊加概念圖) 52 圖4.1.2解析解與數值解於混合點之差異(摘自Chapra,1997) 54 圖4.1.3 QUAL2E數值解與解析解模擬BOD之差異(低流量) 55 圖4.1.4 QUAL2E數值解與解析解模擬DO之差異(低流量) 56 圖4.1.5 QUAL2E數值解與解析解模擬BOD之差異(高流量) 56 圖4.1.6 QUAL2E數值解與解析解模擬DO之差異(高流量) 56 圖4.1.7應用SA法反推水質參數之流程 60 圖5.2.1總量管制落實之決策流程 75 圖5.2.2 環境承載力與基準線之示意圖 75 圖5.3.1單位面積污染負荷於空間上變化之示意圖 77 圖5.3.2排放交易示意圖 80 圖6.2.1評估氣候變遷下對水質承載力之衝擊 84 圖6.3.1應用SA法反推水質參數與承載力區間推估之流程 94 圖7.1.1流域所在位置與範圍 97 圖7.1.2水質測站位置與水質標準 98 圖7.1.3頭前溪歷年DO濃度變化圖 98 圖7.1.4 頭前溪歷年BOD濃度化圖 99 圖7.2.1 頭前溪集污區劃分圖 100 圖7.2.2頭前溪河段分段與污染負荷示意圖 101 圖7.2.3頭前溪主流之流量檢定(1996) 108 圖7.2.4頭前溪主流之流量驗證圖(1998) 108 圖7.2.5頭前溪主流之BOD檢定(1996) 109 圖7.2.6頭前溪支流-上坪溪之BOD檢定(1996) 109 圖7.2.7頭前溪主流之BOD驗證圖(1998) 110 圖7.2.8頭前溪支流-上坪溪之BOD驗證圖(1998) 110 圖7.2.9頭前溪主流之DO檢定(1996) 111 圖7.2.10頭前溪支流-上坪溪之DO檢定(1996) 111 圖7.2.11頭前溪主流之DO驗證圖(1998) 112 圖7.2.12頭前溪支流-上坪溪之DO驗證圖(1998) 112 圖7.3.1內灣站流量歷時曲線圖 113 圖7.3.2上坪站流量歷時曲線圖 113 圖7.3.3竹林大橋站流量歷時曲線圖 114 圖7.3.4 經國大橋站流量歷時曲線圖 114 圖7.6.1頭前溪流域各月份之累積流量(1971-1990年) 126 圖7.6.2頭前溪流域平均月累積流量(1971-1990年) 126 圖7.6.3不同大氣模式SRES的A2排放情境之流量變化比率 128 圖7.6.4不同大氣模式SRES的B2排放情境之流量變化比率 128 圖7.6.5不同大氣模式SRES的A2排放情境之雨量變化比率 129 圖7.6.6不同大氣模式SRES的B2排放情境之雨量變化比率 129 圖7.6.7 CGCM2模式之四個網格點的A2情境之流量變化比率 131 圖7.6.8 HADCM模式之四個網格點的A2情境之流量變化比率 131 圖7.6.9 CCSR模式之四個網格點的A2情境之流量變化比率 133 圖7.6.10 GFDL模式之四個網格點的A2情境之流量變化比率 133 圖7.6.11 CGCM模式之四個網格點的B2情境之流量變化比率 133 圖7.6.12 HADCM模式四個網格點的B2情境之流量變化比率 134 圖7.6.13 CCSR模式之四個網格點的B2情境之流量變化比率 134 圖7.6.14 GFDL模式之四個網格點的B2情境之流量變化比率 134 圖7.7.1 各測站之BOD濃度上下限值(1996年) 140 圖7.7.2頭前溪流域模擬水質變化與觀測值的上限值 141 圖7.7.3 case1優選之參數值於頭前溪與上坪溪BOD濃度變化 147 圖7.7.4 case2優選之參數值於頭前溪與上坪溪BOD濃度變化 147 圖7.7.5 case3優選之參數值於頭前溪與上坪溪BOD濃度變化 148 圖7.7.6 case4優選之參數值於頭前溪與上坪溪BOD濃度變化 148 圖7.7.7 case5優選之參數值於頭前溪與上坪溪BOD濃度變化 148 圖7.7.8優選參數值於頭前溪與上坪溪BOD下限濃度變化 149 圖7.7.9增加觀測站優選參數於頭前溪與上坪溪BOD濃度變化 151 圖A1.1 K2與流速、水深的關係圖 A-4 圖A2.1模擬退火法演算流程圖 A-7 圖A3.1集水區水平衡關係示意圖 A-10 表目錄 表2.2.1.各國在SEA上之研究 14 表4.1.1各類工業廢水水質與單位面積廢水量建議值 59 表4.1.2溫度修正係數θ值 64 表6.2.1 各氣象站對應各GCMs輸出之格點 89 表6.2.2不同模式SRES之A2情境降雨修正比值 90 表6.2.3不同模式SRES之B2情境降雨修正比值 90 表6.2.4不同模式SRES之A2情境溫度修正值 91 表6.2.5不同模式SRES之B2情境溫度修正值 91 表7.2.1新竹地區各鄉鎮總污染廢水量與BOD污染量 103 表7.2.2 頭前溪各集污區各類污染之BOD污染量 103 表7.2.3 頭前溪各河段水力參數 104 表7.2.4頭前溪各河段之水質參數率定表 104 表7.2.5 頭前溪水質參數分區 105 表7.2.6模擬退火法之參數設定 106 表7.3.1頭前溪流域測站之設計水溫 115 表7.3.2頭前溪流域單位面積污染負荷 115 表7.4.1 頭前溪流域各集污區之BOD污染排放交易比 117 表7.4.2頭前溪流域各集污區排放交易後之允許污染排入量 118 表7.5.2參數敏感度分析對BOD污染總量變化百分比 122 表7.6.1所採用各GCM模式之經緯度 123 表7.6.2 GCM模擬Baseline與梅花站歷史雨量資料相關係數 124 表7.6.3GCM模擬Baseline與新竹站歷史溫度資料相關係數 125 表7.6.4各模式所採用之鄰近點位置 130 表7.6.5 不同氣候情境下旬Q75變動百分比 136 表7.6.6各氣候情境修正後之Q75 136 表7.6.7 不同氣候情境下河川水溫可能的增加量 136 表7.6.8各集污區不同氣候變遷下之允許最大BOD污染量 138 表7.6.9各集污區不同氣候變遷下之允許BOD單位面積負荷量 139 表7.7.1 case1分區方式之SA優選BOD濃度上限值結果 143 表7.7.2 case2分區方式之SA優選BOD濃度上限值結果 143 表7.7.3 case3分區方式之SA優選BOD濃度上限值結果 145 表7.7.4 case4分區方式之SA優選BOD濃度上限值結果 146 表7.7.5 case5分區方式之SA優選BOD濃度上限值結果 146 表7.7.6 case5分區方式之SA優選BOD濃度下限值結果 147 表7.7.7增加監測站後SA優選之參數結果 150 表7.7.8 應用SA優選之參數上下限值 151 表7.7. 9各河段允許污染排入量與單位面積負荷之上下限 151 表A1.1 不同污水處理等級下之K1範圍 A-2 表A1.2不同河況下之K1建議值 A-2 表A1.3應用再曝氣經驗式之水深與流速適用範圍 A-3 表A1.4 不同底部型態之SOD之值 A-5 | |
| dc.language.iso | zh-TW | |
| dc.subject | 氣候變遷 | zh_TW |
| dc.subject | 累積性衝擊 | zh_TW |
| dc.subject | 單位面積負荷 | zh_TW |
| dc.subject | 模擬退火法 | zh_TW |
| dc.subject | 永續性總量管制 | zh_TW |
| dc.subject | Simulated annealing algorithm | en |
| dc.subject | Unit area pollutant load | en |
| dc.subject | Cumulative impact | en |
| dc.subject | Sustainable total mass control method | en |
| dc.subject | Climate change | en |
| dc.title | 永續性河川水質管理系統之發展 | zh_TW |
| dc.title | The Development of Sustainable Water Quality Management System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 高正忠,陳樹群,廖述良,林裕彬 | |
| dc.subject.keyword | 永續性總量管制,累積性衝擊,單位面積負荷,模擬退火法,氣候變遷, | zh_TW |
| dc.subject.keyword | Sustainable total mass control method,Cumulative impact,Unit area pollutant load,Simulated annealing algorithm,Climate change, | en |
| dc.relation.page | 177 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-26 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 2.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
