Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32261
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林宗賢(Tzong-Shyan Lin)
dc.contributor.authorHan-Yuan Tsaien
dc.contributor.author蔡翰沅zh_TW
dc.date.accessioned2021-06-13T03:39:29Z-
dc.date.available2007-07-31
dc.date.copyright2006-07-31
dc.date.issued2006
dc.date.submitted2006-07-25
dc.identifier.citation1. 朱德明. 1995. 植物與缺水逆境. 植物與環境逆境. P: 13-64. 明文書局股份有限公司. 台北.
2. 吳俊達. 1995. 乾旱逆境對檬果光合作用與枝梢生長之影響. 國立台灣大學園藝研究所碩士論文.
3. 李明達. 2001. 水分逆境下植物影像特徵分析之研究. 國立臺灣大學生物產業機電工程學研究所碩士論文.
4. 許玉妹、林金和. 1993. 植物缺水時ABA與氣孔開閉之關係. 中國園藝. 39(1):8-13
5. Alves, A. A. C. and T. L. Setter. 2004. Response of Cassava leaf area expansion to water deficit: cell proliferation, cell expansion and delayed development. Ann. Bot. 94: 605-613.
6. Anyia, A. O., and H. Herzog. 2004. Water-use efficiency, leaf area and leaf gas exchange of cowpeas under mid-season drought. Europ. J. Agronomy. 20: 327-339.
7. Bacon, M. A., S. Wilkinson, and W. J. Davies. 1998. Ph-regulated leaf cell expansion in droughted plants is abscisic acid dependent. Plant Physiol. 118: 1507-1515.
8. Bhargava, S. and S. Paranjpe. 2004. Genotypic variation in the photosynthetic competence of Sorghum bicolor seedlings subjected to polyethylene glycol-mediated drought stress. J. Plant Physiol. 161: 125-129.
9. Bota, J., H. Medrano and J. Flexas. 2004. Is photosynthesis limited by decreased rubisco activity and RuBP content under progressive water stress? New Phytol. 162: 671-681.
10. Chaves, M. M. 1991. Effects of water deficits on carbon assimilation. J. Exp. Bot. 42(234): 1-16.
11. Cifre, j., J. Bota, J. M. Escalona, H. Medrano, and J. Flexas. 2005. Physiological tools for irrigation scheduling in grapevine (Vitis vinifera L.). An open gate to improve water-use efficiency? Agric. Ecosyst. Environ. 106: 159-170.
12. Cornic, G. 2001. Drought stress inhibits photosynthesis by decreasing stomatal aperture - not by affecting ATP synthesis. Trends Plant Sci. 5: 187-188.
13. Cornic, G. and J. Ghashghaie. 1991. Effect of temperature on net CO2 assimilation and photosystem II quantum yield of electron transfer of French bean (Phaseolus vulgaris L.) leaves during drought stress. Planta 185: 255-260.
14. Cornic, G., J. L. Le Gouallec, J. M. Briantais, and M. Hodges. 1989. Effect of dehydration and high light on photosynthesis of two C3 plants (Phaseolus vulgaris L. and Elatostema repens (Lour.) Hall f.). Planta 177: 84-90.
15. Davies, W. J., and E. V. Volkenburgh. 1983. The influence of water deficit on the factors controlling the daily pattern of growth of Phaseolus trifoliates. J. Exp. Bot. 34: 987-999.
16. Davies, W. J., F. Tardieu, and C. L. Trejo. 1994. How do chemical dignals work in plants that grow in drying soil? Plant Physiol. 104: 309-314.
17. Davies, W. J.,and J. Zhang. 1991. Root signals and the regulation of growth and development of plants in drying siol. Annu. Rev. Plant Physiol. plant mol. biol. 42: 55-57.
18. Davies, W. J., G. Kudoyarova, and W. Hartung. 2005. Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant’s response to drought. J. Plant Growth Regul. 24: 285-295.
19. Davies, W. J., S. Wilkinson, and B. Loveys. 2002. Stomatal control by chemical signaling and the exploitation of this mechanism to increase water use efficiency in agriculture. New Phytol. 153: 449-460.
20. De Costa, W. A. J. M., M. D. Dennett, U. Ratnaweera, and K. Nyalemegbe. 1997. Effects of different water regimes on field-grown determinate and indeterminate faba bean (Vicia faba L.). I. Canopy growth and biomass production. Field Crops Res. 49: 83-93.
21. Dietz, K-J., and U. Heber. 1983. Carbon dioxide gas exchange and the energy status of leaves of Primula palinuri under water stress. Planta 158: 349-356.
22. Epron, D., E. Dreyer, and N. Breda. 1992. Photosynthesis of oak trees(Quercus petraea(Matt)Liebl.)during drought stress under field condition: diurnal course of net CO2 assimilation and photochemical efficiency of photosystem II. Plant Cell Environ. 15: 809-820.
23. Escalona, J. M., J. Flexas, J. Bota, and H. Medrano. 2003. Distribution of leaf photosynthesis and transpiration within grapevine canopies under different drought conditions. Vitis 42: 57-64.
24. Escalona, J. M., J. Flexas, and H. Medrano. 1999. Stomatal and non-stomatal limitations of photosynthesis under water stress in field-grown grapevines. Aust. J. Plant Physiol. 26: 421-433.
25. Flexas, J., J. Bota, j. Cifre, J. M. Escalona, J.Galmes, J. Gulias, E. K. Lefi, S. F. Martinez-Canellas, M. T. Moreno, M. Ribas-Carbo, D. Riera, B. Sampol, and H. Medrano. 2004. Understanding down-regulation of photosynthesis under water stress: future prospects and searching for physiological tools for irrigation management. Ann. Appl. Biol. 144: 273-283.
26. Flexas, J., J. M. Briantais, Z. Cerovic, H. Medrano, and I. Moya. 2000. Steady-state and maximum chlorophyll fluorescence responses to water stress in grapevine leaves: A new remote sensing system. Remote Sens. Environ. 73: 283-297.
27. Flexas, J., J. M. Escalona, S. Evain, J. Gulias, I. Moya, C. B. Osmond, and H. Medrano. 2002. Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants. Physiol. Plant. 114: 231-240.
28. Flexas, J., J. M. Escalona, and H. Medrano. 1998. Down-regulation of photosynthesis by drought under field conditions in grapevine leaves. Aust. J. Plant Physiol. 25: 893-900.
29. Flexas, J., and H. Medrano. 2002. Drought–inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann. Bot. 89: 183-189.
30. Franca, M. G. C., A. T. P. Thi, C. Pimentel, R. O. P. Rossiello, Y. Zuily-Fodil, and D. Laffray. 2000. Differences in growth and water relations among Phaseolus vulgaris cultivars in response to induced drought stress. Environ. Exp. Bot. 43: 227-237.
31. Genty, B., J. M. Briantais, and N. R. Baker. 1989. The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990: 87-92.
32. Gilmore AM. 1997. Mechanistic aspects of xanthophylls cycle-dependent photoprotection in higher plant chloroplasts and leaves. Plant Physiol. 99: 197-209.
33. Gimenez, C., V. J. Mitchell, and Lawlor, D. W. 1992. Regulation of photosynthetic rate of two sunflower hybrids under water stress. Plant Physisiol. 98: 516-524.
34. Gollan, T., U. Schurr, and E. D. Schulze. 1992. Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. I. The concentration of cations, anions, amino acids in, and pH of, the xylem sap. Plant Cell Environ. 15: 551-559.
35. Granier, C. and F. Tardieu. 1999. Water deficite and spatial pattern of leaf development. Variability in responses can be simulated using a simple model of leaf development. Plant Physiol. 119: 609-620.
36. Granier, C., O. Turc, and F. Tardieu. 2000. Co-ordination of cell division and tissue expansion in sunflower, tobacco and pea leaves. Dependance of independence of both process? Plant Growth Regul., in press.
37. Grassi, G., and F. Magnani. 2005. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ. 28: 834-849.
38. Hsiao, T. C. 1973. Plant responses to water stress. Ann. Rev. Plant Physiol. 24: 519-570.
39. Hsiao, T. C., E. Acevedo, E. Fereres, and D. W. Henderson. 1976. Stress metabolism- water stress, growth, and osmotic adjustment. Plilosophical Transactions of the Royal Society of London Series B-Biological Sciences 273: 479-500.
40. Hsiao, T. C., and L. K. Xu. 2000. Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. J. Exp. Bot. 51: 1595-1616.
41. Ismail, M. R., W. J. Davies, and M. H. Awad. 2002. Leaf growth and stomatal sensitivity to ABA in droughted pepper plants. Sci. Hortic. 96: 313-327.
42. Janacek, J. 1997. Stomatal limitation of photosynthesis as affected by water stress and CO2 concentration. Photosynthetica. 34(3): 473-476.
43. Kaiser, W. M. 1987. Effects of water deficit on photosynthetic capacity. Physiol. Plant. 71: 142-149.
44. Kramer, P. J. 1984. Water relations of plants. Academic Press, New York. pp. 489.
45. Krause, G. H. 1991. Chlorophyll fluorescence and photosynthesis: The basis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42: 313-349.
46. Lawlor, D. W. and G. Cornic. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 25: 275-294.
47. Leidi, E. O., J. M. Lopez, M. Lopez and J. C. Gutierrez. 1993. Searching for tolerance to water stress in cotton genotypes: photosynthesis, stomatal conductance and transpiration. Photosynthetica. 28(3): 383-390.
48. Liang, J., J. Zhang, and M. H. Wong. 1997. Can stomatal closure caused by xylem ABA explain the inhibition of leaf photosynthesis under soil drying? Photosynth. Res. 51: 149-159.
49. Liang, Z., F. Zhang, M. Shao, and J. Zhang. 2002. The relations of stomatal conductance, water consumption, growth rate to leaf water potential during soil drying and rewatering cycle of wheat (Triticum aestivum). Bot. Bull. Acad. Sin. 43: 187-192.
50. Liu, F. L., C. R. Jensen, A. Shahanzari, M. N. Andersen, and S. E. Jacobsen. 2005. ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Sci. 168: 831-836.
51. Lu, C. and J. Zhang. 1998. Effects of water stress on photosynthesis, chlorophyll fluorescence and photoinhibition in wheat plants. Aust. J. Plant Physiol. 25: 883-892.
52. Massacci, A., A. Battistelli and F. Loreto. 1996. Effect of drought stress on photosynthetic characteristics, growth and sugar accumulation of field-grown sweet sorghum. Aust. J. Plant Physiol. 23: 331-340.
53. Maxwell, K. and G. N. Johnson. 2000. Chlorophyll fluorescence- a practical guide. J. Exp. Bot. 51(345): 659-668.
54. Medrano, H., J. M. Escalona, J. Bota, J. Gulias, and J. Flexas. 2002. Regulation of photosynthesis of C-3 plants in response to progressive drought: Stomatal conductance as a reference parameter. Ann. Bot. 89: 895-905.
55. Melkonia, J. and D. W. Wolfe. 1995. Relative sensitivity of leaf elongation and stomatal conductance of cucumber plants to changes in leaf and soil water potentials. Can. J. Plant Sci. 75: 909-915.
56. Michelena, V. A. and J. S. Boyer. 1982. Complete turgor maintenance at low water potentials in the elongating region of maize leaves. Plant Physiol. 69: 1145-1149.
57. Miyashita K., S. Tanakamaru, T. Maitani, and K. Kimura. 2005. Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environ. Exp. Bot. 53: 205–214.
58. Munns, R., J. B. Passioura, J. Guo, O. Chazen, and G. R. Cramer. 2000. Water relations and leaf expansion: importance of time scale. J. Exp. Bot. 51: 1495-1504.
59. Nonami, H. 1998. Plant water relations and control of cell elongation at low water potentials. J. Plant Res. 111: 373-382.
60. Ohashi, Y., N. Nakayama, H. Saneoka and K. Fujita. 2006. Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants. Biol. Plant. 50: 138-141.
61. Pena-Rojas, K., X. Aranda, R. Joffre, and I. Fleck. 2005. Leaf morphology, photochemistry and water status changes in resprouting Quercus ilex during drought. Funct. Plant Biol. 32: 117-130.
62. Quick, W. P., M. M. Chaves, R. Wendler, M. Davis, M. L. Rodrigues, J. A. Passaharinho, J. S. Perira, M. D. Adcock, R. C. Leegood, and M. Stitt. 1992. The effect of water-stress on photodynthetic carbon metabolism in 4 species grown under field conditions. Plant Cell Environ. 15: 25-35.
63. Randall, H. C. and T. R. Sinclair. 1988. Sensitivity of soybean leaf development to water deficits. Plant Cell Environ. 11: 835-839.
64. Reddy, A. R., K. V. Chaitanya, and M. Vivekanandan. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161: 1189-1202.
65. Renou, J. L., A. Gerbaud, D. Just, and M. Andr’e. 1990. Differing substomatal and chloroplastic CO2 concentrations in water-stressed wheat. Planta. 182: 415-419.
66. Saab, I. N. and R. E. Sharp. 1989. Non-hydraulic signals from maize roots in drying soil: inhibition of leaf elongation but not stomatal conductance. Planta. 179: 466-474.
67. Schurr, U., U. Heckenberger, K. Herdel, A. Walter, and R. Feil. 2000. Leaf development in Ricinus communis during drought stress: dynamics of growth processes, of cellular structure and of sink-source transition. J. Exp. Bot. 51: 1515- 1529.
68. Shangguan, Z., M. Shao, and J. Dyckmans. 2000. Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat. J. Plant Physiol. 156: 46 -51.
69. Sharkey, T. D. 1990. Water stress effects on photosynthesis. Photosynthetica. 24(4): 654.
70. Souza, R. P., E. C. Machado, J. A. B. Silva, A. M. M. A. Lagoa, and J. A. G. Silverira. 2004. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ. Exp. Bot. 51: 45-56.
71. Sung, J. M. . Studies on physiological response to water stress in sweet potato. I. The stomatal and non-stomatal regulations in carbon assimilation of sweet potato leaves. 中華農學會報 129:42-48.
72. Taiz, L. and E. Zeiger. 1998. Plant physiology. Sinauer associates, Inc., Sunderland, MA. 792 pp.
73. Tardieu, F. and C. Granier. 2000. Quantitative analysis of cell division in leaves: methods, developmental patterns and effects of environmental conditions. Plant Mol. Biol. 43: 555-567.
74. Tezara, W., V. J. Mitchell, S. D. Driscoll, and D. W. Lawlor. 1999. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature. 401: 914-917.
75. Walter, A. and U. Schurr. 2000. Spatio-temporal variation of leaf growth and function. In: Marshall B, Roberts J, eds. Leaf development and canopy growth. Sheffield Academic Press.
76. Wullschleger, S. D. 1991. Osmotic adjustment and the growth response of seven vegetable crops following water-deficit stress. HortScience. 26: 1210-1212.
77. Yegappan, T. M., D. M. Paton, C. T. Gates, and W. J. Muller. 1980. Water stress in sunflower (Helianthus annuus L.): I. Effect on plant development. Ann. Bot. 46: 61-70.
78. Zhang, J. and W. J. Davies. 1990a. Changes in the concentration of ABA in xylem sap as a function of changing soil water status can account for changes in leaf conductance and growth. Plant Cell Environ. 13: 277-285.
79. Zhang, J. and W. J. Davies. 1990b. Does ABA in the xylem control the rate of leaf growth in soil-dried maize and sunflower plants? J. Exp. Bot. 41: 765-772.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32261-
dc.description.abstract為了能夠提出植物生理證據佐證葉綠素螢光作為遙測工具的適切性,是故設計了本試驗計畫,探討小白菜‘鳳京’苗期缺水的葉片生理反應。當‘鳳京’小白菜苗第三片葉萌生後,即移植至改良過之Snow & Tingey系統上,進行四種不同程度的缺水處理:對照組(CK;液面差4 cm)、輕度缺水組(A;液面差22 cm)、中度缺水組(B;液面差30 cm)及重度缺水組(C;液面差47 cm)。主要調查項目有葉片數、葉面積、光合作用率(AN)、氣孔導度(gs)、蒸散速率(E)、葉片內部CO2濃度(Ci)及一些螢光介量(Fv/Fm、qP、qN、NPQ及ΦPSII)。結果顯示,輕微缺水組植株與對照組無明顯生長差異。中度及重度缺水植株之非光化學淬熄係數(qN或NPQ)約在開始調查後第4天明顯高於對照組,而PSII光量子產能(ΦPSII)則於第6天時顯著低於對照組。此二種葉綠素螢光介量均較AN、gs與E等光合特性對缺水敏感,且彼此間相關性亦甚高,顯見其似為指示植株光合特性缺水反應的良好生理指標。雖然中及重度缺水小白菜之葉面積在取樣開始6天後方顯著低於對照組,但缺水減少葉片數目之時間點顯然早於qN、NPQ與ΦPSII,所以此二螢光參數可能不適於反應葉片數與葉面積遭受缺水傷害的時間點。故此二參數應用在葉片生長量上勢必有所限制,至少於本試驗中僅適宜表達小白菜‘鳳京’光合特性的缺水損傷。zh_TW
dc.description.abstractThe leaf responses of Chinese mustard (Brassica rapa L. var. chinensis (Rupr.) Olsson) seedlings to water stress were investigated. When the third leaf emerged, seedlings were transplanted to modified Snow and Tingey system for four levels of water availability: control (CK, 4 cm below root screen), mild water stress (A, 22 cm below root screen), medium water stress (B, 30 cm below root screen), and severe water stresss (C, 47 cm below root screen). The measured parameters consists of the following: leaf numbers, the leaf area, the net photosynthetic rate (AN), the stomatal conductance (gs), the transpiration rate (E), the intercellular CO2 concentration (Ci) and some chlorophyll fluorescence parameters (Fv/Fm, qP, qN, NPQ and ΦPSII). It appears that the leaf responses of seedlings of mild water stress were identical with those of control. In this study the non-photochemical quenching (qN or NPQ) of plants which suffered medium and severe water stress performed significantly higher than those of control plants in about 4th sampled day, while the quantum yield of PSII electron transport (ΦPSII) was much lower in 6th day. These two chlorophyll fluorescence patterns are more sensitive to water stress than AN, gs and E. And fluorescence patterns are closely related to photosynthetic patterns. This leads to the possibility that qN, NPQ and ΦPSII are all well indicators to reflect the drought damage of photosynthetic patterns. Despite the fact that the leaf area of plants of medium and severe drought was significantly decline in 6th sampled day. If it is impossible to test the theory in any meaningful way, such claims have little credibility. There are flaws in attributing such importance to the cell enlargement alone. It must be noted that the decline of leaf numbers is more early than changes of qN, NPQ and ΦPSII. Stated another way, water deficit may effect the cell division very early. Thus these fluorescence patterns are less likely to indicate the damage of the leaf area. To conclude, results of this study showed that in Chinese cabbage qN, NPQ and ΦPSII are more likely to indicate the stress effect of photosynthetic patterns, but are less likely to work in leaf numbers and leaf area.en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:39:29Z (GMT). No. of bitstreams: 1
ntu-95-R92628111-1.pdf: 1134319 bytes, checksum: 806a55d54f41eac623e43f6699326e15 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents目 錄
中文摘要 ………………………………………………………………7
Abstract …………………………………………………………………8
前言 …………………………………………………………………10
前人研究 ………………………………………………………………11
植株葉片的缺水反應 ……………………………………………11
一、 葉片生長量 …………………………………………………11
二、 氣孔導度 ……………………………………………………12
三、 光合作用 ……………………………………………………13
四、 葉綠素螢光 …………………………………………………14
材料與方法 ……………………………………………………………16
一、 植物材料 ……………………………………………………17
二、 Snow & Tingey系統之建構 ………………………………18
三、 植株生長量調查 ……………………………………………20
四、 光合特性調查 ………………………………………………21
五、 在光與暗馴化狀態下測定葉綠素螢光 ……………………21
結果 ……………………………………………………………………24
一、 缺水對植株生長量的影響 …………………………………24
1. 已展開葉片數之變化 ……………………………………24
2. 葉面積之變化 ……………………………………………25
二、 缺水對光合特性的影響………………………………………25
1. AN、gs、E與Ci之變化……………………………………25
2. AN與g s之相關性分析 ……………………………………26
三、 缺水對螢光參數的影響………………………………………27
1. Fv/Fm之變化………………………………………………27
2. qP、qN及NPQ之變化……………………………………27
3. ΦPSII之變化…………………………………………………28
討論 …………………………………………………………………30
一、 缺水對植株生長量的影響……………………………………30
二、 缺水對光合特性的影響………………………………………33
三、 缺水對葉綠素螢光參數的影響………………………………36
四、 葉綠素螢光可否指示作物缺水………………………………39
參考文獻……………………………………………………………… 41
dc.language.isozh-TW
dc.title小白菜‘鳳京’苗期缺水
生理指標研究
zh_TW
dc.titleStudy on the Drought Physiological Indicators of Chinese Mustard (Brassica rapa L. var. chinensis (Rupr.) Olsson) Seedlingen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.coadvisor陳世銘(Suming Chen),曹幸之(Shing-Jy Tsao)
dc.contributor.oralexamcommittee高文媛(Wen-Yuan Kao)
dc.subject.keyword小白菜,缺水逆境,葉綠素螢光,zh_TW
dc.subject.keywordChinese Mustard,drought stress,chlorophyll fluorescence,en
dc.relation.page67
dc.rights.note有償授權
dc.date.accepted2006-07-27
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
1.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved