Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32234
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉仁沛,蘇秀媛
dc.contributor.authorHui-Ping Chengen
dc.contributor.author鄭慧萍zh_TW
dc.date.accessioned2021-06-13T03:38:05Z-
dc.date.available2006-07-28
dc.date.copyright2006-07-28
dc.date.issued2006
dc.date.submitted2006-07-27
dc.identifier.citationAffymetrix (2002). Statistical Algorithms Description Document.
http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf.
Bradu, D. and Mundlak, Y (1970). Estimation in lognormal linear models. Journal of the American Statistical Association, 65, 198-211.
Chow, S.C and Liu, J.P. (2000). Design and analysis of bioavailability and bioequivalence studies, Marcel Dekker, New York.
D'Agostino, R.B. and Stephens, M.A., Eds. (1986), Goodness-of-Fit Techniques, New York: Marcel Dekker, Inc.
Hess, A. M. (2005). Models and methods for the analysis of microarray data: before and after the fold change calculation. preprint.
Holder, D., Raubertas, R. F., Pikounis, V. B., Svetnik, V. and Soper, K. (2001). Statistical analysis of high density oligonucleotide arrays: a SAFER approach. Proceedings of the ASA Annual Meeting 2001. Atlanta, GA.
Huang, S., Wang, Y., Chen, P., Qian, H. R., Yeo, A. and Bemis K. (2004). SUM: a new way to incorporate mismatch probe measurements. Genomics, 84, 767-777.
Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, U. and Speed, T. P. (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 4(2):249-264.
Li, C. and Wong, W. H. (2001a). Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proceedings of the National Academy of Science USA, 98(1): 31-36.
Li, C. and Wong, W. H. (2001b). Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biology, 2(8): research 0032.2-0032.11.
Liu, J.P. and Weng, C.S (1992). Estimation of direct formulation effect under log-normal distribution in bioavailability/bioequivalence studies. Statistics in Medicine, Vol 11, 881-896.
Mehran, F. (1973). Variance of the MVUE for the lognormal mean. Journal of the Statistical Association, 68, 726-727.
Neyman, J. and Scott, E. L (1960). Correction for bias introduced by a transformation of variances, Annals of Mathematical Statistics, 31, 643-655.
Smith, S.J. (1988). Evaluating the efficiency of the ▽-distribution mean estimator. Biometrics, 44, 485-493.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32234-
dc.description.abstract科學家可以利用高密度寡聚核苷酸晶片一次檢測成千上萬基因,是本世紀最受矚目的基因研究工具之一。Affymetrix高密度寡聚核苷酸晶片則是其中一種被廣泛使用的生物晶片產品。學者探測基因有無表現的方式是藉由觀察不同濃度的晶片下的基因相對表現量(fold change),亦求晶片之間基因表現值的倍數關係。通常計算相對表現量的方法會將不同濃度晶片的基因表現量做對數轉換(底數為2)再進行相減;換言之,相對表現量先決條件是預設呈一對數常態分布並用最大概似估計法(MLE)估計。然而相對表現量在對數常態分布時應用最小變異不偏估計法(MVUE)較 MLE 具有不偏性和最小變異。為了觀測 MLE 和 MVUE 在估計相對表現量的優劣性,我們考慮不同重複晶片數、探針數和參數組合下執行一個生物晶片模擬研究。而產生基因表現量的模式是目前常用來分析Affymetrix高密度寡聚核苷酸晶片的表現量模型,有Robust multi-array average (RMA)和Based expression index (MBEI)中提出的PM/MM difference, PM-only和SUM模型。在模擬結果中發現 MLE 較 MVUE 具有不偏性,而 MVUE 較 MLE 具有較小變異。這樣的結果也間接說明由 RMA 和 MBEI 模型中產生出來的基因表現量並非呈一對數常態分布。zh_TW
dc.description.abstractHigh density oligonucleotide arrays allow scientists to monitor expression levels of thousands of genes simultaneously. Currently Affymetrix high-density oligonucleotide array is one of the most frequently employed array products. Scientists use the expression data of genes from microarray experiments to estimate relative change in expression levels between two conditions. Fold change, defined as the ratio of mean expression level of a gene under one condition to that of the same gene under another condition. Current approach first is to take logarithmic transformation (based on 2) of the original expression data. Next the difference of the arithmetic means on the log-scale between the two conditions is computed. The current approach implicitly assumes that the expression levels follow the log-normal distribution and is the maximum likelihood estimate (MLE) of the fold change. However, MLE is a biased estimator of the fold change and minimum variance estimator (MVUE) of the fold change exists under the log-normal distribution. To investigate the bias and variability of the two estimators, a simulation study was conducted under of various combinations of the number of assays, variability, and number of probe cells. In simulation study, the data were generated by the four methods proposed for the expression levels by Affymetrix high-density oligonucleotide array. They are robust multi-array average (RMA) and PM/MM difference, PM-only and SUM model of based expression index (MBEI). Simulation results show that the bias of MLE is smaller than that of MVUE and the mean square error of MLE is greater than the mean square error of MVUE. The simulation findings are not in agreement of the theoretical results. This suggests that the data generated by RMA, and MBEI do not follow a log-normal distribution.en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:38:05Z (GMT). No. of bitstreams: 1
ntu-95-R93621202-1.pdf: 1753257 bytes, checksum: 797465cbd8edf418ce08fad798d39fe2 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsContents
Chapter 1 Introduction…………..…………………………….…………1
Chapter 2 Affymetrix high-density oligonucleotide array…….....………5
2.1 Model Based Expression Index (MBEI)……….....……….…........6
2.1.1 PM/MM Model…….….......……………………………….6
2.1.2 PM-only Model…...……...………………………………...7
2.1.3 SUM Model…….……….....…......……………………..…8
2.2 Robust Multi-Array Average (RMA)…….…..…………......…….9
2.3 Hess’s Model……………………….…….…..……………10
2.4 Fold Change……………....…..….………………..……….12
Chapter 3 Estimation of Fold Change……………………..…………...13
3.1 Maximum Likelihood Estimator (MLE)…………………………13
3.2 Minimum Variance Unbiased Estimator (MVUE)………………...14
Chapter 4 Simulation Studies………………….….....…..…………..…16
4.1 Simulated Data for Normal……..………………………………16
4.2 Simulated Data for RMA…………….…………………………17
4.3 Simulated Data for MBEI…………….…………………..…….18
4.3.1 PM/MM.…………..……………………………………..18
4.3.2 PM Only………………...……………………………….18
4.3.3 SUM............………………...…………………………..19
4.4 Procedures……..……………..………………………………20

4.5 Results….…………………………….……………………..22
4.5.1 The Descriptive Statistics…………………………..……...24
4.5.2 Test for normal……………...……...……………..……...27
4.6 An example………………………..……………….………...27
Chapter 5 Summary and Discussion……………..…...………...………..29
References………………….………..…………..……………………....31
Appendix A………………...…………………….………………………33
Appendix B: SAS Program…..…………….….....………....……………81
Appendix C: Real Data………………..........……….….......……………89
dc.language.isoen
dc.subject相對表現量zh_TW
dc.subject最大概似估計法zh_TW
dc.subject最小變異不偏估計法zh_TW
dc.subjectRobust multi-array average (RMA)zh_TW
dc.subjectModel based expression index (MBEI)zh_TW
dc.subjectModel based expression index (MBEI)en
dc.subjectFold changeen
dc.subjectMaximum likelihood estimator (MLE)en
dc.subjectMinimum variance unbiased estimator (MVUE)en
dc.subjectRobust multi-array average (RMA)en
dc.title生物晶片試驗表現量差異估計值之模擬研究zh_TW
dc.titleA Simulation Study for Evaluation in Estimation of Fold Change from Gene Expression Data in Microarray Experimentsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee季瑋珠
dc.subject.keyword相對表現量,最大概似估計法,最小變異不偏估計法,Robust multi-array average (RMA),Model based expression index (MBEI),zh_TW
dc.subject.keywordFold change,Maximum likelihood estimator (MLE),Minimum variance unbiased estimator (MVUE),Robust multi-array average (RMA),Model based expression index (MBEI),en
dc.relation.page89
dc.rights.note有償授權
dc.date.accepted2006-07-27
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved