Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32232
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭明燕
dc.contributor.authorWei-Ying Wangen
dc.contributor.author王惟穎zh_TW
dc.date.accessioned2021-06-13T03:37:59Z-
dc.date.available2006-07-28
dc.date.copyright2006-07-28
dc.date.issued2006
dc.date.submitted2006-07-27
dc.identifier.citation[1] Berman, M. (1981). Inhomogeneous and modulated gamma processes.
Biometrika, 68, 143-152.
[2] Berman, M. and Turner, T. R. (1992). Approximating point process likelihoods
with GLIM. Applied Statistics, 41, 31-38.
[3] Chen, Y.-I., Huang, C.-S. and Hong, C.-H. (2004). A statistical Assessment
for the hazard of large aftershocks post to the Chi-Chi mainshok. TAO: Terrestrial,
atmospheric, and oceanic sciences , 15, No.3, 493-502.
[4] Chen, Y.-I., and Huang, C.-S. (2006). Time dependent b value for aftershock
sequences. Preprint.
[5] Cheng, M.-Y. (2006). Nonparametric modeling of nonhomogeneous Poisson
processes. Preprint.
[6] Choi, E. and Hall, P. (1999). Nonparametric approach to analysis of space-
time data on earthquake occurrences. Journal of computational and graphical
statistics, 8, 733-748.
[7] Cowling, A., Hall, P., and Michael, J. P. (1996). Bootstrap confidence regions
for the intensity of a Poisson point process. Journal of the American Statistical
Association, 91, 1516-1524.
[8] Cox, D. R. and Miller, H. D. (1965). The theory of stochastic processes. Lon-
don: Methuen.
[9] Cox, D. R. and Snell, E. J. (1968). A general definition of residuals. Journal
of the Royal Statistical Society, Series B, 30, 248-275.
[10] Diggle, P. (1985). A kernel method for smoothing point process data. Journal
of the American Statistical Association, 34, 138-147.
18
[11] Diggle, P., and Marron, J. S. (1988). Equivalence of smoothing parameter se-
lectors in density and intensity estimation. Journal of the American Statistical
Association, 83, 793-800.
[12] Estevez-Perez, G., Lorenzo-Cimadevila, H., and Quintela-Del-Rio, A. (2002).
Nonparametric analysis of the time structure of seismicity in a geographic
region. Annals of Geophysics, 45 (3-4), 497-511.
[13] Gutenberg, R., and Richter C. F. (1944). Frequency of earthquakes in Califor-
nia. Bulletin of the Seismological Society of America, 34, 185-188.
[14] Hjort, N. L., and Jones, M. C. (1996). Locally parametric nonparametric den-
sity estimation. The Annals of Statistics, 24, 1619-1647.
[15] Loader, C. R. (1992). A log-linear model for a Poisson process change point.
The Annals of Statistics, 20, 1391-1411.
[16] Loader, C. R. (1996). Local likelihood density estimation. The Annals of
Statistics, 24, 1602-1618.
[17] Loader, C. R. (1999). Local likelihood and regression. Springer.
[18] Ogata, Y. (1984). Transition from aftershock to normal activity: the 1965 rat
islands earthquake aftershock sequence. Bulletin of the Seismological Society
of America, 74, 1757-1765.
[19] Ogata, Y. (1988). Statistical models for earthquake occurrences and residual
analysis for point processes. Journal of the American Statistical Association,
83, 9-27.
[20] Staniswalis, J. G. (1989) The kernel estimate of a regression function in
likelihood-based models. Journal of the American Statistical Association, 84,
276-283.
[21] Tibshirani, R., and Hastie, T. (1987). Local likelihood estimation. Journal of
the American Statistical Association, 82, 559-567.
[22] Utsu, T. (1961). Statistical study on the occurrence of aftershocks. The Geophysical
Magazine, 30, 521-605.
[23] Wiemer, S., and Wyss, M. (2000). Minimum magnitude of completeness in
earthquake catalogs: Examples from Alaska, the western US and Japan. Bulletin
of the Seismological Society of America, 90, 859-869.
[24] 洪千惠 (2004),
集集餘震風險之貝氏分析。國立中央大學統計研究所碩士論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32232-
dc.description.abstract本文主要在估計非均勻地震資料的intensity函數,一般來說,這種資料被視為一非均勻的卜瓦松過程。我們使用Cheng (2006)所提出的local maximum likelihood 方法來估計,經由模擬出的地震資料,我們比較了此方法與有母數的最大概似估計法的差別,此外,我們也使用Ogata (1984)所提出的殘差診斷方法來檢驗這兩個估計法。最後,我們利用此方法來觀察台灣在1999年發生的集集大地震所引發的餘震序列。zh_TW
dc.description.abstractThis article considers estimating the
intensity of nonhomogeneous earthquake data, which can be modeled by a nonhomogeneous Poisson process. We use the local maximum likelihood method proposed by Cheng (2006) to estimate the intensity function. We compare our method with parametric MLE method through simulation. In addition, for examining each of the estimation method, we use a diagnosis tool of residual process proposed by Ogata (1984). With the local maximum likelihood estimator, we nvestigate the intensity of the aftershock sequence triggered by Chi-Chi earthquake, which occurred in Taiwan in 1999.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:37:59Z (GMT). No. of bitstreams: 1
ntu-95-R93221017-1.pdf: 1650253 bytes, checksum: d032a1d02e5b4a050fc6e0f8a24b00d0 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents1 Introduction 1
2 Local likelihood function 4
2.1 Likelihood function . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Local log-likelihood function . . . . . . . . . . . . . . . . . . . . . . 5
3 The simulation result 6
3.1 Data generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Residual process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 The data sets from intensity function lambda_1 . . . . . . . . . . . . . . . 7
3.4 The data sets from intensity function lambda_2 . . . . . . . . . . . . . . . 11
4 Chi-Chi aftershock sequence 14
4.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 The estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5 Conclusion and some remarks 17
Reference 18
ii
dc.language.isoen
dc.subject模擬zh_TW
dc.subject地震zh_TW
dc.subject非均值卜松過程zh_TW
dc.subject局部概似函數zh_TW
dc.subject無母數方法zh_TW
dc.subjectnonhomogeneous Poisson processen
dc.subjectsimulationen
dc.subjectnonparametric methoden
dc.subjectlocal likelihooden
dc.subjectearthquakeen
dc.title非均勻地震資料的統計分析zh_TW
dc.titleStatistical Analysis of Nonhomogeneous Earthquake Dataen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張淑惠,戴政,陳秀熙
dc.subject.keyword地震,非均值卜松過程,局部概似函數,無母數方法,模擬,zh_TW
dc.subject.keywordearthquake,nonhomogeneous Poisson process,local likelihood,nonparametric method,simulation,en
dc.relation.page20
dc.rights.note有償授權
dc.date.accepted2006-07-27
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved