請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32207
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊燦堯 | |
dc.contributor.author | Huei-Wun Zou | en |
dc.contributor.author | 鄒惠雯 | zh_TW |
dc.date.accessioned | 2021-06-13T03:36:45Z | - |
dc.date.available | 2011-08-08 | |
dc.date.copyright | 2011-08-08 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-28 | |
dc.identifier.citation | 中文部份
王國龍 (2000) 台灣北部及外海晩上新世:第四紀火山岩的地球化學特性與岩石成因, 國立臺灣大學地質學研究所,共169頁。 何孝恆 (2001) 台灣北部地區大屯火山群火山噴氣來源之探討, 國立臺灣大學地質學研究所,共75頁。 李曉芬 (2004) 大屯火山區火山氣體成份及其冷凝水之氫氧同位素組成, 國立臺灣大學地質學研究所,共79頁。 宋聖榮、楊燦堯、徐春田、蔡裕偉(2010)大台北地區特殊地質災害調查與監測第二期─火山地質與火山活動調查與監測(3/4)。經濟部中央地質調查所報告(99-5226904000-03-01),共307頁。 莊文星、陳汝勤 (1989) 台灣北部火山岩之定年與地球化學研究:經濟部中央地質調查所彙刊,第125-166頁。 陳文山、楊志成、楊小青、劉進金、詹瑜章、謝凱旋、謝有忠 (2007) 從LiDAR的2公尺x 2公尺數值模擬地形分析大屯火山群的火山地形,經濟部中央地質調查所彙刊第二十號,第103頁。 陳艾荻 (2010)台灣溫泉水中溶解氣成分研究,國立臺灣大學地質學研究所,共130頁。 陳耀麟 (2002)大屯火山區溫泉水之化學成份及其對河水之影響, 國立臺灣大學地質科學研究所,共216頁。 陳肇夏 (1989)台灣的溫泉和地熱,地質,第九卷,第2期,327~340頁。 張文龍 (2009)干酪根中各種元素的穩定同位素分析,現代科學儀器,第二期,102~104頁。 黃鑑水 (1998)台灣地質圖(五萬分之一),圖幅第四號(台北),經濟部中央地質調查所,第二版,共61頁。 溫心怡 (2010)大屯火山群地熱區中土壤氣體之二氧化碳通量,國立臺灣大學地質科學研究所,共65頁。 楊燦堯 (2000)陽明山國家公園大屯火山群噴氣之氦同位素比值研究,國家公園學報,第10期,第73-94頁。 楊燦堯、何孝恆、謝佩珊、劉念宗、陳于高、陳正宏(2003) 大屯火山群火山氣體成份與來源之探討,國家公園學報,第13期,第127-156頁。 謝佩珊 (2000) 台灣地區溫泉與泥火山氣體來源之初探,國立臺灣大學地質學研究所,共77頁。 顏滄波 (1955) 台灣之溫泉。台銀季刊,第 7卷,第2期,第 129-147頁。 礦研所 (1969) 大屯火山群地熱探勘工作報告之一,經濟部聯合礦業研究所,報告90號,共63頁。 礦研所 (1970) 大屯火山群地熱探勘工作報告之二,經濟部聯合礦業研究所,報告102號,共86頁。 礦研所 (1971) 大屯火山群地熱探勘工作報告之三,經濟部聯合礦業研究所,報告111號,共48頁。 礦研所 (1973) 大屯火山群地熱探勘工作報告之四,經濟部聯合礦業研究所,報告126號,共78頁。 英文部分 Allard, P. and Javoy, M., 1976,Composition isotopique du CO2, SO2 et de leau, dans les gaz volcaniques eruptifs (abs) : Reunion Annual Science Terre, v.4, p.4. Allard, P., Le Guern, F. and Sabroux, J.C., 1977, Thermodynamic and isotopic studies in eruptive gases: Geothermics, v5, p.37-40. Allard, P., Tazieff, H. and Dajlevic, D., 1979, Observations of seafloor spreading in Afar during the November 1978 fissure eruption: Nature, v279, p.30-33. Ault, W.U. and Kulp, J.L., 1959, Isotopic geochemistry of sulfur: Geochimica et Cosmochimica Acta, v16, p.201-235. Belousov, A., Belousova, M., Chen, C.-H., and Zellmer, G.F., 2010, Deposits, character and timing of recent eruptions and gravitational collapses in Tatun Volcanic Group, Northern Taiwan: Hazard-related issues: Journal of Volcanology and Geothermal Research, v. 191, p. 205-221. Chen, C-H. and Lin, S.B., 2002, Eruptions younger than 20Ka of the Tatun Volcano Group as viewed from the sediments of the Sungshan Formation in Taipei Basin: Journal of Western Pacific Earth Sciences, v2, p.191-204. Chen, C.H., Burr, G.S., and Lin, S.B., 2010, Time of a near Holocene Volcanic eruption in the Tatun Volcano Group, northern Taiwan: evidence from AMS radiocarbon dating of charcoal ash from sediments of the Sungshan Formation in Taipei basin: Terrestrial Atmospheric and Oceanic Sciences, v. 21, p. 611-614. Coplen T.B., J.A. Hopple, J.K. Böhlke, H.S. Peiser, S.E. Rieder, H.R. Krouse, K.J.R. Rosman, T. Ding, R.D. Vocke, Jr., K.M. Révész, A. Lamberty, P. Taylor, and P. De Bièvre, 2002, Compilation of Minimum and Maximum Isotope Ratios of Selected Elements in Naturally: Occurring Terrestrial Materials and Reagents, U.S. Geological Survey, Water Resources Investigation Report 01-4222. Fang, J. N., H. J. Lo, S. R. Song, S. H. Chung, Y. L. Chen, I. C. Lin, B. S. Yu, H. F. Chen, L. J. Li, and C. M. Liu, 2003, Hydrothermal alteration of andesite in acid solutions: experimental study in 0.05M H2SO4 solution at 110 °C: Journal Chinese Chemical Society v.50, p.239-244. Forrest, J., and Newman, L., 1977, Silver-I 10 microgram sulfate analysis for the short time resolution of ambient levels of sulfur aerosol: Analytical Chemistry, v.49, p. 1579-1584. Faure G., and Mensing, T.M., 2004, Sulfur, in Gunter Faure, and Mensing, T.M., eds., Isotopes: Principles and Applications, 3rd Edition, p. 824-849. Fogg, P.G.T., and Gerrard, W., 1991, Solubility of gases in liquids : a critical evaluation of gas/liquid systems in theory and practice: New York, J. Wiley. Giggenbach, W.F., and Guern, F.L., 1976, Chemistry of magmatic gases from Erttaale, Ethiopia: Geochimica Et Cosmochimica Acta, v. 40, p. 25-30. Hoefs, J., 1997 , Sulfur in Hoefs, J., ed., Stable Isotope Geochemistry: Berlin, Heidelberg, Springer Berlin Heidelberg, p. 71-78. Hosono, T., Wang, C.H., Umezawa, Y., Nakano, T., Onodera, S., Nagata, T., Yoshimizu, C., Tayasu, I., and Taniguchi, M., 2011, Multiple isotope (H, O, N, S and Sr) approach elucidates complex pollution causes in the shallow groundwaters of the Taipei urban area: Journal of Hydrology, v. 397, p. 23-36. Jensen, M.L., Qana, S., Naki, N. and Dessau, G., 1971, Sulfur isotope geochemistry of volcanic and fumarolic fluids: Society Mining Geology Japan, Special Issue 2, p.76-79. Kiyosu, Y., and Kurahashi, M., 1983, Origin of sulfur species in acid sulfate-chloride thermal waters, northeastern Japan: Geochimica Et Cosmochimica Acta, v. 47, p. 1237-1245. Kiyosu, Y., and Kurahashi, M., 1984, Isotopic geochemistry of acid thermal waters and volcanic gases from Zao volcano in Japan: Journal of Volcanology and Geothermal Research, v. 21, p. 313-331. Kusakabe, M., Komoda, Y., Takano, B., and Abiko, T., 2000, Sulfur isotopic effects in the disproportionation reaction of sulfur dioxide in hydrothermal fluids: implications for the [delta]34S variations of dissolved bisulfate and elemental sulfur from active crater lakes: Journal of Volcanology and Geothermal Research, v. 97, p. 287-307. Lee, H.F., Yang, T.F., Lan, T.F., Song, S.R. and Tsao, S., 2005, Fumarolic gas composition of the Tatun Volcano Group, northern Taiwa: Terrestrial Atmospheric and Oceanic Sciences, v16(4), p.843-864. Lee, H.F., Yang, T.F., Lan, T.F., Chen, C.H., Song, S.R., and Tsao, S., 2008, Temporal variations of gas compositions of fumaroles in the Tatun Volcano Group, northern Taiwan: Journal of Volcanology and Geothermal Research, v. 178, p. 624-635. Lewicki, J.L., Fischer, T., and Williams, S.N., 2000, Chemical and isotopic compositions of fluids at Cumbal Volcano, Colombia: evidence for magmatic contribution: Bulletin of Volcanology, v. 62, p. 347-361. Lin, C.H., Konstantinou, K.I., Liang, W.T., Pu, H.C., Lin, Y.M., You, S.H., and Huang, Y.P., 2005a, Preliminary analysis of volcanoseismic signals recorded at the Tatun Volcano Group, northern Taiwan: Geophys. Research Letters, v. 32, p. L10313. Lin, C.H., Konstantinou, K.I., Pu, H.C., Hsu, C.C., and Lin, Y.M., 2005b, Preliminary results from seismic monitoring at the Tatun volcanic area of northern Taiwan: Terrestrial Atmospheric and Oceanic Sciences, v. 16, p. 563-577. Liu, C.-M., Song, S.-R., Chen, Y.-L. and Tsao, S., 2011, Characteristics and origins of hot springs in the Tatun Volcano Group, northern Taiwan: Terrestrial Atmospheric and Oceanic Sciences (in press) Mandeville, C.W., 2010, Sulfur: A Ubiquitous and Useful Tracer in Earth and Planetary Sciences: Elements, v. 6, p. 75-80. Mizutani Y. and Sigiura T., 1982, Variations in chemical and isotopic compositions of fumarolic gases from Showashinzan volcano, Hokkaido, Japan: Geochemical Journal, v16, p. 63–71. Montegrossi, G., Tassi, F., Minissale, A.A., Vaselli, O., and Buccianti, A., 2001, Natural fluctuation of sulfur species in volcanic fumaroles: Journal of Non-Equilibrium Thermodynamics, v. 33, p. 75-102. Ohba, T., Sawa, T., Taira, N., Yang, T.F., Lee, H.F., Lan, T.F., Ohwada, M., Morikawa, N., and Kazahaya, K., 2010, Magmatic fluids of Tatun volcanic group, Taiwan: Applied Geochemistry, v. 25, p. 513-523. Ohmoto, H., and Lasaga, A.C., 1982, Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems: Geochimica Et Cosmochimica Acta, v. 46, p. 1727-1745. Ohmoto, H., and Rye, R.O., 1979, Isotopes of sulfur and carbon in Ohmoto, H., ed., Geochemistry of hydrothermal ore deposits: New York, NY, Wiley, p. 509-567 Poorter, R.P.E., Varekamp, J.C., Poreda, R.J., Van Bergen, M.J., and Kreulen, R., 1991, Chemical and isotopic compositions of volcanic gases from the east Sunda and Banda arcs, Indonesia: Geochimica Et Cosmochimica Acta, v. 55, p. 3795-3807. Rollinson, H.R., 1993, Using stable isotope data, in Rollinson, H.R., ed., Using geochemical data: evaluation, presentation, interpretation, Longman, p. 303-306. Rowe, G.L., 1994, Oxygen, hydrogen, and sulfur isotope systematics of the crater lake system of Poas volcano, costa-rica: Geochemical Journal, v. 28, p. 263-287. Sakai, H. and Matsubaya, O., 1977, Stable isotopic studies of Japanese geothermal systems: Geothermics, v5, p.97-124. Sakai, H., Casadevall, T.J. and Moore, J.G., 1982, Chmistry and isotope ratios of sulfur in basalts and volcanic gases at Kilauea volcano, Hawaii: Geochimica et Cosmochimica Acta, v46, p.729-738. Song, S.R., T.F. Yang, Y.H. Yen, S.J. Tsao and H.J. Lo, 2000, The Tatun volcano Group is active or extinct? Journal of the Geological Society of China, v. 43, p. 521-543. Taylor, B., 1986, Magmatic volatiles; isotopic variation of C, H, and S: Reviews in Mineralogy and Geochemistry, v. 16, p. 185. Teng, L.S., 1996, Extensional collapse of the northern Taiwan mountain belt: Geology, v.24, p.949-952. Teng, L.S., Chen,C.H., Wang, W.S., Liu, T.K., Juang, W.S. and Chen, J.C., 1992, Plate kinematic model for late Cenozoic arc magmatism in northern Taiwan: Journal of the Geological Society of China, v.35, p.1-18. Torssander, P., 1988, Sulfur isotope ratios of icelandic lava incrustations and volcanic gases: Journal of Volcanology and Geothermal Research, v. 35, p. 227-235. Ueda, A., Sakai, H., and Sasaki, A., 1979, Isotopic composition of volcanic native sulfur from Japan: Geochemical Journal, v. 13, p. 269-275. Ueda, A., and Sakai, H., 1984, Sulfur isotope study of quaternary volcanic-rocks from the Japanese islands arc: Geochimica Et Cosmochimica Acta, v. 48, p. 1837-1848. Wallace, P.J., 2005, Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data: Journal of Volcanology and Geothermal Research, v. 140, p. 217-240. Wang, K.-L., Chung, S.-L., Chen, C.-H., and Chen, C.-H., 2002, Geochemical constraints on the petrogenesis of high-Mg basaltic andesites from the Northern Taiwan Volcanic Zone: Chemical Geology, v. 182, p. 513-528. Wang, K.-L., Chung, S.-L., Chen, C.-H., Shinjo, R., Yang, T.F., and Chen, C.-H., 1999, Post-collisional magmatism around northern Taiwan and its relation with opening of the Okinawa Trough: Tectonophysics, v. 308, p. 363-376. Wang, K.-L., Sun-Lin, C., O'Reilly, S.Y., Shen-Su, S.U.N., Ryuichi, S., and Chang-Hwa, C., 2004, Geochemical constraints for the genesis of Post-collisional magmatism and the geodynamic evolution of the northern Taiwan region: Journal of Petrology, v. 45, p. 975-1011. White, D.E., 1957, Thermal waters of volcanic origin: Geological Society of America Bulletin, v. 68, p. 1637-1658. Williams, S.N., Sturchio, N.C., Calvache, M.L., Mendez, R., Londono, A., and Garcia, N., 1990, Sulfur-dioxide from Nevado-del-Ruiz volcano, colombia – total flux and isotopic constraints on its origin: Journal of Volcanology and Geothermal Research, v. 42, p. 53-68. Yang, T.F., Sano, Y., and Song, S.R., 1999, He-3/He-4 ratios of fumaroles and bubbling gases of hot springs in Tatun Volcano Group, North Taiwan: Nuovo Cimento Della Societa Italiana Di Fisica C-Geophysics and Space Physics, v. 22, p. 281-286. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32207 | - |
dc.description.abstract | 大屯火山地區,目前已有對噴氣口及溫泉水的採樣分析方法,可以定期監測火山的活動,並了解其火山噴氣及溫泉水之化學成份變化。但是前人研究中,一直缺少於大屯火山地區有系統的硫同位素分析,本研究將以大屯火山地區的噴氣硫(包含SO2和H2S)、溫泉水中的硫酸根以及噴氣口旁之結晶硫為材料,分析硫同位素成份之變化,討論硫的來源與分異之現象,並希望綜合前人研究之其他同位素資料,探討火山噴氣來源。
本研究的氣體樣本,在大屯火山地區的噴氣口共有九處,硫同位素值為-4.4‰ ~ 10.3‰。另外,本研究也同時分析大屯火山群之溫泉水及結晶硫的硫同位素成份,分別落在-2.6‰~29.0‰與-3.0‰~4.5‰之間。 大油坑噴氣有最高的氦同位素比值,接近上部地函成分。本研究分析結果顯示大油坑噴氣之硫同位素比值比較高,前人認為可能是本地區的硫化作用強烈,造成硫同位素組成偏重。但是,我們利用硫化物之間的分異係數,計算其平衡溫度,結果顯示大油坑的二氧化硫和元素硫之噴氣平衡溫度約為347℃,而元素硫和硫化氫之間的平衡溫度約為92℃,二氧化硫較重的硫同位素不能以元素硫的形成來解釋,說明,大油坑噴氣中有較高硫同位素比值的二氧化硫成份帶有明顯的島弧岩漿訊號。 在大屯火山地區的硫(包括火山噴氣硫、溫泉水的硫及元素硫)有兩個明顯的來源,為岩漿來源及地層滷水(或海水)來源,而這些不同來源的硫於地底上升至地表的途中有可能因為圍岩的作用而改變其硫同位素比值。 綜合前人研究的噴氣口氣體成分分析、溫泉水之化學成分分析及其氦、氫、氧、碳同位素分析研究,我們將大油坑當作最接近岩漿來源的地區,其他地區的噴氣硫及溫泉水中的硫同位素,由於受到圍岩作用,表現出隨著愈遠離大油坑而其硫同位素比值愈小的趨勢;另外,硫磺谷、大埔及地熱谷由於地層滷水的影響,具有非常高的硫同位素比值,並且大埔及地熱谷的低氦同位素比值也證實其有較高的地殼來源;特別的是焿子坪及四磺坪在大屯火山地區氦同位素比值相當高,卻有相對小的硫同位素比值,我們推測其為底下熱液蒸氣之硫化氫氣體上升於淺層水體並再次酸化所造成的結果。 | zh_TW |
dc.description.abstract | Previous studies revealed that compositions of volcanic gas and hot spring water are closely related to the volcanic activity. Sulfur species are principle constituents in volcanic gas. Usually they are very rare in atmosphere so that we do not have to consider air contamination when we collect samples for sulfur analysis. In this study, it is first time to systematically study the sulfur isotopes in volcanic gas (including both H2S and SO2), hot spring water (SO4-2) and sulfur elements (S8) at eleven sites of the TVG (Tatun Volcano Group) geothermal area to better understand the source of sulfur species and the fractionation of sulfur.
The results of the δ34S ratios of total sulfur gas from fumaroles fall in the range of -4.4 to 10.3 ‰. In addition, we have also analyzed the spring water (from -2.6 to 29.0 ‰) and native sulfur isotopic compositions (from -3.0 to 4.5 ‰) of sulfur in the studied area. It indicates that there are multiple sources for the sulfur species in studied area. The highest sulfur isotopic ratio of the SO2 gas found in Da-yiou-keng (DYK) area was suggested by previous studies that the isotopic fractionation may be induced by the active process of sulfurous production from fumarolic gas. However, the estimated equilibrium temperature between H2S gas and native sulfur, and SO2 gas and native sulfur is ca. 92 and 347℃, respectively for DYK sulfurous samples. It implies that the native sulfur is unlikely to deposit directly from SO2 gas in this area. Therefore, the heavier sulfur isotopic composition of SO2 gas cannot explain by isotopic fractionation due to native sulfur deposition from venting gas. Furthermore, we can conclude that DYK fumarolic gas exhibits geochemical signature of island-arc related magma which shows higher sulfur isotopic ratios than typical MORB samples. Magmatic sulfur and formation brine (or seawater) sulfur are two distinct sources for the TVG fumarolic samples. The sulfur isotopic value of these sulfurous samples would be modified by reacting with host rock while the magmatic gas/fluid moving upward to surface. Available geochemical data show that fumarolic samples from DYK hydrothermal area exhibit significant magma related characteristics, therefore, many researchers suggest that there may exist an active magma chamber in this area. In this study, the sulfur isotopic data also support the conclusion that DYK sulfurous samples exhibit the highest sulfur isotopic values among all TVG samples. The other samples show lighter sulfur isotopic values as the sampling site is away from DYK and then the fumarolic gas/fluids may have more chance to react with host rock to modify its compositions. It is worthy to note that samples from LHK, DP and TRK exhibit very high δ34SSO4 values and show strong signals of formation brine water (or seawater). The lower helium isotopic ratios of DP and TRK also support that more crustal contribution input for the degassing system at these two sites. Samples from SHP and GTP show relative high helium isotopic values, however, with relative negative sulfur isotopic values. We suggest that they may result from secondary acidification of hydrogen sulfide gas at shallow level while the magmatic fluids migrating upward to surface. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T03:36:45Z (GMT). No. of bitstreams: 1 ntu-100-R98224111-1.pdf: 5173605 bytes, checksum: 13db5329fcd1671af19e387ec2452b8a (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 誌 謝 i
中文摘要 ii ABSTRACT iii 目錄 v 第1章 緒論 1 1-1研究區域概述 1 1-2前人研究 4 1-3 研究動機與目的 11 第2章 採樣方法與研究原理 12 2-1火山噴氣樣本採樣方法 12 2-1-1硫化氫氣體採樣及處理 12 2-1-2分離硫化氫及二氧化硫氣體採樣方法及前處理 13 2-2溫泉水樣採樣方法及分析前處理 15 2-3自然硫採樣方法及分析前處理 19 2-4質譜儀分析 19 2-5硫元素及氣體之地球化學簡介 21 第3章 分析結果 24 3-1 硫同位素分析結果 24 3-1-1噴氣氣體硫同位素分析結果 25 3-1-2溫泉水硫同位素分析結果 27 3-1-3固體硫磺硫同位素分析結果 28 第4章 綜合討論 32 4-1 大屯山火山噴氣之硫同位素特性及來源 33 4-1-1火山噴氣特性 33 4-1-2大屯山火山噴氣來源 36 4-1-3氦同位素比值與硫同位素值之差異 47 4-2 大屯山火山溫泉水之硫同位素特性及來源 49 4-2-1溫泉水特性 49 4-2-2大屯山火山溫泉水來源 53 4-2-3 二次酸化的可能性 66 4-3大屯山元素硫之硫同位素特性及來源 68 4-3-1大屯山元素硫之硫同位素特性 68 4-3-2大屯山元素硫之硫同位素來源 69 4-4大屯火山區火山噴氣及溫泉形成模型 72 第5章 結論 74 參考文獻 76 附錄 82 | |
dc.language.iso | zh-TW | |
dc.title | 台灣北部地區大屯火山群火山噴氣之硫同位素分析 | zh_TW |
dc.title | Sulfur isotopic compositions of fumarolic samples from
TVG hydrothermal area in northern Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 宋聖榮,林曉武,王珮玲,汪中和 | |
dc.subject.keyword | 大屯火山,硫同位素,火山噴氣, | zh_TW |
dc.subject.keyword | Tatun volcano Group,sulfur isotope,fumaroles, | en |
dc.relation.page | 85 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-07-29 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地質科學研究所 | zh_TW |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 5.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。