Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32203
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳昭倫 副研究員
dc.contributor.authorChien-Wei Chenen
dc.contributor.author陳建維zh_TW
dc.date.accessioned2021-06-13T03:36:33Z-
dc.date.available2006-07-28
dc.date.copyright2006-07-28
dc.date.issued2006
dc.date.submitted2006-07-26
dc.identifier.citationArens, P., P. Odinot, et al. (1995). 'GATA-Repeats and GACA-Repeats Are Not Evenly Distributed Throughout the Tomato Genome.' Genome 38(1): 84-90.
Ayre, D. J., A. R. Davis, et al. (1997). 'Genetic evidence for contrasting patterns of dispersal in solitary and colonial ascidians.' Marine Biology 130(1): 51-61.
Ayre, D. J. and S. Dufty (1994). 'Evidence for Restricted Gene Flow in the Viviparous Coral Seriatopora Hystrix on Australia Great-Barrier-Reef.' Evolution 48(4): 1183-1201.
Ayre, D. J. and T. P. Hughes (2000). 'Genotypic diversity and gene flow in brooding and spawning corals along the Great Barrier Reef, Australia.' Evolution 54(5): 1590-1605.
Ayre, D. J. and J. M. Resing (1986). 'Sexual and Asexual Production of Planulae in Reef Corals.' Marine Biology 90(2): 187-190.
Babcock, R. C., G. D. Bull, et al. (1986). 'Synchronous Spawnings of 105 Scleractinian Coral Species on the Great-Barrier-Reef.' Marine Biology 90(3): 379-394.
Baums, I. B., C. R. Hughes, et al. (2005). 'Mendelian microsatellite loci for the Caribbean coral Acropora palmata.' Marine Ecology-Progress Series 288: 115-127.
Baums, I. B., M. W. Miller, et al. (2005). 'Regionally isolated populations of an imperiled Caribbean coral, Acropora palmata.' Molecular Ecology 14(5): 1377-1390.
Benzie, J. A. H. and S. T. Williams (1995). 'Gene Flow among Giant Clam (Tridacna-Gigas) Populations in Pacific Does Not Parallel Ocean Circulation.' Marine Biology 123(4): 781-787.
Benzie, J. A. H. and S. T. Williams (1997). 'Genetic structure of giant clam (Tridacna maxima) populations in the west Pacific is not consistent with dispersal by present-day ocean currents.' Evolution 51(3): 768-783.
Campbell, C. A., J. W. Valentine, et al. (1975). 'High Genetic-Variability in a Population of Tridacna-Maxima from Great Barrier Reef.' Marine Biology 33(4): 341-345.
Charlesworth, B., P. Sniegowski, et al. (1994). 'The Evolutionary Dynamics of Repetitive DNA in Eukaryotes.' Nature 371(6494): 215-220.
Chen, C. A., N. V. Wei, et al. (2002). 'Genotyping the clonal population structure of a gorgonian coral, Junceella fragilis (Anthozoa : Octocorallia : Ellisellidae) from Lanyu, Taiwan, using simple sequence repeats in ribosomal intergenic spacer.' Zoological Studies 41(3): 295-302.
Chen, C. L. A. (1999). 'Analysis of scleractinian distribution in Taiwan indicating a pattern congruent with sea surface temperatures and currents: Examples from Acropora and Faviidae corals.' Zoological Studies 38(2): 119-129.
Delmotte, F., N. Leterme, et al. (2002). 'Genetic architecture of sexual and asexual populations of the aphid Rhopalosiphum padi based on allozyme and microsatellite markers.' Molecular Ecology 11(4): 711-723.
Depeiges, A., C. Goubely, et al. (1995). 'Identification of the Most Represented Repeated Motifs in Arabidopsis-Thaliana Microsatellite Loci.' Theoretical and Applied Genetics 91(1): 160-168.
Dib, C., S. Faure, et al. (1996). 'A comprehensive genetic map of the human genome based on 5,264 microsatellites.' Nature 380(6570): 152-154.
Dieringer, D. and C. Schlotterer (2003). 'MICROSATELLITE ANALYSER (MSA): a platform independent analysis tool for large microsatellite data sets.' Molecular Ecology Notes 3(1): 167-169.
Dietrich, W. F., J. Miller, et al. (1996). 'A comprehensive genetic map of the mouse genome (vol 380, pg 149, 1996).' Nature 381(6578): 172-172.
Dobrowolski, M. P., I. C. Tommerup, et al. (2002). 'Non-mendelian inheritance revealed in a genetic analysis of sexual progeny of Phytophthora cinnamomi with microsatellite markers.' Fungal Genetics and Biology 35(3): 197-212.
Duquecaro, H. (1990). 'Neogene Stratigraphy, Paleoceanography and Paleobiogeography in Northwest South-America and the Evolution of the Panama Seaway.' Palaeogeography Palaeoclimatology Palaeoecology 77(3-4): 203-234.
Estoup, A., M. Solignac, et al. (1993). 'Characterization of (Gt)N and (Ct)N Microsatellites in 2 Insect Species - Apis-Mellifera and Bombus-Terrestris.' Nucleic Acids Research 21(6): 1427-1431.
Felsenstein, L. (1993). 'The Commons of Information.' Dr Dobbs Journal 18(5): 18-&.
Fitzsimmons, N. N., C. Moritz, et al. (1995). 'Conservation and Dynamics of Microsatellite Loci over 300-Million Years of Marine Turtle Evolution.' Molecular Biology and Evolution 12(3): 432-440.
Fukami, H., M. Omori, et al. (2003). 'Ecological and genetic aspects of reproductive isolation by different spawning times in Acropora corals.' Marine Biology 142(4): 679-684.
Giraffa, G., L. Rossetti, et al. (2000). 'An evaluation of chelex-based DNA purification protocols for the typing of lactic acid bacteria.' Journal of Microbiological Methods 42(2): 175-184.
Harrison, P. L., R. C. Babcock, et al. (1984). 'Mass Spawning in Tropical Reef Corals.' Science 223(4641): 1186-1189.
Hatta, M., H. Fukami, et al. (1999). 'Reproductive and genetic evidence for a reticulate evolutionary history of mass-spawning corals.' Molecular Biology and Evolution 16(11): 1607-1613.
Hellberg, M. E. (1996). 'Dependence of gene flow on geographic distance in two solitary corals with different larval dispersal capabilities.' Evolution 50(3): 1167-1175.
Hellberg, M. E. and M. S. Taylor (2002). 'Genetic analysis of sexual reproduction in the dendrophylliid coral Balanophyllia elegans.' Marine Biology 141(4): 629-637.
Jakse, J., K. Kindlhofer, et al. (2001). 'Assessment of genetic variation and differentiation of hop genotypes by microsatellite and AFLP markers.' Genome 44(5): 773-782.
Jarne, P. and P. J. L. Lagoda (1996). 'Microsatellites, from molecules to populations and back.' Trends in Ecology & Evolution 11(10): 424-429.
Jurka, J. and C. Pethiyagoda (1995). 'Simple Repetitive DNA-Sequences from Primates - Compilation and Analysis.' Journal of Molecular Evolution 40(2): 120-126.
Keigwin, L. (1982). 'Isotopic Paleo-Oceanography of the Caribbean and East Pacific - Role of Panama Uplift in Late Neogene Time.' Science 217(4557): 350-352.
Kenyon, J. C. (1997). 'Models of reticulate evolution in the coral genus Acropora based on chromosome numbers: Parallels with plants.' Evolution 51(3): 756-767.
Knowlton, N., J. L. Mate, et al. (1997). 'Direct evidence for reproductive isolation among the three species of the Montastraea annularis complex in Central America (Panama and Honduras).' Marine Biology 127(4): 705-711.
Knowlton, N., L. A. Weight, et al. (1993). 'Divergence in Proteins, Mitochondrial-DNA, and Reproductive Compatibility across the Isthmus of Panama.' Science 260(5114): 1629-1632.
Kumar, S., K. Tamura, et al. (2004). 'MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment.' Briefings in Bioinformatics 5(2): 150-163.
Le Goff-Vitry, M. C., O. G. Pybus, et al. (2004). 'Genetic structure of the deep-sea coral Lophelia pertusa in the northeast Atlantic revealed by microsatellites and internal transcribed spacer sequences.' Molecular Ecology 13(3): 537-549.
Lopez, J. V., R. Kersanach, et al. (1999). 'Molecular determination of species boundaries in corals: Genetic analysis of the Montastraea annularis complex using amplified fragment length polymorphisms and a microsatellite marker.' Biological Bulletin 196(1): 80-93.
Macaranas, J. M., C. A. Ablan, et al. (1992). 'Genetic-Structure of Giant Clam (Tridacna-Derasa) Populations from Reefs in the Indo-Pacific.' Marine Biology 113(2): 231-238.
Magalon, H., S. Samadi, et al. (2004). 'Development of coral and zooxanthella-specific microsatellites in three species of Pocillopora (Cnidaria, Scleractinia) from French Polynesia.' Molecular Ecology Notes 4(2): 206-208.
Maier, E., R. Tollrian, et al. (2005). 'Isolation by distance in the scleractinian coral Seriatopora hystrix from the Red Sea.' Marine Biology 147(5): 1109-1120.
Marquez, L. M., MacKenzie, J.B., Takabayashi, M., Smith, C.R., Chen, C.A. (2000). Difficulties in obtaining microsatellite markers from acroporid corals. Proc 9th Int Coral Reef Symp.
Marquez, L. M., M. J. H. van Oppen, et al. (2002). 'Sympatric populations of the highly cross-fertile coral species Acropora hyacinthus and Acropora cytherea are genetically distinct.' Proceedings of the Royal Society of London Series B-Biological Sciences 269(1497): 1289-1294.
Marquez, L. M., M. J. H. van Oppen, et al. (2002). 'The highly cross-fertile coral species, Acropora hyacinthus and Acropora cytherea, constitute statistically distinguishable lineages.' Molecular Ecology 11(8): 1339-1349.
Mcmillan, W. O. and S. R. Palumbi (1995). 'Concordant Evolutionary Patterns among Indo-West Pacific Butterflyfishes.' Proceedings of the Royal Society of London Series B-Biological Sciences 260(1358): 229-236.
Miller, K. and R. Babcock (1997). 'Conflicting morphological and reproductive species boundaries in the coral genus Platygyra.' Biological Bulletin 192(1): 98-110.
Miller, K. J. and D. J. Ayre (2004). 'The role of sexual and asexual reproduction in structuring high latitude populations of the reef coral Pocillopora damicornis.' Heredity 92(6): 557-568.
Miller, K. J. and C. G. Howard (2004). 'Isolation of microsatellites from two species of scleractinian coral.' Molecular Ecology Notes 4(1): 11-13.
Nanda, I., C. Deubelbeiss, et al. (1990). 'Heterogeneities in the Distribution of (Gaca)N Simple Repeats in the Karyotypes of Primates and Mouse.' Human Genetics 85(2): 187-194.
Odorico, D. M. and D. J. Miller (1997). 'Variation in the ribosomal internal transcribed spacers and 5.8S rDNA among five species of Acropora (Cnidaria; Scleractinia): Patterns of variation consistent with reticulate evolution.' Molecular Biology and Evolution 14(5): 465-473.
Page, R. D. M. (1996). 'TreeView: An application to display phylogenetic trees on personal computers.' Computer Applications in the Biosciences 12(4): 357-358.
Pemberton, J. M., J. Slate, et al. (1995). 'Nonamplifying Alleles at Microsatellite Loci - a Caution for Parentage and Population Studies.' Molecular Ecology 4(2): 249-252.
Por, F. D. (1989). The legacy of Tethys: aquatic biogeography of the Levant. Dordrecht, The Netherlands., Kluwer Academic Publishing.
Rosen, B. R. (1988). 'Progress, Problems and Patterns in the Biogeography of Reef Corals and Other Tropical Marine Organisms.' Helgolander Meeresuntersuchungen 42(2): 269-301.
Schlotterer, C. (2000). 'Evolutionary dynamics of microsatellite DNA.' Chromosoma 109(6): 365-371.
Severance, E. G., A. M. Szmant, et al. (2004). 'Single-copy gene markers isolated from the Caribbean coral, Montastraea annularis.' Molecular Ecology Notes 4(2): 167-169.
Shearer, T. L. and M. A. Coffroth (2004). 'Isolation of microsatellite loci from the scleractinian corals, Montastraea cavemosa and Porites astreoides.' Molecular Ecology Notes 4(3): 435-437.
Simon, J. C., S. Baumann, et al. (1999). 'Reproductive mode and population genetic structure of the cereal aphid Sitobion avenae studied using phenotypic and microsatellite markers.' Molecular Ecology 8(4): 531-545.
Sutherland, G. R. and R. I. Richards (1995). 'Simple Tandem DNA Repeats and Human Genetic-Disease.' Proceedings of the National Academy of Sciences of the United States of America 92(9): 3636-3641.
Szmant, A. M., E. Weil, et al. (1997). 'Hybridization within the species complex of the scleractinan coral Montastraea annularis.' Marine Biology 129(4): 561-572.
van Oppen, M. J. H., B. J. McDonald, et al. (2001). 'The evolutionary history of the coral genus Acropora (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear marker: Reticulation, incomplete lineage sorting, or morphological convergence?' Molecular Biology and Evolution 18(7): 1315-1329.
van Oppen, M. J. H., B. L. Willis, et al. (2002). 'Spawning times, reproductive compatibilities and genetic structuring in the Acropora aspera group: evidence for natural hybridization and semi-permeable species boundaries in corals.' Molecular Ecology 11(8): 1363-1376.
van Oppen, M. J. H., B. L. Willis, et al. (2000). 'Examination of species boundaries in the Acropora cervicornis group (Scleractinia, Cnidaria) using nuclear DNA sequence analyses.' Molecular Ecology 9(9): 1363-1373.
Veron, J. E. N. (1995). Corals in Space and Time. Sydney, Australia, UNSW Press.
Vollmer, S. V. and S. R. Palumbi (2002). 'Hybridization and the evolution of reef coral diversity.' Science 296(5575): 2023-2025.
Vos, P., R. Hogers, et al. (1995). 'Aflp - a New Technique for DNA-Fingerprinting.' Nucleic Acids Research 23(21): 4407-4414.
Wallace, C. C. (1999). Staghorn corals of the world: a revision of the genus Acropora. Collingwood, Victoria, Australia, CSIRO Publishing.
Wallace, C. C. and C. F. Dai (1997). 'Scleractinia of Taiwan .4. Review of the coral genus Acropora from Taiwan.' Zoological Studies 36(4): 288-324.
Wallace, C. C. and J. Wolstenholme (1998). 'Revision of the coral genus Acropora (Scleractinia : Astrocoeniina : Acroporidae) in Indonesia.' Zoological Journal of the Linnean Society 123(3): 199-384.
Willis, B. L., R. C. Babcock, et al. (1997). 'Experimental hybridization and breeding incompatibilities within the mating systems of mass spawning reef corals.' Coral Reefs 16: S53-S65.
Wilson, A. C. C., P. Sunnucks, et al. (1999). 'Microevolution, low clonal diversity and genetic affinities of parthenogenetic Sitobion aphids in New Zealand.' Molecular Ecology 8(10): 1655-1666.
Wolstenholme, J. K., C. C. Wallace, et al. (2003). 'Species boundaries within the Acropora humilis species group (Cnidaria; Scleractinia): a morphological and molecular interpretation of evolution.' Coral Reefs 22(2): 155-166.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32203-
dc.description.abstract軸孔珊瑚是石珊瑚中種類最多的屬,總共包含113個種,大部分物種廣泛分布在印度太平洋海域,但其中有三個種只分布在加勒比海。因為種內變異過大加上可能發生種間雜交,而造成軸孔珊瑚分類上的困難,因此很多學者利用各種型態上、雜交試驗和分子標誌的方式,以釐清珊瑚的種間界線問題,但是往往沒有很好的成效;加上在族群遺傳研究中,利用的分子標誌缺乏高解析力,因此我們需要尋找更適合的分子標誌,藉以應用在軸孔珊瑚的種間界線及族群遺傳的相關研究中。微隨體基因座是一段以1-6 bp大小為重複單元所組成的DNA片段,因為其變異性高,且屬於共顯性與中性遺傳,這些特點使它們成為族群遺傳、遺傳疾病、親屬關係鑑定等研究的重要工具之ㄧ。因此,本研究欲探討微隨體基因座在軸孔珊瑚種間界線與族群遺傳的研究中的可用性。
目前在本實驗室中有五組由美麗軸孔珊瑚篩選出的GT重複序列片段,以及在文獻中有八組由麋角軸孔珊瑚篩選出的AAT重複序列片段,欲探討這些AAT重複序列片段是否在印度太平洋的軸孔珊瑚之同源性,利用在四種西太平洋的軸孔珊瑚和麋角軸孔珊瑚的PCR反應和序列定序後,共有五組AAT重複序列片段在印度太平洋物種是具有同源性的,加上有三組可用的GT重複序列片段,因此共有八組微隨體基因座可用於研究同域共存的軸孔珊瑚種間界線問題與族群遺傳之研究。
在研究同域共存的美麗軸孔珊瑚與指型軸孔珊瑚之種間界線研究結果可知:從單一基因座的探討,共有四組基因座的對偶基因頻度在兩種珊瑚間有顯著差異,而且經由八組基因座的複因子成分分析結果,兩種珊瑚間的微隨體基因型有明顯的分群,結果顯示多組微隨體基因座應可利用在軸孔珊瑚種間界線的研究上。
經由比較親代與子代的基因型,這些微隨體基因座都符合孟德爾遺傳。在族群遺傳研究中,利用其中七組微隨體基因座,初步觀測西太平洋的美麗軸孔珊瑚族群分化情形。在族群的哈溫平衡測試中,有半數的試驗不符合哈溫平衡,應為有效族群過小與族群內的自交情形嚴重所致;而在FST和Nei’s (1983)遺傳距離分析結果支持眺石和Togian Islands的遺傳關係比較近,和蛇頭山反而比較遠,而且根據Neighbor-Joining方法所做的樹型圖也支持蛇頭山的族群是一有別於眺石與Togian Islands的獨立類群,因此推測美麗軸孔珊瑚的族群分化情形可能是受到西太平洋洋流流向的影響。
從本研究可知,多組微隨體基因座有機會被利用在軸孔珊瑚種間界線的研究中,而且也可被用在觀測軸孔珊瑚的族群遺傳分化情形,因此,增加微隨體基因座與欲觀測的族群大小有機會更進一步釐清軸孔珊瑚種間界線與在印度太平洋族群遺傳之研究。
zh_TW
dc.description.abstractAcropora is by far one of the largest extent reef-building corals genus comprising 113 species. It is also one of the most widespread genera of corals, spanning the Indian and Pacific Oceans and Caribbean Sea. Due to great intraspecific variations and interspecific hybridization, species boundaries among Acropora were not clear. Hence, morphological, breeding, and molecular criteria were utilized to examine species boundaries among Acropora. But, many lower resoluble genetic markers were used for species boundaries among Acropora spp. Therefore, due to high polymorphism within populations, microsatellites, 1-6 bp tandemly repeats stretches, might possibly be utilized for species boundary and population genetics of Acropora.
There were five GT repeats, isolated from A. muricata, and eight AAT repeats, isolated from A. palmata, tested on four Indo-Pacific Acropora species and Caribbean A. palmata. After PCR amplification and sequencing, there were three GT repeats amplified in Indo-Pacific species and five homologous AAT-repeat microsatellite loci applied for Indo-Pacific Acropora species. As a result, there were eight microsatellite markers, including three GT and five AAT repeats, utilized for species boundary between sympatric A. digitifera and A. muricata in Togian Islands, Indonesia. From the results at each locus, allelic frequency distributions of these two Acropora species were significantly different at four microsatellite loci (Acr53, Acr1-60, 180, 181), but the others were not. In multi-locus analyses, FCA (Factorial correspondence analysis) showed that two species were significantly divided into two groups. According to this result, it revealed multi-locus microsatellite markers would be possibly highly resoluble genetic markers for species boundary among Acropora spp.
Due to unsuccessful PCR amplifications at the 181 locus, there were also seven microsatellite markers applied for population subdivisions of A. muricata in Shertoushan, Tiaoshi in Taiwan and Togian Islands, Indonesia. Based on pairwise FST and Nei’s genetic distance (1983), it revealed that the smaller genetic distance between Tiaoshi and Togian Islands compared with Shertoushan. However, the NJ tree, based on Nei’s genetic distance (1983) and the proportion of shared alleles, also revealed the similar patterns. Maybe the sea surface currents of the West Pacific Ocean possibly have significant impacts on the population subdivisions of A. muricata in these sites.
In conclusion, multi-locus microsatellite loci could be applied for the species boundary Acropora spp, and the population subdivision of A. muricata in Indo-Pacific oceans. In the future studies, these highly polymorphic microsatellite loci will be available for further species boundary studies and population genetics of the genera Acropora.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:36:33Z (GMT). No. of bitstreams: 1
ntu-95-R93241216-1.pdf: 1130272 bytes, checksum: 446aa0ec6761f50cd673f5ea53d62227 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsContents
Chapter 1. Introduction 1
1.1. Introduction of Acropora…………………………………………………………………….………….1
1.2. Interspecific hybridization and species boundary………………………………………….………… 2
1.2.1 Interspecific hybridization among sympatric corals……………………………….………… 2
1.2.2 Molecular analysis for species boundaries among corals…………………………….……… 3
1.3 Introductions and applications of microsatellite markers……………………………………….…… 5
1.3.1 Microsatellites…………………………………………………………………………….…….. 5
1.3.2 Molecular applications on population genetics of corals…………………………….………. 6
1.4 The objective of present study…………………………………………………………………….…… 7
Chapter 2. Materials and methods 8
2.1 Coral collection and crossing experiments……………………………………………………….…… 8
2.2 DNA extraction, amplification, cloning, and sequencing……………………………………….……. 9
2.2.1 DNA extraction……………………………………………………………………………….….. 9
2.2.2 Polymerase chain reaction (PCR) amplification, cloning, and DNA sequencing for AAT-repeat microsatellites in Indo- Pacific Acropora spp…………………………………….…….10
2.2.3 Microsatellite genotyping…………………………………………………………………….….11
2.3 Data analysis……………………………………………………………………………………….…….11
Chapter 3. Results 13
3.1 Microsatellite evaluation ………………………………………………………………………………..13
3.1.1 Cross-species utility of (GT/CT)n and (AAT)n microsatellites……………………………….13
3.1.2 Mendelian inheritability test……………………………………………………………………14
3.2 Species boundaries of A. digitifera and A. muricata in Togian Islands……………………………….16
3.3 Population genetics of A. muricata……………………………………………………………………...17
3.3.1 Departure from Hardy-Weinberg Equilibrium (HWE)………………………………………17
3.3.2 Population differentiations among three populations………………………………………...18
Chapter 4. Discussions 21
4.1. Microsatellite markers………………………………………………………………………………….21
4.1.1. Microsatellite availability and conserved AAT-repeat microsatellites………………………21
4.1.2. Mendelian inheritance of markers………………………………………………………….....22
4.2. Species boundaries between A. digitifera and A. muricata……………………………………………23
4.3. Population subdivision of A. muricata in the West Pacific Oceans………………………….………..25
4.3.1 Departure from Hardy-Weinberg Equilibrium and heterozygosity deficiency………….…..25
4.3.2. Population differentiations of A. muricata …………………………………….…......26
Chapter 5. Conclusion 29
References 31
Table 36
Figure 45
Table
Table 1. Assays of the 8 microsatellite loci on the populations of A. muricata in Shertoushan, Tiaoshi, Taiwan and Togian Islands, Indonesia……………………………………..36
Table 2. Core motifs and similarities of the AAT microsatellite flanking regions between the Indo-Pacific and the Caribbean Acropora (Baums et al. 2005)……………………..38
Table 3. Chi-square analysis of larval genotypes observed from A. muricata crosses at 10 loci. Genotypes are represented as 6 digit numbers………………………………………39
Table 4. Fisher’s exact test of linkage disequilibrium of 8 microsatellite loci in A. muricata..42
Table 5. Comparisons of allele frequencies between A. muricata and A. digitifera in the Togian Islands using 8 microsatellite loci. Mann-Whitney U-test………………….43
Table 6. The pairwise FST of Weir and Cockerham (1984) and Nei’s genetic distance (1983) among three populations of A. muricata…………………………………………….44

Figure
Figure 1. Sampling sites of Acropora muricata……………………………………………..45
Figure 2. PCR products amplified with 13 sets of microsatellite loci……………………….46
Figure 3. Histograms showing allelic frequency distributions for 8 microsatellite loci examined in A. muricata and A. digitifera of Togian islands………………………47
Figure 4. Factorial component analysis (FCA) on allele frequencies of A. muricata and A. digitifera samples using eight microsatellite loci…………………………………..48
Figure 5. The unrooted NJ tree based on Nei’s distance (1983) of three populations of A. muricata…………………………………………………………………………….49
Figure 6. The unrooted NJ tree based on the proportion of shared alleles of 3 populations of A. muricata…………………………………………………………………………….50
Figure 7. Factorial component analysis (FCA) on allele frequencies of three A. muricata populations using seven microsatellite loci………………………………………....51
dc.language.isoen
dc.subject軸孔珊瑚zh_TW
dc.subject族群遺傳zh_TW
dc.subject種間界線zh_TW
dc.subject微隨體zh_TW
dc.subjectspecies boundaryen
dc.subjectmicrosatelliteen
dc.subjectAcroporaen
dc.subjectpopulation geneticsen
dc.title利用微隨體基因座探討軸孔珊瑚種間界線與族群遺傳之研究zh_TW
dc.titleUtility of microsatellite markers in species boundary and population genetics of Acroporaen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee于宏燦 教授,戴昌鳳 教授,曹順成 助理研究員
dc.subject.keyword微隨體,軸孔珊瑚,種間界線,族群遺傳,zh_TW
dc.subject.keywordmicrosatellite,Acropora,species boundary,population genetics,en
dc.relation.page51
dc.rights.note有償授權
dc.date.accepted2006-07-27
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved