Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32202
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李建國
dc.contributor.authorPei-Chi Weien
dc.contributor.author魏珮琪zh_TW
dc.date.accessioned2021-06-13T03:36:30Z-
dc.date.available2006-08-04
dc.date.copyright2006-08-04
dc.date.issued2006
dc.date.submitted2006-07-27
dc.identifier.citationAaronson, D. S., and Horvath, C. M. (2002). A road map for those who don't know JAK-STAT. Science 296, 1653-1655.
Alexander, W. S. (2002). Suppressors of cytokine signalling (SOCS) in the immune system. Nat Rev Immunol 2, 410-416.
Appleby, M. W., and Ramsdell, F. (2003). A forward-genetic approach for analysis of the immune system. Nat Rev Immunol 3, 463-471.
Bach, E. A., Aguet, M., and Schreiber, R. D. (1997). The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu Rev Immunol 15, 563-591.
Banninger, G., and Reich, N. C. (2004). STAT2 nuclear trafficking. J Biol Chem 279, 39199-39206.
Brierley, M. M., Marchington, K. L., Jurisica, I., and Fish, E. N. (2006). Identification of GAS-dependent interferon-sensitive target genes whose transcription is STAT2-dependent but ISGF3-independent. Febs J 273, 1569-1581.
Burfoot, M. S., Rogers, N. C., Watling, D., Smith, J. M., Pons, S., Paonessaw, G., Pellegrini, S., White, M. F., and Kerr, I. M. (1997). Janus kinase-dependent activation of insulin receptor substrate 1 in response to interleukin-4, oncostatin M, and the interferons. J Biol Chem 272, 24183-24190.
Chen, J., Baig, E., and Fish, E. N. (2004). Diversity and relatedness among the type I interferons. J Interferon Cytokine Res 24, 687-698.
Chen, Y., Yee, D., and Magnuson, T. (2006). A novel mouse Smad4 mutation reduces protein stability and wild-type protein levels. Mamm Genome 17, 211-219.
Chung, C. D., Liao, J., Liu, B., Rao, X., Jay, P., Berta, P., and Shuai, K. (1997). Specific inhibition of Stat3 signal transduction by PIAS3. Science 278, 1803-1805.
Darnell, J. E., Jr. (1997). STATs and gene regulation. Science 277, 1630-1635.
Darnell, J. E., Jr., Kerr, I. M., and Stark, G. R. (1994). Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415-1421.
David, M., Chen, H. E., Goelz, S., Larner, A. C., and Neel, B. G. (1995). Differential regulation of the alpha/beta interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol Cell Biol 15, 7050-7058.
Decker, T., and Kovarik, P. (2000). Serine phosphorylation of STATs. Oncogene 19, 2628-2637.
Decker, T., Muller, M., and Stockinger, S. (2005). The yin and yang of type I interferon activity in bacterial infection. Nat Rev Immunol 5, 675-687.
Frahm, T., Hauser, H., and Koster, M. (2006). IFN-type-I-mediated signaling is regulated by modulation of STAT2 nuclear export. J Cell Sci 119, 1092-1104.
Gobin, S. J., van Zutphen, M., Woltman, A. M., and van den Elsen, P. J. (1999). Transactivation of classical and nonclassical HLA class I genes through the IFN-stimulated response element. J Immunol 163, 1428-1434.
Hahm, B., Trifilo, M. J., Zuniga, E. I., and Oldstone, M. B. (2005). Viruses evade the immune system through type I interferon-mediated STAT2-dependent, but STAT1-independent, signaling. Immunity 22, 247-257.
Hilton, D. J. (1999). Negative regulators of cytokine signal transduction. Cell Mol Life Sci 55, 1568-1577.
Hilton, D. J., Richardson, R. T., Alexander, W. S., Viney, E. M., Willson, T. A., Sprigg, N. S., Starr, R., Nicholson, S. E., Metcalf, D., and Nicola, N. A. (1998). Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc Natl Acad Sci U S A 95, 114-119.
Ihle, J. N. (1995). The Janus protein tyrosine kinases in hematopoietic cytokine signaling. Semin Immunol 7, 247-254.
Irie-Sasaki, J., Sasaki, T., Matsumoto, W., Opavsky, A., Cheng, M., Welstead, G., Griffiths, E., Krawczyk, C., Richardson, C. D., Aitken, K., et al. (2001). CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 409, 349-354.
Jun, J. E., Wilson, L. E., Vinuesa, C. G., Lesage, S., Blery, M., Miosge, L. A., Cook, M. C., Kucharska, E. M., Hara, H., Penninger, J. M., et al. (2003). Identifying the MAGUK protein Carma-1 as a central regulator of humoral immune responses and atopy by genome-wide mouse mutagenesis. Immunity 18, 751-762.
Justice, M. J., Noveroske, J. K., Weber, J. S., Zheng, B., and Bradley, A. (1999). Mouse ENU mutagenesis. Hum Mol Genet 8, 1955-1963.
Karaghiosoff, M., Steinborn, R., Kovarik, P., Kriegshauser, G., Baccarini, M., Donabauer, B., Reichart, U., Kolbe, T., Bogdan, C., Leanderson, T., et al. (2003). Central role for type I interferons and Tyk2 in lipopolysaccharide-induced endotoxin shock. Nat Immunol 4, 471-477.
Kim, H., Suh, J. M., Hwang, E. S., Kim, D. W., Chung, H. K., Song, J. H., Hwang, J. H., Park, K. C., Ro, H. K., Jo, E. K., et al. (2003). Thyrotropin-mediated repression of class II trans-activator expression in thyroid cells: involvement of STAT3 and suppressor of cytokine signaling. J Immunol 171, 616-627.
Klingmuller, U., Lorenz, U., Cantley, L. C., Neel, B. G., and Lodish, H. F. (1995). Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 80, 729-738.
Liu, B., Liao, J., Rao, X., Kushner, S. A., Chung, C. D., Chang, D. D., and Shuai, K. (1998). Inhibition of Stat1-mediated gene activation by PIAS1. Proc Natl Acad Sci U S A 95, 10626-10631.
Mahboubi, K., and Pober, J. S. (2002). Activation of signal transducer and activator of transcription 1 (STAT1) is not sufficient for the induction of STAT1-dependent genes in endothelial cells. Comparison of interferon-gamma and oncostatin M. J Biol Chem 277, 8012-8021.
Morris, A. C., Beresford, G. W., Mooney, M. R., and Boss, J. M. (2002). Kinetics of a gamma interferon response: expression and assembly of CIITA promoter IV and inhibition by methylation. Mol Cell Biol 22, 4781-4791.
Navarro, A., Anand-Apte, B., Tanabe, Y., Feldman, G., and Larner, A. C. (2003). A PI-3 kinase-dependent, Stat1-independent signaling pathway regulates interferon-stimulated monocyte adhesion. J Leukoc Biol 73, 540-545.
Neel, B. G. (1993). Structure and function of SH2-domain containing tyrosine phosphatases. Semin Cell Biol 4, 419-432.
Nishio, M., Tsurudome, M., Ito, M., Garcin, D., Kolakofsky, D., and Ito, Y. (2005). Identification of paramyxovirus V protein residues essential for STAT protein degradation and promotion of virus replication. J Virol 79, 8591-8601.
O'Keefe, G. M., Nguyen, V. T., Ping Tang, L. L., and Benveniste, E. N. (2001). IFN-gamma regulation of class II transactivator promoter IV in macrophages and microglia: involvement of the suppressors of cytokine signaling-1 protein. J Immunol 166, 2260-2269.
Park, C., Lecomte, M. J., and Schindler, C. (1999). Murine Stat2 is uncharacteristically divergent. Nucleic Acids Res 27, 4191-4199.
Park, C., Li, S., Cha, E., and Schindler, C. (2000). Immune response in Stat2 knockout mice. Immunity 13, 795-804.
Paulus, C., Krauss, S., and Nevels, M. (2006). A human cytomegalovirus antagonist of type I IFN-dependent signal transducer and activator of transcription signaling. Proc Natl Acad Sci U S A 103, 3840-3845.
Pestka, S. (1997). The human interferon-alpha species and hybrid proteins. Semin Oncol 24, S9-4-S9-17.
Pestka, S., Kotenko, S. V., Muthukumaran, G., Izotova, L. S., Cook, J. R., and Garotta, G. (1997) The interferon gamma (IFN-gamma) receptor: a paradigm for the multichain cytokine receptor.
Pestka, S., Krause, C. D., and Walter, M. R. (2004) Interferons, interferon-like cytokines, and their receptors.
Pestka, S., Langer, J. A., Zoon, K. C., and Samuel, C. E. (1987b). Interferons and their actions. Annu Rev Biochem 56, 727-777.
Platanias, L. C. (2003). The p38 mitogen-activated protein kinase pathway and its role in interferon signaling. Pharmacol Ther 98, 129-142.
Platanias, L. C. (2005). Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5, 375-386.
Platanias, L. C., Uddin, S., Yetter, A., Sun, X. J., and White, M. F. (1996). The type I interferon receptor mediates tyrosine phosphorylation of insulin receptor substrate 2. J Biol Chem 271, 278-282.
Quwailid, M. M., Hugill, A., Dear, N., Vizor, L., Wells, S., Horner, E., Fuller, S., Weedon, J., McMath, H., Woodman, P., et al. (2004). A gene-driven ENU-based approach to generating an allelic series in any gene. Mamm Genome 15, 585-591.
Ramaswamy, M., Shi, L., Varga, S. M., Barik, S., Behlke, M. A., and Look, D. C. (2006). Respiratory syncytial virus nonstructural protein 2 specifically inhibits type I interferon signal transduction. Virology 344, 328-339.
Rogers, R. S., Horvath, C. M., and Matunis, M. J. (2003). SUMO modification of STAT1 and its role in PIAS-mediated inhibition of gene activation. J Biol Chem 278, 30091-30097.
Schindler, C., Shuai, K., Prezioso, V. R., and Darnell, J. E., Jr. (1992). Interferon-dependent tyrosine phosphorylation of a latent cytoplasmic transcription factor. Science 257, 809-813.
Shuai, K., Schindler, C., Prezioso, V. R., and Darnell, J. E., Jr. (1992). Activation of transcription by IFN-gamma: tyrosine phosphorylation of a 91-kD DNA binding protein. Science 258, 1808-1812.
Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H., and Schreiber, R. D. (1998). How cells respond to interferons. Annu Rev Biochem 67, 227-264.
Stockinger, S., Materna, T., Stoiber, D., Bayr, L., Steinborn, R., Kolbe, T., Unger, H., Chakraborty, T., Levy, D. E., Muller, M., and Decker, T. (2002). Production of type I IFN sensitizes macrophages to cell death induced by Listeria monocytogenes. J Immunol 169, 6522-6529.
Stockinger, S., Reutterer, B., Schaljo, B., Schellack, C., Brunner, S., Materna, T., Yamamoto, M., Akira, S., Taniguchi, T., Murray, P. J., et al. (2004). IFN regulatory factor 3-dependent induction of type I IFNs by intracellular bacteria is mediated by a TLR- and Nod2-independent mechanism. J Immunol 173, 7416-7425.
Taniguchi, T., Ogasawara, K., Takaoka, A., and Tanaka, N. (2001). IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 19, 623-655.
Taniguchi, T., and Takaoka, A. (2002). The interferon-alpha/beta system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr Opin Immunol 14, 111-116.
Uddin, S., Yenush, L., Sun, X. J., Sweet, M. E., White, M. F., and Platanias, L. C. (1995). Interferon-alpha engages the insulin receptor substrate-1 to associate with the phosphatidylinositol 3'-kinase. J Biol Chem 270, 15938-15941.
Ungureanu, D., Vanhatupa, S., Kotaja, N., Yang, J., Aittomaki, S., Janne, O. A., Palvimo, J. J., and Silvennoinen, O. (2003). PIAS proteins promote SUMO-1 conjugation to STAT1. Blood 102, 3311-3313.
You, M., Yu, D. H., and Feng, G. S. (1999). Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway. Mol Cell Biol 19, 2416-2424.
Yu, P., Constien, R., Dear, N., Katan, M., Hanke, P., Bunney, T. D., Kunder, S., Quintanilla-Martinez, L., Huffstadt, U., Schroder, A., et al. (2005). Autoimmunity and inflammation due to a gain-of-function mutation in phospholipase C gamma 2 that specifically increases external Ca2+ entry. Immunity 22, 451-465.
Zimmermann, A., Trilling, M., Wagner, M., Wilborn, M., Bubic, I., Jonjic, S., Koszinowski, U., and Hengel, H. (2005). A cytomegaloviral protein reveals a dual role for STAT2 in IFN-{gamma} signaling and antiviral responses. J Exp Med 201, 1543-1553.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32202-
dc.description.abstract干擾素是具有免疫調節,抗細胞增生,以及抗病毒感染能力的細胞素。根據許多研究指出,雖然干擾素主要是活化JAK/STAT訊息傳遞路徑,仍有一些輔佐的調控機制參與在干擾素訊息傳遞中。為了進一步研究參與在干擾素訊息傳遞中詳細的調控機制並發現從未被界定的機轉,我們採用遺傳學的方法,藉由篩選ENU突變鼠來尋找對干擾素有異常反應的小鼠。
為了找出對干擾素反應異常的小鼠,我們發展了一套兩步驟的篩選策略。首先,利用流式細胞儀來觀察可被干擾素直接調控的組織相容性複合體 (MHC)的表現量,當找到異常鼠後,再利用及時定量聚合酵素鏈鎖反應觀察其他可被干擾素誘導的基因群表現量來確認此異常的表徵。藉由這個篩選策略,我們從134個家族,總共約2800隻ENU突變鼠中篩選出三個對干擾素反應異常的家族。他們分別是對α干擾素反應很低的117i,以及對α干擾素和γ干擾素反應都很低的243g和248k。使用反轉錄定量聚合酵素鏈鎖反應(RT-QPCR),我們發現在117i家族中藉由ISRE啟動的基因,例如OAS和PKR,都無法被α干擾素所誘導。然而對γ干擾素的反應卻是正常。將突變鼠與正常鼠進行交配後,我們證明了α干擾素的反應不良症是隱性遺傳的表徵。因為,當一隻異常鼠和正常鼠交配後,我們並沒有其子代中找到有異常α干擾素反應的老鼠。然而,我們確實可以在正常的F1(117i x wild type)相互交配的子代中找到異常鼠。
突變鼠造血細胞的發育表現正常。在突變鼠中,無論在胸腺,骨髓,脾臟或周邊血液中,T細胞,B細胞,單核球以及顆粒球細胞群的分布皆與正常鼠類似。另外,由高劑量LPS所引發毒性休克的敏感度在突變鼠與正常鼠之間是相類似的。為了尋找造成α干擾素低反應的可能機制,我們利用西方墨點法觀察STAT1, STAT2 以及 STAT3的表現。有趣的是,我們發現STAT2無論在突變鼠的脾臟細胞或者在周邊血液細胞中都無法被偵測到。這個結果暗示造成突變鼠對α干擾素反應過低但對γ干擾素反應正常的原因,很可能是由於失去STAT2蛋白質。然而,由於STAT2 mRNA 在突變鼠細胞中仍可被α干擾素誘發,縱使被誘發的mRNA量相較於正常鼠來的低,這個結果仍顯示失去STAT2蛋白質的表現很可能是在轉錄後或者轉譯的層級發生問題。基因定位以及STAT2基因定序應可幫助我們精確地找出真正造成干擾素反應異常的因素。
zh_TW
dc.description.abstractInterferons (IFNs) are cytokines that have immunmodulatory, anti-proliferation, and antivirus ability. Although IFNs activate JAK-STAT pathway, several studies suggest that there may be some alternative regulatory mechanisms of IFN signaling. To further study the fine regulatory mechanisms and to discover those undefined IFN signaling machineries, we have taken a genetic approach to screen ENU-mutagenized mice that displayed altered IFN responses.
We have developed a two-step screening strategy, first by flow cytometry to monitor surface markers like MHC molecules that are tightly regulated by IFNs and then by real-time QPCR for different sets of IFN-inducible genes to screen mice for abnormal responses. We have screened some 2800 mice from 134 pedigrees and find that three pedigrees shown impaired IFNs responses. They are 117i, which shows hypo-responsiveness to IFNα, 243g and 248k, which have hypo-responsiveness to both IFNγ and IFNα. Using RT-QPCR, we have shown that 117i pedigree fails to induce ISRE-containing genes such as OAS and PKR in response to IFNα. However, the response to IFNγ is normal. By crossing the mutant mice to wild type mice, we have demonstrated that the hypo-responsiveness to IFNα in 117i mice is inheritable and is a recessive trait because no altered IFNα response is found in the offspring of a cross between wild type and deviant mice. However, we do observe mice with hypo-responsiveness in the offspring from a cross between two F1 (117i x wild type) mice that do not display the phenotype.
The development of hematopoietic cells appears to be normal in the mutant mice as T cell, B cell, monocyte and granulocyte populations in bone marrow, thymus, spleen and PBL of mutant mice are comparable to that of wild type (WT) mice. In addition, the susceptibility of high dose LPS-induced toxic shock in the mutant mice is also similar to that of WT mice. In searching for possible mechanisms accounting for the impaired response to IFNα, we perform Western blotting using antibodies to STAT1, STAT2, and STAT3. Interestingly, we found that STAT2 protein is not detected in either PBL or splenocytes of the mutant mice, suggesting that the loss of STAT2 in mutant mice may result in the altered response to IFNα but not IFNγ. However, mRNA of STAT2 is still present and inducible, though at lower level, in mutant cells in response to IFNα, suggesting that the absence of STAT2 may lie in a post-transcriptional or translational mechanism. Genetic mapping and sequencing of STAT2 genome should be able to allow us to pinpoint the gene that causes the altered IFN response.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:36:30Z (GMT). No. of bitstreams: 1
ntu-95-R93449008-1.pdf: 4490288 bytes, checksum: b97958cef3a9fcd0137e204d29d51d93 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents誌謝 iii
中文摘要 iv
Abstract vi
Chapter I Introduction 1
1.1 Interferons 1
1.2 Features of the IFN receptors 1
1.3 The JAK-STAT pathway 2
1.4 Regulatory mechanism of IFN signaling 3
1.4.1 Regulation of JAK-STAT pathway by SOCS proteins 3
1.4.2 Regulation of JAK-STAT pathway by protein tyrosine
phosphotases (PTPs) 4
1.4.3 Regulation of STAT protein 4
1.5 Novel pathway induced by type I and II IFNs 5
1.6 ENU mutagenized mice 6
1.7 Specific aims 6
Chapter II Material and Methods 8
2.1 Mice 8
2.2 Time course and dosage response of PBL 8
2.3 Isolation of mRNA, preparation of cDNA and QPCR 8
2.4 FACS analysis 10
2.5 Western 11
2.6 DNA sequencing 11
2.7 LPS i.p. injection 12
Chapter III Results 13
3.1 Screening procedure and results 13
3.2 Optimization of condition of screening 13
3.3 Screening results 14
3.4 The pedigree 117i: impaired IFNα but enhanced IFNγ
response 14
3.5 The phenotype of 117i-152 is a recessive phenotype 15
3.6 Genetic mapping for the mutated gene 16
3.7 Identification of the mutated gene 16
3.8 Identification of the mutation(s) in STAT2 gene 18
3.9 Normal development of B and T cells in the bone marrow and
thymus of mutant mice 18
3.10 Comparable susceptibility of high dose LPS-induced
endotoxic shock in mutant mice and their normal littermate 18
Chapter IV Discussion 20
4.1 The accessibility of identification of novel genes by screening
ENU mutagenized mice 21
4.2 Heredity of phenotype of 117i-152 22
4.3 The defective and unaffected factors in response to IFNα of
deviant mice 23
4.4 The known and undefined role of STAT2 in IFNs signaling 25
Chapter V Reference 25
Table 1 Primers for cDNA of Stat2 31
Table 2 Primers for exons of Stat2 32

Figure 1 Two-step screening procedure 34
Figure 2 Expression Pattern of surface markers of PBL upon IFN
stimulation 35
Figure 3 Dose and time course of IFN inducible genes in mouse
PBL 36
Figure 4 117i-152M was hyporesponsive toIFNα but hyper-responsive
to IFNγ 38
Figure 5 Breeding strategy of 117i-152M for inheritance test and
genetic mapping 39
Figure 6 B6F1 mice displayed draded response to IFNα but normal
response to IFNγ 40
Figure 7 IFNα hyporesponsiveness of 117i-152M was not a
dominant phenotype 41
Figure 8 IFNα hyporesponsiveness of 117i-152M was a recessive
phenotype 42
Figure 9 C3F1 (117i-152 X C3H) mice did not show abnormal
response to IFNα 43
Figure 10 Three out of 15 C3F2 mice showed hyporesponsiveness to
IFNα 44
Figure 11 Ten out of 18 F1 (117i-152 X 117i-149) mice showed
hyporesponsiveness to IFNα 45
Figure 12 About 100% of F2 (F1XF1) mice showed hyporesponsiveness
to IFNα 46
Figure 13 PBL of mutant mice showed impaired response to IFNα 47
Figure 14 Splenocytes of mutant mice showed impaired response
to IFNα 48
Figure 15 STAT2 protein was not detected in the splenoytes and PBL
of mutant mice 49
Figure 16 Sequencing resulte of genomic cDNA of STAT2 of the
mutant mice 50
Figure 17 Normal development of T cell population in the thymus 51
Figure 18 Normal development of B cell populstion in bone marrow
of mutant mice 52
Figure 19 Normal development of B and T cell population in the
spleen and PBL 53
Figure 20 Comparable susceptibility of hugh dose LPS-induced
endotoxic shock in the mutant mice as compaired to
Normal littermate 54
Appendix 1 The structure of ENU 55
dc.language.isoen
dc.subject干擾素zh_TW
dc.subjectIFNen
dc.subjectnovelen
dc.subjectENUen
dc.title藉由篩選ENU突變鼠以尋找參與在干擾素訊息傳遞中新穎且重要的分子zh_TW
dc.titleIdentify genes that participate in IFN-signaling pathway by screening ENU mutagenized miceen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴明宗,孔祥智
dc.subject.keyword干擾素,zh_TW
dc.subject.keywordIFN,ENU,novel,en
dc.relation.page55
dc.rights.note有償授權
dc.date.accepted2006-07-27
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
4.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved