Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32198
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林榮信(Jung-Hsin Lin)
dc.contributor.authorKuei-Ling Kuoen
dc.contributor.author郭桂伶zh_TW
dc.date.accessioned2021-06-13T03:36:18Z-
dc.date.available2011-08-03
dc.date.copyright2006-08-03
dc.date.issued2006
dc.date.submitted2006-07-27
dc.identifier.citation1. Gorovits, N. & Charron, M.J. What we know about facilitative glucose transporters - Lessons from cultured cells, animal models, and human studies. Biochemistry and Molecular Biology Education 31, 163-172 (2003).
2. Kasahara, M. & Hinkle, P.C. Reconstitution and Purification of D-Glucose Transporter from Human Erythrocytes. Journal of Biological Chemistry 252, 7384-7390 (1977).
3. Mueckler, M. et al. Sequence and Structure of a Human Glucose Transporter. Science 229, 941-945 (1985).
4. Salas-Burgos, A., Iserovich, P., Zuniga, F., Vera, J.C. & Fischbarg, J. Predicting the three-dimensional structure of the human facilitative glucose transporter Glut1 by a novel evolutionary homology strategy: Insights on the molecular mechanism of substrate migration, and binding sites for glucose and inhibitory molecules. Biophysical Journal 87, 2990-2999 (2004).
5. Naftalin, R.J., Smith, P.M. & Roselaar, S.E. Evidence for Non-Uniform Distribution of D-Glucose within Human Red-Cells During Net Exit and Counterflow. Biochimica Et Biophysica Acta 820, 235-249 (1985).
6. Baldwin, S.A. & Lienhard, G.E. Glucose-Transport across Plasma-Membranes - Facilitated Diffusion-Systems. Trends in Biochemical Sciences 6, 208-211 (1981).
7. Vidaver, G.A. Inhibition of Parallel Flux and Augmentation of Counter Flux Shown by Transport Models Not Involving a Mobile Carrier. Journal of Theoretical Biology 10, 301-& (1966).
8. Cairns, M.T. et al. Investigation of the Structure and Function of the Human-Erythrocyte Glucose Transporter by Proteolytic Dissection. Biochimica Et Biophysica Acta 905, 295-310 (1987).
9. Holman, G.D. et al. Cell-Surface Labeling of Glucose Transporter Isoform Glut4 by Bis-Mannose Photolabel - Correlation with Stimulation of Glucose-Transport in Rat Adipose-Cells by Insulin and Phorbol Ester. Journal of Biological Chemistry 265, 18172-18179 (1990).
10. Walmsley, A.R., Barrett, M.P., Bringaud, F. & Gould, G.W. Sugar transporters from bacteria, parasites and mammals: structure-activity relationships. Trends in Biochemical Sciences 23, 476-481 (1998).
11. Tamori, Y. et al. Substitution at Pro(385) of Glut1 Perturbs the Glucose-Transport Function by Reducing Conformational Flexibility. Journal of Biological Chemistry 269, 2982-2986 (1994).
12. Schurmann, A. et al. Role of conserved arginine and glutamate residues on the cytosolic surface of glucose transporters for transporter function. Biochemistry 36, 12897-12902 (1997).
13. Oka, Y. et al. C-Terminal Truncated Glucose Transporter Is Locked into an Inward-Facing Form without Transport Activity. Nature 345, 550-553 (1990).
14. Mori, H. et al. Substitution of Tyrosine-293 of Glut1 Locks the Transporter into an Outward Facing Conformation. Journal of Biological Chemistry 269, 11578-11583 (1994).
15. Doege, H. et al. Serine-294 and threonine-295 in the exofacial loop domain between helices 7 and 8 of glucose transporters (GLUT) are involved in the conformational alterations during the transport process. Biochemical Journal 329, 289-293 (1998).
16. Mueckler, M., Weng, W.F. & Kruse, M. Glutamine-161 of Glut1 Glucose-Transporter Is Critical for Transport Activity and Exofacial Ligand-Binding. Journal of Biological Chemistry 269, 20533-20538 (1994).
17. Mueckler, M. & Makepeace, C. Identification of an amino acid residue that lies between the exofacial vestibule and exofacial substrate-binding site of the Glut1 sugar permeation pathway. Journal of Biological Chemistry 272, 30141-30146 (1997).
18. Hashiramoto, M. et al. Site-Directed Mutagenesis of Glut1 in Helix-7 Residue-282 Results in Perturbation of Exofacial Ligand-Binding. Journal of Biological Chemistry 267, 17502-17507 (1992).
19. Seatter, M.J., De la Rue, S.A., Porter, L.M. & Gould, G.W. QLS motif in transmembrane helix VII of the glucose transporter family interacts with the C-1 position of D-glucose and is involved in substrate selection at the exofacial binding site. Biochemistry 37, 1322-1326 (1998).
20. Inukai, K. et al. Replacement of Bath Tryptophan Residues at 388 and 412 Completely Abolished Cytochalasin-B Photolabeling of the Glut1 Glucose-Transporter. Biochemical Journal 302, 355-361 (1994).
21. Ishihara, H. et al. The Glucose-Transport Activity of Glut1 Is Markedly Decreased by Substitution of a Single Amino-Acid with a Different Charge at Residue-415. Biochemical and Biophysical Research Communications 176, 922-930 (1991).
22. Asano, T. et al. The Role of N-Glycosylation of Glut1 for Glucose-Transport Activity. Journal of Biological Chemistry 266, 24632-24636 (1991).
23. Sato, M. & Mueckler, M. A conserved amino acid motif (R-X-G-R-R) in the GLUT1 glucose transporter is an important determinant of membrane topology. Journal of Biological Chemistry 274, 24721-24725 (1999).
24. Devivo, D.C. et al. Defective Glucose-Transport across the Blood-Brain-Barrier as a Cause of Persistent Hypoglycorrhachia, Seizures, and Developmental Delay. New England Journal of Medicine 325, 703-709 (1991).
25. Vining, E.P.G. et al. A multicenter study of the efficacy of the ketogenic diet. Archives of Neurology 55, 1433-1437 (1998).
26. Cremer, J.E. Substrate Utilization and Brain-Development. Journal of Cerebral Blood Flow and Metabolism 2, 394-407 (1982).
27. Hu, I.C., Singh, S.P. & Snyder, A.K. Effects of ethanol on glucose transporter expression in cultured hippocampal neurons. Alcoholism-Clinical and Experimental Research 19, 1398-1402 (1995).
28. Krauss, S.W., Diamond, I. & Gordon, A.S. Selective-Inhibition by Ethanol of the Type-1 Facilitative Glucose-Transporter (Glut1). Molecular Pharmacology 45, 1281-1286 (1994).
29. Ho, Y.Y. et al. Glucose transporter type 1 deficiency syndrome (Glut1DS): Methylxanthines potentiate GLUT1 haploinsufficiency in vitro. Pediatric Research 50, 254-260 (2001).
30. Vera, J.C. et al. Direct inhibition of the hexose transporter GLUT1 by tyrosine kinase inhibitors. Biochemistry 40, 777-790 (2001).
31. Vera, J.C. et al. Genistein is a natural inhibitor of hexose and dehydroascorbic acid transport through the glucose transporter, GLUT1. Journal of Biological Chemistry 271, 8719-8724 (1996).
32. Wellner, M., Mueckler, M.M. & Keller, K. Gtp Analogs Suppress Uptake but Not Transport of D-Glucose Analogs in Glut1 Glucose Transporter-Expressing Xenopus-Oocytes. Febs Letters 327, 95-98 (1993).
33. Matsumura, F. Mechanism of Action of Dioxin-Type Chemicals, Pesticides, and Other Xenobiotics Affecting Nutritional Indexes. American Journal of Clinical Nutrition 61, S695-S701 (1995).
34. Pinkofsky, H.B., Dwyer, D.S. & Bradley, R.J. The inhibition of GLUT1 glucose transport and cytochalasin B binding activity by tricyclic antidepressants. Life Sciences 66, 271-278 (2000).
35. Stephenson, K.N., Croxen, R.L., El-Barbary, A., Fenstermacher, J.D. & Haspel, H.C. Inhibition of glucose transport and direct interactions with type 1 facilitative glucose transporter (GLUT-1) by etomidate, ketamine, and propofol - A comparison with barbiturates. Biochemical Pharmacology 60, 651-659 (2000).
36. Klepper, J., Fischbarg, J., Vera, J.C., Wang, D. & De Vivo, D.C. GLUT1-deficiency: Barbiturates potentiate haploinsufficiency in vitro. Pediatric Research 46, 677-683 (1999).
37. Wang, D. et al. Glut-1 deficiency syndrome: Clinical, genetic, and therapeutic aspects. Annals of Neurology 57, 111-118 (2005).
38. Klepper, J. et al. Defective glucose transport across brain tissue barriers: A newly recognized neurological syndrome. Neurochemical Research 24, 587-594 (1999).
39. Wang, D., Kranz-Eble, P. & De Vivo, D.C. Mutational analysis of GLUT1 (SLC2A1) in Glut-1 deficiency syndrome. Human Mutation 16, 224-231 (2000).
40. Klepper, J., Salas-Burgos, A., Gertsen, E. & Fischbarg, J. Bench meets bedside: A 10-year-old girl and amino acid residue glycine 75 of the facilitative glucose transporter GLUT1. Biochemistry 44, 12621-12626 (2005).
41. Klepper, J. et al. Autosomal dominant transmission of GLUT1 deficiency. Human Molecular Genetics 10, 63-68 (2001).
42. Brockmann, K. et al. Autosomal dominant Glut-1 deficiency syndrome and familial epilepsy. Annals of Neurology 50, 476-485 (2001).
43. Pascual, J.M., van Heertum, R.L., Wang, D., Engelstad, K. & De Vivo, D.C. Imaging the metabolic footprint of Glut1 deficiency on the brain. Annals of Neurology 52, 458-464 (2002).
44. Huang, Y.F., Lemieux, M.J., Song, J.M., Auer, M. & Wang, D.N. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301, 616-620 (2003).
45. Cunningham, P., Afzal-Ahmed, I. & Naftalin, R.J. Docking studies show that D-glucose and quercetin slide through the transporter GLUT1. Journal of Biological Chemistry 281, 5797-5803 (2006).
46. Olsowski, A., Monden, I., Krause, G. & Keller, K. Cysteine scanning mutagenesis of helices 2 and 7 in GLUT1 identifies an exofacial cleft in both transmembrane segments. Biochemistry 39, 2469-2474 (2000).
47. Alisio, A. & Mueckler, M. Relative proximity and orientation of helices 4 and 8 of the GLUT1 glucose transporter. Journal of Biological Chemistry 279, 26540-26545 (2004).
48. D.A. Case, T.A.D., T.E. Cheatham, III, C.L. Simmerling, J. Wang, R.E. Duke, R., Luo, K.M.M., B. Wang, D.A. Pearlman, M. Crowley, S. Brozell, V. Tsui, H. Gohlke, J., Mongan, V.H., G. Cui, P. Beroza, C. Schafmeister, J.W. Caldwell, W.S. Ross, P.A. Kollman AMBER 8. (University of California, San Francisco., 2004).
49. McQuarrie, D.A. Statistical Mechanics, 264-268 (Harpr Collins Publishers, 1973).
50. Roux, B. The Calculation of the Potential of Mean Force Using Computer-Simulations. Computer Physics Communications 91, 275-282 (1995).
51. Morris, G.M. et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 19, 1639-1662 (1998).
52. Barnett, J.E.G., Holman, G.D., Chalkley, R.A. & Munday, K.A. Evidence for 2 Asymmetric Conformational States in Human Erythrocyte Sugar-Transport System. Biochemical Journal 145, 417-429 (1975).
53. Smart, O.S., Goodfellow, J.M. & Wallace, B.A. The Pore Dimensions of Gramicidin-A. Biophysical Journal 65, 2455-2460 (1993).
54. Bell, G.I., Burant, C.F., Takeda, J. & Gould, G.W. Structure and Function of Mammalian Facilitative Sugar Transporters. Journal of Biological Chemistry 268, 19161-19164 (1993).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32198-
dc.description.abstract醣類是身體重要的能源之一,但由於其水溶性的特性,需要透過細胞膜表面的特別蛋白通道,才能穿過脂質所構成的細胞膜來被細胞吸收利用。這個運輸通道對於葡萄糖具有獨特的專一性,只允許葡萄糖分子自由穿越細胞膜。葡萄糖運轉蛋白家族(GLUT family)在身體各組織細胞中細胞的表現數量不同,且運輸葡萄糖時的速度也不同,以此達到體內葡萄糖濃度的恆定。這些蛋白被稱為GLUT家族(GLUT family),依其被發現的順序被分別命名為GLUT1、GLUT2、GLUT3、GLUT4……依此類推。其中GLUT1主要分佈在紅血球,是目前被廣泛研究的細胞膜蛋白(membrane transporter)之一。但經由GLUT1運輸葡萄糖的分子機制目前仍有許多未被瞭解。
由於膜蛋白的結晶不易,至今仍未有實驗方法可以得到其高解析度的結構。因此以大腸桿菌的glycerol phosphate transporter為模本及glucose 6-phosphate translocase為中間模本,利用同源模擬的方法建立初始結構。再將此初始結構放到細胞膜的原子模型中,加入足量的水分子將其完整包覆,並調整成0.15M氯化鈉的生理環境,利用分子動力學模擬方法修飾此初始結構。根據化學交聯(chemical crosslinking)實驗結果,我們將G145及V328間的距離漸漸修飾調整到16 Å後,再移除此拉力並繼續模擬,使蛋白質可以回到其最喜歡且穩定的構形。利用umbrella sampling方法以及weighted histogram analysis method (WHAM)以計算得出平均力場(potential of mean force),由結果可看出修飾過後的結構的自由能的確較低,G145 及 V328間的最佳距離是18 Å,且S148-V328, G145-L325 及 S148-L325在拉力移除後的模擬過程中,其距離也一直在6-16 Å間,與化學交聯實驗結果吻合。另外由嵌合模擬實驗結果可發現利用修飾完的結構能更準確的預測出葡萄糖結合位置。
利用一個新的嵌合(docking)模擬程序,可以找出一系列相鄰的配體(ligand)結合位置及其較佳的結合構形,如此可預測出葡萄糖運輸途徑(transport pathway)。另外,藉由得到沿著此運輸途徑受質與蛋白質間的結合自由能(binding free energy)可用來探討受質的選擇性。將修飾完的結構結合葡萄糖進行分子動力學模擬計算,以探討在葡萄糖運輸過程中GLUT1的構形變化。對於葡萄糖運輸蛋白的結構與其運輸過程有更清楚的瞭解可以幫助葡萄糖不平衡如乙型糖尿病的藥物開發研究。
zh_TW
dc.description.abstractPassive transport of glucose across the plasma membrane is mediated by members of the glucose transporter (GLUT/SLC2A) family which belongs to the major facilitator superfamily (MFS). GLUT1, known as the red blood cell glucose transporter, is one of the most extensively studied membrane transporters. However, the molecular mechanism of GLUT1-mediated glucose transport is still little clarified.
The homology model of GLUT1(PDB code: 1SUK) was constructed using the crystal structure of E. coli glycerol phosphate transporter as the template and glucose 6-phosphate translocase as the intermediate. We have conducted molecular dynamics (MD) simulations of the GLUT1 in the full-hydrated POPC bilayer to refine the homology model based on chemical crosslinking data determined by di-cysteine mutagenesis. The distance between G145 and V328 was gradually restrained to 16 Å by umbrella sampling technique and then the restraint was removed, in this way, the GLUT1 was relaxed to its favorable conformation. The weighted histogram analysis method (WHAM) was employed for calculating the potential of mean force (PMF) profile, which indicated that the refined structure did have lower free energy. The minima of the PMFs located at the same point indicate that the optimal distance between G145 and V328 is around 18 Å. The distances of S148-V328, G145-L325 and S148-L325 after simulation are within 6-16 Å, which is consisted with the chemical crosslinking data. It was found that the predicted glucose binding sites generated from docking simulations on the refined structure were in better agreement with the existent experiments compared to those on the original homology structure.
The glucose transport pathways were predicted by a novel docking scheme, SLITHER, which was modified from AutoDock 3.05. It can locate a series of juxtaposed ligand binding sites within such membrane channels, along with the most favorable conformation at each binding site. The binding free energies of substrates along the pathways can be used to investigate the mechanisms of substrate selectivity. The MD simulations of the GLUT1 with glucose in a full-hydrated POPC bilayer were conducted. The simulation results can be used to investigate the conformational changes upon glucose transport. Detailed knowledge of the structure of the glucose transporters will lead to advances in the understanding and therapeutics of glucose homeostasis disorders, including type 2 diabetes mellitus.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:36:18Z (GMT). No. of bitstreams: 1
ntu-95-R93423009-1.pdf: 4206287 bytes, checksum: f348e6c364112c70f60901edb33cc173 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsTable of Content i
Abstract iii
中文摘要 v
Chapter 1 Introduction 1
Chapter 2 Structural Analysis of GLUT1 5
2.1 Alternating Conformational Model 5
2.2 Structure/Function Studies 8
2.3 GLUT1 Deficiency Syndrome 10
2.4 Homology Model 13
2.5 Summary of the Previous Application Using the GLUT1 Homology Model 15
2.6 Analysis of the Proximity of TM4 and TM8 by Chemical Crosslinking 18
Chapter 3 Molecular Dynamics Simulation of the GLUT1 21
3.1 Construction of the GLUT1 in a Full-hydrated POPC Lipid Bilayer 21
3.2 Energy Minimization and Equilibration 24
3.3 Analysis of Molecular Dynamics Simulation 25
Chapter 4 Structure Refinement Based on Chemical Crosslinking data 31
4.1 Structure Refinement by Iterative Umbrella Sampling 31
4.2 Weighted Histogram Analysis Method (WHAM) for Potential of Mean Force (PMF) Calculation 36
Chapter 5 Prediction of the Glucose Transport Pathways 47
5.1 HOLE 47
5.2 SLITHER 50
Chapter 6 Molecular Dynamics Simulations of GLUT1 with Glucose Binding 71
6.1 Docking of Glucose to GLUT1 71
6.2 Analysis of Molecular Dynamics Simulation 72
Chapter 7 Conclusion 103
Reference 105
dc.language.isoen
dc.subject葡萄糖運輸途徑zh_TW
dc.subject分子動力學zh_TW
dc.subject嵌合模擬zh_TW
dc.subjectdynamicsen
dc.subjectAutoDocken
dc.subjectAMBERen
dc.subjectGLUT1en
dc.subjectglucose transport pathwayen
dc.subjectMDen
dc.title葡萄糖轉運蛋白-1(GLUT1)中分子運輸途徑的預測研究zh_TW
dc.titlePrediction of molecular transport pathways in the human glucose transporter 1 (GLUT1)en
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李水盛,謝昌煥,馬徹
dc.subject.keyword分子動力學,嵌合模擬,葡萄糖運輸途徑,zh_TW
dc.subject.keywordGLUT1,glucose transport pathway,MD,dynamics,AMBER,AutoDock,en
dc.relation.page109
dc.rights.note有償授權
dc.date.accepted2006-07-27
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
4.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved