請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32165完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林琬琬 | |
| dc.contributor.author | Rong-Ying Su | en |
| dc.contributor.author | 蘇容瑩 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:34:42Z | - |
| dc.date.available | 2011-08-02 | |
| dc.date.copyright | 2006-08-02 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-27 | |
| dc.identifier.citation | Abdelrahim M, Newman K, Vanderlaag K, Samudio I and Safe S (2006) 3,3'-diindolylmethane (DIM) and its derivatives induce apoptosis in pancreatic cancer cells through endoplasmic reticulum stress-dependent upregulation of DR5. Carcinogenesis 27:717-728.
Abdelrahman M, Sivarajah A and Thiemermann C (2005) Beneficial effects of PPAR-gamma ligands in ischemia-reperfusion injury, inflammation and shock. Cardiovasc Res 65:772-781. Adams JM and Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322-1326. Alleva DG, Johnson EB, Lio FM, Boehme SA, Conlon PJ and Crowe PD (2002) Regulation of murine macrophage proinflammatory and anti-inflammatory cytokines by ligands for peroxisome proliferator-activated receptor-gamma: counter-regulatory activity by IFN-gamma. J Leukoc Biol 71:677-685. Ashkenazi A (2002) Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2:420-430. Ashkenazi A and Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305-1308. Ashkenazi A and Dixit VM (1999) Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 11:255-260. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C, Chang L, McMurtrey AE, Hebert A, DeForge L, Koumenis IL, Lewis D, Harris L, Bussiere J, Koeppen H, Shahrokh Z and Schwall RH (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104:155-162. August A, Mueller C, Weaver V, Polanco TA, Walsh ER and Cantorna MT (2006) Nutrients, nuclear receptors, inflammation, immunity lipids, PPAR, and allergic asthma. J Nutr 136:695-699. Badrichani AZ, Stroka DM, Bilbao G, Curiel DT, Bach FH and Ferran C (1999) Bcl-2 and Bcl-XL serve an anti-inflammatory function in endothelial cells through inhibition of NF-kappaB. J Clin Invest 103:543-553. Baeuerle PA (1998a) IkappaB-NF-kappaB structures: at the interface of inflammation control. Cell 95:729-731. Baeuerle PA (1998b) Pro-inflammatory signaling: last pieces in the NF-kappaB puzzleNULL Curr Biol 8:R19-22. Bartke T, Siegmund D, Peters N, Reichwein M, Henkler F, Scheurich P and Wajant H (2001) p53 upregulates cFLIP, inhibits transcription of NF-kappaB-regulated genes and induces caspase-8-independent cell death in DLD-1 cells. Oncogene 20:571-580. Bartlett JD, Luethy JD, Carlson SG, Sollott SJ and Holbrook NJ (1992) Calcium ionophore A23187 induces expression of the growth arrest and DNA damage inducible CCAAT/enhancer-binding protein (C/EBP)-related gene, gadd153. Ca2+ increases transcriptional activity and mRNA stability. J Biol Chem 267:20465-20470. Belka C and Budach W (2002) Anti-apoptotic Bcl-2 proteins: structure, function and relevance for radiation biology. Int J Radiat Biol 78:643-658. Bell-Parikh LC, Ide T, Lawson JA, McNamara P, Reilly M and FitzGerald GA (2003) Biosynthesis of 15-deoxy-delta12,14-PGJ2 and the ligation of PPARgamma. J Clin Invest 112:945-955. Berry EB, Sato TA, Mitchell MD, Stewart Gilmour R and Helliwell RJ (2004) Differential effects of serum constituents on apoptosis induced by the cyclopentenone prostaglandin 15-deoxy-delta12,14-prostaglandin J2 in WISH epithelial cells. Prostaglandins Leukot Essent Fatty Acids 71:191-197. Bishop-Bailey D, Calatayud S, Warner TD, Hla T and Mitchell JA (2002) Prostaglandins and the regulation of tumor growth. J Environ Pathol Toxicol Oncol 21:93-101. Bootman MD, Berridge MJ and Roderick HL (2002) Calcium signalling: more messengers, more channels, more complexity. Curr Biol 12:R563-565. Bruhat A, Jousse C, Carraro V, Reimold AM, Ferrara M and Fafournoux P (2000) Amino acids control mammalian gene transcription: activating transcription factor 2 is essential for the amino acid responsiveness of the CHOP promoter. Mol Cell Biol 20:7192-7204. Bruhat A, Jousse C, Wang XZ, Ron D, Ferrara M and Fafournoux P (1997) Amino acid limitation induces expression of CHOP, a CCAAT/enhancer binding protein-related gene, at both transcriptional and post-transcriptional levels. J Biol Chem 272:17588-17593. Campas C, Lopez JM, Santidrian AF, Barragan M, Bellosillo B, Colomer D and Gil J (2003) Acadesine activates AMPK and induces apoptosis in B-cell chronic lymphocytic leukemia cells but not in T lymphocytes. Blood 101:3674-3680. Capano M and Crompton M (2006) Bax translocates to mitochondria of heart cells during simulated ischaemia: involvement of AMP-activated and p38 mitogen-activated protein kinases. Biochem J 395:57-64. Cappello P, Novelli F, Forni G and Giovarelli M (2002) Death receptor ligands in tumors. J Immunother 25:1-15. Carling D (2004) Ampk. Curr Biol 14:R220. Carlson SG, Fawcett TW, Bartlett JD, Bernier M and Holbrook NJ (1993) Regulation of the C/EBP-related gene gadd153 by glucose deprivation. Mol Cell Biol 13:4736-4744. Chai J, Du C, Wu JW, Kyin S, Wang X and Shi Y (2000) Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406:855-862. Chawla-Sarkar M, Leaman DW, Jacobs BS and Borden EC (2002) IFN-beta pretreatment sensitizes human melanoma cells to TRAIL/Apo2 ligand-induced apoptosis. J Immunol 169:847-855. Chen SY, Lu FJ, Gau RJ, Yang ML and Huang TS (2002) 15-Deoxy-delta12,14-prostaglandin J2 induces apoptosis of a thyroid papillary cancer cell line (CG3 cells) through increasing intracellular iron and oxidative stress. Anticancer Drugs 13:759-765. Chen YC, Shen SC and Tsai SH (2005) Prostaglandin D(2) and J(2) induce apoptosis in human leukemia cells via activation of the caspase 3 cascade and production of reactive oxygen species. Biochim Biophys Acta 1743:291-304. Corazzari M, Lovat PE, Oliverio S, Di Sano F, Donnorso RP, Redfern CP and Piacentini M (2005) Fenretinide: a p53-independent way to kill cancer cells. Biochem Biophys Res Commun 331:810-815. Corton JM, Gillespie JG, Hawley SA and Hardie DG (1995) 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cellsNULL Eur J Biochem 229:558-565. Coven DL, Hu X, Cong L, Bergeron R, Shulman GI, Hardie DG and Young LH (2003) Physiological role of AMP-activated protein kinase in the heart: graded activation during exercise. Am J Physiol Endocrinol Metab 285:E629-636. Crowley-Weber CL, Payne CM, Gleason-Guzman M, Watts GS, Futscher B, Waltmire CN, Crowley C, Dvorakova K, Bernstein C, Craven M, Garewal H and Bernstein H (2002) Development and molecular characterization of HCT-116 cell lines resistant to the tumor promoter and multiple stress-inducer, deoxycholate. Carcinogenesis 23:2063-2080. Culmsee C, Monnig J, Kemp BE and Mattson MP (2001) AMP-activated protein kinase is highly expressed in neurons in the developing rat brain and promotes neuronal survival following glucose deprivation. J Mol Neurosci 17:45-58. Debatin KM, Poncet D and Kroemer G (2002) Chemotherapy: targeting the mitochondrial cell death pathway. Oncogene 21:8786-8803. DeGracia DJ, Kumar R, Owen CR, Krause GS and White BC (2002) Molecular pathways of protein synthesis inhibition during brain reperfusion: implications for neuronal survival or death. J Cereb Blood Flow Metab 22:127-141. Deneke SM (2000) Thiol-based antioxidants. Curr Top Cell Regul 36:151-180. Dikshit P, Goswami A, Mishra A, Chatterjee M and Jana NR (2006) Curcumin induces stress response, neurite outgrowth and prevent NF-kappaB activation by inhibiting the proteasome function. Neurotox Res 9:29-37. Du JH, Xu N, Song Y, Xu M, Lu ZZ, Han C and Zhang YY (2005) AICAR stimulates IL-6 production via p38 MAPK in cardiac fibroblasts in adult mice: a possible role for AMPK. Biochem Biophys Res Commun 337:1139-1144. Farrow B, Thomas RP, Wang XF and Evers BM (2002) Activation of conventional PKC isoforms increases expression of the pro-apoptotic protein Bad and TRAIL receptors. Int J Gastrointest Cancer 32:63-72. Fiers W, Beyaert R, Declercq W and Vandenabeele P (1999) More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18:7719-7730. Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM and Evans RM (1995) 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83:803-812. Fornace AJ, Jr., Nebert DW, Hollander MC, Luethy JD, Papathanasiou M, Fargnoli J and Holbrook NJ (1989) Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol Cell Biol 9:4196-4203. Fryer LG, Hajduch E, Rencurel F, Salt IP, Hundal HS, Hardie DG and Carling D (2000) Activation of glucose transport by AMP-activated protein kinase via stimulation of nitric oxide synthase. Diabetes 49:1978-1985. Gadalla AE, Pearson T, Currie AJ, Dale N, Hawley SA, Sheehan M, Hirst W, Michel AD, Randall A, Hardie DG and Frenguelli BG (2004) AICA riboside both activates AMP-activated protein kinase and competes with adenosine for the nucleoside transporter in the CA1 region of the rat hippocampus. J Neurochem 88:1272-1282. Garcia-Gil M, Pesi R, Perna S, Allegrini S, Giannecchini M, Camici M and Tozzi MG (2003) 5'-aminoimidazole-4-carboxamide riboside induces apoptosis in human neuroblastoma cells. Neuroscience 117:811-820. Gardner OS, Shiau CW, Chen CS and Graves LM (2005) Peroxisome proliferator-activated receptor gamma-independent activation of p38 MAPK by thiazolidinediones involves calcium/calmodulin-dependent protein kinase II and protein kinase R: correlation with endoplasmic reticulum stress. J Biol Chem 280:10109-10118. Green DR (1998) Apoptotic pathways: the roads to ruin. Cell 94:695-698. Green DR and Reed JC (1998) Mitochondria and apoptosis. Science 281:1309-1312. Gross A, Yin XM, Wang K, Wei MC, Jockel J, Milliman C, Erdjument-Bromage H, Tempst P and Korsmeyer SJ (1999) Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem 274:1156-1163. Han SM, Namkoong C, Jang PG, Park IS, Hong SW, Katakami H, Chun S, Kim SW, Park JY, Lee KU and Kim MS (2005) Hypothalamic AMP-activated protein kinase mediates counter-regulatory responses to hypoglycaemia in rats. Diabetologia 48:2170-2178. Hao C, Beguinot F, Condorelli G, Trencia A, Van Meir EG, Yong VW, Parney IF, Roa WH and Petruk KC (2001) Induction and intracellular regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mediated apotosis in human malignant glioma cells. Cancer Res 61:1162-1170. Hardie DG (2003) Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 144:5179-5183. Hardie DG and Carling D (1997) The AMP-activated protein kinase--fuel gauge of the mammalian cellNULL Eur J Biochem 246:259-273. Hardie DG, Carling D and Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cellNULL Annu Rev Biochem 67:821-855. Hardie DG and Sakamoto K (2006) AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology (Bethesda) 21:48-60. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M and Ron D (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099-1108. Harding HP and Ron D (2002) Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 51 Suppl 3:S455-461. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM and Ron D (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619-633. He B (2006) Viruses, endoplasmic reticulum stress, and interferon responses. Cell Death Differ 13:393-403. He Q, Lee DI, Rong R, Yu M, Luo X, Klein M, El-Deiry WS, Huang Y, Hussain A and Sheikh MS (2002) Endoplasmic reticulum calcium pool depletion-induced apoptosis is coupled with activation of the death receptor 5 pathway. Oncogene 21:2623-2633. He Q, Montalbano J, Corcoran C, Jin W, Huang Y and Sheikh MS (2003) Effect of Bax deficiency on death receptor 5 and mitochondrial pathways during endoplasmic reticulum calcium pool depletion-induced apoptosis. Oncogene 22:2674-2679. Higuchi H, Grambihler A, Canbay A, Bronk SF and Gores GJ (2004) Bile acids up-regulate death receptor 5/TRAIL-receptor 2 expression via a c-Jun N-terminal kinase-dependent pathway involving Sp1. J Biol Chem 279:51-60. Holtz WA and O'Malley KL (2003) Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. J Biol Chem 278:19367-19377. Hwang JT, Ha J and Park OJ (2005) Combination of 5-fluorouracil and genistein induces apoptosis synergistically in chemo-resistant cancer cells through the modulation of AMPK and COX-2 signaling pathways. Biochem Biophys Res Commun 332:433-440. Ido Y, Carling D and Ruderman N (2002) Hyperglycemia-induced apoptosis in human umbilical vein endothelial cells: inhibition by the AMP-activated protein kinase activation. Diabetes 51:159-167. Igata M, Motoshima H, Tsuruzoe K, Kojima K, Matsumura T, Kondo T, Taguchi T, Nakamaru K, Yano M, Kukidome D, Matsumoto K, Toyonaga T, Asano T, Nishikawa T and Araki E (2005) Adenosine monophosphate-activated protein kinase suppresses vascular smooth muscle cell proliferation through the inhibition of cell cycle progression. Circ Res 97:837-844. Ikeyama S, Wang XT, Li J, Podlutsky A, Martindale JL, Kokkonen G, van Huizen R, Gorospe M and Holbrook NJ (2003) Expression of the pro-apoptotic gene gadd153/chop is elevated in liver with aging and sensitizes cells to oxidant injury. J Biol Chem 278:16726-16731. Jo M, Kim TH, Seol DW, Esplen JE, Dorko K, Billiar TR and Strom SC (2000) Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat Med 6:564-567. Jordan R, Wang L, Graczyk TM, Block TM and Romano PR (2002) Replication of a cytopathic strain of bovine viral diarrhea virus activates PERK and induces endoplasmic reticulum stress-mediated apoptosis of MDBK cells. J Virol 76:9588-9599. Jung EM, Park JW, Choi KS, Park JW, Lee HI, Lee KS and Kwon TK (2006) Curcumin sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis through CHOP-independent DR5 upregulation. Carcinogenesis. Jung JE, Lee J, Ha J, Kim SS, Cho YH, Baik HH and Kang I (2004) 5-Aminoimidazole-4-carboxamide-ribonucleoside enhances oxidative stress-induced apoptosis through activation of nuclear factor-kappaB in mouse Neuro 2a neuroblastoma cells. Neurosci Lett 354:197-200. Karin M (1999a) The beginning of the end: IkappaB kinase (IKK) and NF-kappaB activation. J Biol Chem 274:27339-27342. Karin M (1999b) How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex. Oncogene 18:6867-6874. Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13:1211-1233. Kefas BA, Cai Y, Kerckhofs K, Ling Z, Martens G, Heimberg H, Pipeleers D and Van de Casteele M (2004) Metformin-induced stimulation of AMP-activated protein kinase in beta-cells impairs their glucose responsiveness and can lead to apoptosis. Biochem Pharmacol 68:409-416. Kefas BA, Cai Y, Ling Z, Heimberg H, Hue L, Pipeleers D and Van de Casteele M (2003a) AMP-activated protein kinase can induce apoptosis of insulin-producing MIN6 cells through stimulation of c-Jun-N-terminal kinase. J Mol Endocrinol 30:151-161. Kefas BA, Heimberg H, Vaulont S, Meisse D, Hue L, Pipeleers D and Van de Casteele M (2003b) AICA-riboside induces apoptosis of pancreatic beta cells through stimulation of AMP-activated protein kinase. Diabetologia 46:250-254. Kemeny N, Childs B, Larchian W, Rosado K and Kelsen D (1990) A phase II trial of recombinant tumor necrosis factor in patients with advanced colorectal carcinoma. Cancer 66:659-663. Kemp BE, Stapleton D, Campbell DJ, Chen ZP, Murthy S, Walter M, Gupta A, Adams JJ, Katsis F, van Denderen B, Jennings IG, Iseli T, Michell BJ and Witters LA (2003) AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans 31:162-168. Kim H, Kim EH, Eom YW, Kim WH, Kwon TK, Lee SJ and Choi KS (2006) Sulforaphane sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistant hepatoma cells to TRAIL-induced apoptosis through reactive oxygen species-mediated up-regulation of DR5. Cancer Res 66:1740-1750. King TD, Song L and Jope RS (2006) AMP-activated protein kinase (AMPK) activating agents cause dephosphorylation of Akt and glycogen synthase kinase-3. Biochem Pharmacol 71:1637-1647. Kischkel FC, Lawrence DA, Tinel A, LeBlanc H, Virmani A, Schow P, Gazdar A, Blenis J, Arnott D and Ashkenazi A (2001) Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem 276:46639-46646. LaCasse EC, Baird S, Korneluk RG and MacKenzie AE (1998) The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17:3247-3259. LeBlanc HN and Ashkenazi A (2003) Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 10:66-75. Li M, Baumeister P, Roy B, Phan T, Foti D, Luo S and Lee AS (2000) ATF6 as a transcription activator of the endoplasmic reticulum stress element: thapsigargin stress-induced changes and synergistic interactions with NF-Y and YY1. Mol Cell Biol 20:5096-5106. Li Y, Cao YX, Zhang Y, Song CJ, Zhuang R, Fang L and Jin BQ (2005) [Regulation of soluble TRAIL and membrane TRAIL in Jurkat cells by PMA]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 21:276-279. Liu N, Kuang X, Kim HT, Stoica G, Qiang W, Scofield VL and Wong PK (2004) Possible involvement of both endoplasmic reticulum- and mitochondria-dependent pathways in MoMuLV-ts1-induced apoptosis in astrocytes. J Neurovirol 10:189-198. Lorenzo HK, Susin SA, Penninger J and Kroemer G (1999) Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. Cell Death Differ 6:516-524. Luethy JD, Fargnoli J, Park JS, Fornace AJ, Jr. and Holbrook NJ (1990) Isolation and characterization of the hamster gadd153 gene. Activation of promoter activity by agents that damage DNA. J Biol Chem 265:16521-16526. Luo Z, Saha AK, Xiang X and Ruderman NB (2005) AMPK, the metabolic syndrome and cancer. Trends Pharmacol Sci 26:69-76. Marciniak SJ, Garcia-Bonilla L, Hu J, Harding HP and Ron D (2006) Activation-dependent substrate recruitment by the eukaryotic translation initiation factor 2 kinase PERK. J Cell Biol 172:201-209. Matsui TA, Sowa Y, Yoshida T, Murata H, Horinaka M, Wakada M, Nakanishi R, Sakabe T, Kubo T and Sakai T (2006) Sulforaphane enhances TRAIL-induced apoptosis through the induction of DR5 expression in human osteosarcoma cells. Carcinogenesis. Maytin EV and Habener JF (1998) Transcription factors C/EBP alpha, C/EBP beta, and CHOP (Gadd153) expressed during the differentiation program of keratinocytes in vitro and in vivo. J Invest Dermatol 110:238-246. Maytin EV, Ubeda M, Lin JC and Habener JF (2001) Stress-inducible transcription factor CHOP/gadd153 induces apoptosis in mammalian cells via p38 kinase-dependent and -independent mechanisms. Exp Cell Res 267:193-204. McCarthy NJ, Whyte MK, Gilbert CS and Evan GI (1997) Inhibition of Ced-3/ICE-related proteases does not prevent cell death induced by oncogenes, DNA damage, or the Bcl-2 homologue Bak. J Cell Biol 136:215-227. McCullough KD, Martindale JL, Klotz LO, Aw TY and Holbrook NJ (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21:1249-1259. Meisse D, Van de Casteele M, Beauloye C, Hainault I, Kefas BA, Rider MH, Foufelle F and Hue L (2002) Sustained activation of AMP-activated protein kinase induces c-Jun N-terminal kinase activation and apoptosis in liver cells. FEBS Lett 526:38-42. Miyamoto S, Maki M, Schmitt MJ, Hatanaka M and Verma IM (1994) Tumor necrosis factor alpha-induced phosphorylation of I kappa B alpha is a signal for its degradation but not dissociation from NF-kappa B. Proc Natl Acad Sci U S A 91:12740-12744. Miyamoto S and Verma IM (1995) Rel/NF-kappa B/I kappa B story. Adv Cancer Res 66:255-292. Miyashita T and Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293-299. Mu J, Brozinick JT, Jr., Valladares O, Bucan M and Birnbaum MJ (2001) A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell 7:1085-1094. Musi N, Fujii N, Hirshman MF, Ekberg I, Froberg S, Ljungqvist O, Thorell A and Goodyear LJ (2001) AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise. Diabetes 50:921-927. Nagamine M, Okumura T, Tanno S, Sawamukai M, Motomura W, Takahashi N and Kohgo Y (2003) PPAR gamma ligand-induced apoptosis through a p53-dependent mechanism in human gastric cancer cells. Cancer Sci 94:338-343. Nagata S (2000) Steering anti-cancer drugs away from the TRAIL. Nat Med 6:502-503. Nutt LK, Chandra J, Pataer A, Fang B, Roth JA, Swisher SG, O'Neil RG and McConkey DJ (2002) Bax-mediated Ca2+ mobilization promotes cytochrome c release during apoptosis. J Biol Chem 277:20301-20308. Oakes SA, Opferman JT, Pozzan T, Korsmeyer SJ and Scorrano L (2003) Regulation of endoplasmic reticulum Ca2+ dynamics by proapoptotic BCL-2 family members. Biochem Pharmacol 66:1335-1340. Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T and Tanaka N (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288:1053-1058. Oh-Hashi K, Maehara K and Isobe K (2004) Hydrogen peroxide induces GADD153 in Jurkat cells through the protein kinase C-dependent pathway. Redox Rep 9:173-178. Oh-Hashi K, Maruyama W and Isobe K (2001) Peroxynitrite induces GADD34, 45, and 153 VIA p38 MAPK in human neuroblastoma SH-SY5Y cells. Free Radic Biol Med 30:213-221. Okada T, Yoshida H, Akazawa R, Negishi M and Mori K (2002) Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochem J 366(Pt 2):585-594. Ouchi N, Shibata R and Walsh K (2005) AMP-activated protein kinase signaling stimulates VEGF expression and angiogenesis in skeletal muscle. Circ Res 96:838-846. Oyadomari S, Araki E and Mori M (2002) Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis 7:335-345. Oyadomari S and Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381-389. Pan G, O'Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J and Dixit VM (1997) The receptor for the cytotoxic ligand TRAIL. Science 276:111-113. Park HR, Tomida A, Sato S, Tsukumo Y, Yun J, Yamori T, Hayakawa Y, Tsuruo T and Shin-ya K (2004) Effect on tumor cells of blocking survival response to glucose deprivation. J Natl Cancer Inst 96:1300-1310. Pawliczak R, Han C, Huang XL, Demetris AJ, Shelhamer JH and Wu T (2002) 85-kDa cytosolic phospholipase A2 mediates peroxisome proliferator-activated receptor gamma activation in human lung epithelial cells. J Biol Chem 277:33153-33163. Pelicano H, Carney D and Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7:97-110. Pelletier A, Joly E, Prentki M and Coderre L (2005) Adenosine 5'-monophosphate-activated protein kinase and p38 mitogen-activated protein kinase participate in the stimulation of glucose uptake by dinitrophenol in adult cardiomyocytes. Endocrinology 146:2285-2294. Peralta C, Bartrons R, Serafin A, Blazquez C, Guzman M, Prats N, Xaus C, Cutillas B, Gelpi E and Rosello-Catafau J (2001) Adenosine monophosphate-activated protein kinase mediates the protective effects of ischemic preconditioning on hepatic ischemia-reperfusion injury in the rat. Hepatology 34:1164-1173. Prokop A, Wieder T, Sturm I, Essmann F, Seeger K, Wuchter C, Ludwig WD, Henze G, Dorken B and Daniel PT (2000) Relapse in childhood acute lymphoblastic leukemia is associated with a decrease of the Bax/Bcl-2 ratio and loss of spontaneous caspase-3 processing in vivo. Leukemia 14:1606-1613. Qiao D, Chen W, Stratagoules ED and Martinez JD (2000) Bile acid-induced activation of activator protein-1 requires both extracellular signal-regulated kinase and protein kinase C signaling. J Biol Chem 275:15090-15098. Rao RV, Ellerby HM and Bredesen DE (2004) Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 11:372-380. Rattan R, Giri S, Singh AK and Singh I (2005) 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase. J Biol Chem 280:39582-39593. Rogler G, Brand K, Vogl D, Page S, Hofmeister R, Andus T, Knuechel R, Baeuerle PA, Scholmerich J and Gross V (1998) Nuclear factor kappaB is activated in macrophages and epithelial cells of inflamed intestinal mucosa. Gastroenterology 115:357-369. Ron D and Habener JF (1992) CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev 6:439-453. Roy B and Lee AS (1999) The mammalian endoplasmic reticulum stress response element consists of an evolutionarily conserved tripartite structure and interacts with a novel stress-inducible complex. Nucleic Acids Res 27:1437-1443. Russell R, 3rd (2003) The Role of AMP-activated protein kinase in fuel selection by the stressed heart. Curr Hypertens Rep 5:459-465. Russell RR, 3rd, Li J, Coven DL, Pypaert M, Zechner C, Palmeri M, Giordano FJ, Mu J, Birnbaum MJ and Young LH (2004) AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest 114:495-503. Saitoh M, Nagai K, Nakagawa K, Yamamura T, Yamamoto S and Nishizaki T (2004) Adenosine induces apoptosis in the human gastric cancer cells via an intrinsic pathway relevant to activation of AMP-activated protein kinase. Biochem Pharmacol 67:2005-2011. Salvesen GS and Duckett CS (2002) IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 3:401-410. Scheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P, Saunders T, Bonner-Weir S and Kaufman RJ (2001) Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 7:1165-1176. Schmitt-Ney M and Habener JF (2000) CHOP/GADD153 gene expression response to cellular stresses inhibited by prior exposure to ultraviolet light wavelength band C (UVC). Inhibitory sequence mediating the UVC response localized to exon 1. J Biol Chem 275:40839-40845. Schrauwen P, Hardie DG, Roorda B, Clapham JC, Abuin A, Thomason-Hughes M, Green K, Frederik PM and Hesselink MK (2004) Improved glucose homeostasis in mice overexpressing human UCP3: a role for AMP-kinaseNULL Int J Obes Relat Metab Disord 28:824-828. Schroder M and Kaufman RJ (2006) Divergent roles of IRE1alpha and PERK in the unfolded protein response. Curr Mol Med 6:5-36. Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T and Korsmeyer SJ (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300:135-139. Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA and Cantley LC (2004a) The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6:91-99. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA and Cantley LC (2004b) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A 101:3329-3335. Shimada T, Kojima K, Yoshiura K, Hiraishi H and Terano A (2002) Characteristics of the peroxisome proliferator activated receptor gamma (PPARgamma) ligand induced apoptosis in colon cancer cells. Gut 50:658-664. Shiraishi T, Yoshida T, Nakata S, Horinaka M, Wakada M, Mizutani Y, Miki T and Sakai T (2005) Tunicamycin enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human prostate cancer cells. Cancer Res 65:6364-6370. Shuda M, Kondoh N, Imazeki N, Tanaka K, Okada T, Mori K, Hada A, Arai M, Wakatsuki T, Matsubara O, Yamamoto N and Yamamoto M (2003) Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis. J Hepatol 38:605-614. Srivastava RK (2001) TRAIL/Apo-2L: mechanisms and clinical applications in cancer. Neoplasia 3:535-546. Stefanelli C, Stanic I, Bonavita F, Flamigni F, Pignatti C, Guarnieri C and Caldarera CM (1998) Inhibition of glucocorticoid-induced apoptosis with 5-aminoimidazole-4-carboxamide ribonucleoside, a cell-permeable activator of AMP-activated protein kinase. Biochem Biophys Res Commun 243:821-826. Stennicke HR, Jurgensmeier JM, Shin H, Deveraux Q, Wolf BB, Yang X, Zhou Q, Ellerby HM, Ellerby LM, Bredesen D, Green DR, Reed JC, Froelich CJ and Salvesen GS (1998) Pro-caspase-3 is a major physiologic target of caspase-8. J Biol Chem 273:27084-27090. Tang G, Minemoto Y, Dibling B, Purcell NH, Li Z, Karin M and Lin A (2001a) Inhibition of JNK activation through NF-kappaB target genes. Nature 414:313-317. Tang G, Yang J, Minemoto Y and Lin A (2001b) Blocking caspase-3-mediated proteolysis of IKKbeta suppresses TNF-alpha-induced apoptosis. Mol Cell 8:1005-1016. Tantral L, Malathi K, Kohyama S, Silane M, Berenstein A and Jayaraman T (2004) Intracellular calcium release is required for caspase-3 and -9 activation. Cell Biochem Funct 22:35-40. Terai K, Hiramoto Y, Masaki M, Sugiyama S, Kuroda T, Hori M, Kawase I and Hirota H (2005) AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress. Mol Cell Biol 25:9554-9575. Tirasophon W, Lee K, Callaghan B, Welihinda A and Kaufman RJ (2000) The endoribonuclease activity of mammalian IRE1 autoregulates its mRNA and is required for the unfolded protein response. Genes Dev 14:2725-2736. Tombal B, Weeraratna AT, Denmeade SR and Isaacs JT (2000) Thapsigargin induces a calmodulin/calcineurin-dependent apoptotic cascade responsible for the death of prostatic cancer cells. Prostate 43:303-317. Tong T, Fan W, Zhao H, Jin S, Fan F, Blanck P, Alomo I, Rajasekaran B, Liu Y, Holbrook NJ and Zhan Q (2001) Involvement of the MAP kinase pathways in induction of GADD45 following UV radiation. Exp Cell Res 269:64-72. Torriglia A, Perani P, Brossas JY, Altairac S, Zeggai S, Martin E, Treton J, Courtois Y and Counis MF (2000) A caspase-independent cell clearance program. The LEI/L-DNase II pathway. Ann N Y Acad Sci 926:192-203. Ubeda M and Habener JF (2000) CHOP gene expression in response to endoplasmic-reticular stress requires NFY interaction with different domains of a conserved DNA-binding element. Nucleic Acids Res 28:4987-4997. Ubeda M, Vallejo M and Habener JF (1999) CHOP enhancement of gene transcription by interactions with Jun/Fos AP-1 complex proteins. Mol Cell Biol 19:7589-7599. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP and Ron D (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287:664-666. Van Antwerp DJ, Martin SJ, Verma IM and Green DR (1998) Inhibition of TNF-induced apoptosis by NF-kappa B. Trends Cell Biol 8:107-111. Velculescu VE and El-Deiry WS (1996) Biological and clinical importance of the p53 tumor suppressor gene. Clin Chem 42:858-868. Vermeulen K, Van B | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32165 | - |
| dc.description.abstract | 癌症的治療在我們研發出多種細胞毒殺化學治療藥物之後雖然大有進展,但腫瘤細胞對這些藥物發展出來的抗藥性仍舊是治療上的主要障礙。過去的研究發現,TRAIL會選擇性地引起腫瘤細胞死亡,而同時對正常組織細胞幾乎沒有毒性;因此單獨使用TRAIL,或是合併其他抗癌藥物在治療癌症極具潛力。在這個研究中,我們探討在人類大腸癌細胞株(HCT116),AICAR (AMPK活化劑)與15dPGJ2 (PPAR-γ活化劑) 增加TRAIL所引起細胞凋亡相關的效果與分子機制。我們發現AICAR與15dPGJ2會強化TRAIL與TNFα引發的細胞凋亡。AICAR的作用需要AMPK,但不會改變TRAIL/TNFα的受體蛋白表現量。AICAR可經由參與多種細胞凋亡的調控階段而促進腫瘤細胞的凋亡。AICAR與TRAIL或TNFα一起作用時會促進caspases 8, 9 及 3的活化,會抑制抗細胞凋亡蛋白Bcl-2,會增加Bid的分裂, 會使粒腺體表面電位差減少、會促進p38與JNK活化、也會抑制NF-kB活性。這些研究結果顯示AMPK可能與許多由活化TRAIL所引發的細胞凋亡訊息傳遞有關。相反地,我們的結果顯示15dPGJ2誘導TRAIL所引發的細胞毒性來自於增加DR5受體的轉錄,而此作用與PPAR-γ無關。CHOP是這個作用的媒介分子。利用CHOP的小型干擾RNA (small interfering RNA)可減弱15dPGJ2對DR5的促進調控而逆轉對TRAIL的致敏性。此外,DR5的表現是經由ROS,鈣離子,PKC與PKR所媒介。我們也發現15dPGJ2可以引發GRP78與XBP1表現,顯示15dPGJ2也會產生內質網的壓力。總結來說,我們結果提供了癌症治療的新方法,即可利用AICAR或15dPGJ2合併TRAIL的使用來增加療效。AICAR的作用是經由AMPK,牽涉到粒腺體有關的細胞凋亡機制;另一方面,15dPGJ2的致敏效果是經由CHOP媒介的DR5調控,而非PPAR-γ相關的機制;ROS,鈣離子與PKC的活性會引起CHOP基因的轉錄。 | zh_TW |
| dc.description.abstract | Even though there have been many advances in the therapy of cancer following the introduction of cytotoxic chemotherapeutic drugs, the development of drug-resistance remains a major obstacle in the treatment of tumors. TRAIL has been shown to be selectively cytotoxic in inducing tumor cell death, and has minimal or no toxicity against normal tissues. Thus TRAIL-mediated tumor cell death, either alone or in combination with other anticancer therapy, is considered as new strategy with great potential for anticancer effect. In this study we investigated the combinatorial effects and molecular mechanisms of AICAR (a pharmacological activator of AMPK) and 15dPGJ2 (an activator of PPARγ) in sensitization of TRAIL-induced apoptosis of human colon cancer HCT116 cells. We found AICAR and 15dPGJ2 can potentiate TRAIL- and/or TNFα-induced cell apoptosis. The action of AICAR requires AMPK, is independent of protein expression of cytokine receptors, and may occur at various stages of apoptotic pathways. AICAR co-treatment with TRAIL or TNFα enhances activation of caspases 8, 9 and 3; down-regulates the antiapoptotic protein BcL-2; increases the cleavage of Bid and loss of mitochondrial membrane potential; potentiates activation of p38 and JNK; and inhibits NFκB activity. These results imply that AMPK might be involved in the regulation of multiple signaling pathways, and in turn exerts sensitized TRAIL apoptosis. In contrast, our results revealed that the sensitization of TRAIL cytotoxicity by 15dPGJ2 is resulting from the transcriptional upregulation of death receptor 5 (DR5), but independent of PPARγ. We demonstrated CHOP as a mediator of DR5 induction by15dPGJ2. CHOP small interfering RNA attenuated the DR5 up-regulation due to 15dPGJ2 and reversed its sensitization effects with TRAIL. Moreover, DR5 expression through CHOP up-regulation is mediated by ROS, calcium, PKC and PKR. Furthermore, we also found that 15dPGJ2 is able to induce GRP78 and XBP1 expression, indicating the contribution of ER stress. In summary, we have developed a novel strategy of combining AICAR and 15dPGJ2 with TRAIL for the treatment of colon cancer cells. The sensitization effect of AICAR is through AMPK pathway, and involves mitochondria-dependent apoptotic cascades. In contrast, the sensitization effect of 15dPGJ2 is through PPARγ independent pathway, but depends on CHOP-mediated DR5 upregulation. The increase of ROS, calcium and PKC activity are contributed to CHOP gene transcription. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:34:42Z (GMT). No. of bitstreams: 1 ntu-95-R93443010-1.pdf: 3685448 bytes, checksum: 64b0f71e47bae2225112af6577c77911 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Table of Contents
Abbreviations.........................................1 Abstract................................................3 Chinese Abstract....................................5 Introduction.............................................6 Materials and Methods............................17 Part 1. Mehanisms for AICAR sensitization of TRAIL and TNFα induced cytotoxicity in HCT116 cells Results ................................................25 Discussion............................................29 Figure...................................................34 Part 2. Mechanisms for 15dPGJ2 sensitization of TRAIL induced cytotoxicity in HCT116 cells: role of CHOP-mediated DR5 upregulation Result.....................................................48 Discussion...............................................54 Figure.....................................................59 References...............................................72 Appendix.................................................88 | |
| dc.language.iso | en | |
| dc.subject | PPARγ活化劑 | zh_TW |
| dc.subject | AMPK活化劑 | zh_TW |
| dc.subject | 腫瘤壞死因子 | zh_TW |
| dc.subject | 細胞凋亡 | zh_TW |
| dc.subject | TRAIL | en |
| dc.subject | 15dPGJ2 | en |
| dc.subject | AICAR | en |
| dc.subject | TNFα | en |
| dc.subject | apoptosis | en |
| dc.title | AICAR和15dPGJ2在人類大腸癌細胞中誘導TRAIL和TNFα所引發的細胞毒性之訊息傳導路徑 | zh_TW |
| dc.title | Molecular mechanisms for AICAR and 15dPGJ2 sensitization of TRAIL– and TNFα–induced cytotoxicity in HCT116 cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 符文美,顏茂雄,楊春茂,許秉寧 | |
| dc.subject.keyword | 細胞凋亡,AMPK活化劑,PPARγ活化劑,腫瘤壞死因子, | zh_TW |
| dc.subject.keyword | apoptosis,AICAR,15dPGJ2,TNFα,TRAIL, | en |
| dc.relation.page | 91 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-27 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 3.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
