請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32126完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊性芳 | |
| dc.contributor.author | Nai-Hui Lin | en |
| dc.contributor.author | 林迺蕙 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:32:53Z | - |
| dc.date.available | 2006-12-29 | |
| dc.date.copyright | 2006-08-03 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-27 | |
| dc.identifier.citation | Ahmed, R., and Gray, D. (1996). Immunological memory and protective immunity: understanding their relation. Science 272, 54-60.
Anderson, S. J., Miyake, S., and Loh, D. Y. (1989). Transcription from a murine T-cell receptor V beta promoter depends on a conserved decamer motif similar to the cyclic AMP response element. Mol Cell Biol 9, 4835-4845. Ashton-Rickardt, P. G., and Tonegawa, S. (1994). A differential-avidity model for T-cell selection. Immunol Today 15, 362-366. Bae, J., Donigian, J. R., and Hsueh, A. J. (2003). Tankyrase 1 interacts with Mcl-1 proteins and inhibits their regulation of apoptosis. J Biol Chem 278, 5195-5204. Bae, J., Leo, C. P., Hsu, S. Y., and Hsueh, A. J. (2000). MCL-1S, a splicing variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain. J Biol Chem 275, 25255-25261. Baird, A. M., Gerstein, R. M., and Berg, L. J. (1999). The role of cytokine receptor signaling in lymphocyte development. Curr Opin Immunol 11, 157-166. Barton, K., Muthusamy, N., Chanyangam, M., Fischer, C., Clendenin, C., and Leiden, J. M. (1996). Defective thymocyte proliferation and IL-2 production in transgenic mice expressing a dominant-negative form of CREB. Nature 379, 81-85. Bingle, C. D., Craig, R. W., Swales, B. M., Singleton, V., Zhou, P., and Whyte, M. K. (2000). Exon skipping in Mcl-1 results in a bcl-2 homology domain 3 only gene product that promotes cell death. J Biol Chem 275, 22136-22146. Boise, L. H., Minn, A. J., Noel, P. J., June, C. H., Accavitti, M. A., Lindsten, T., and Thompson, C. B. (1995). CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity 3, 87-98. Bradley, L. M., Haynes, L., and Swain, S. L. (2005). IL-7: maintaining T-cell memory and achieving homeostasis. Trends Immunol 26, 172-176. Chao, D. T., and Korsmeyer, S. J. (1998). BCL-2 family: regulators of cell death. Annu Rev Immunol 16, 395-419. Chao, J. R., Wang, J. M., Lee, S. F., Peng, H. W., Lin, Y. H., Chou, C. H., Li, J. C., Huang, H. M., Chou, C. K., Kuo, M. L., et al. (1998). mcl-1 is an immediate-early gene activated by the granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling pathway and is one component of the GM-CSF viability response. Mol Cell Biol 18, 4883-4898. Chen, L., Willis, S. N., Wei, A., Smith, B. J., Fletcher, J. I., Hinds, M. G., Colman, P. M., Day, C. L., Adams, J. M., and Huang, D. C. (2005). Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17, 393-403. Chinnaiyan, A. M., O'Rourke, K., Tewari, M., and Dixit, V. M. (1995). FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81, 505-512. Cory, S. (1995). Regulation of lymphocyte survival by the bcl-2 gene family. Annu Rev Immunol 13, 513-543. Craig, R. W. (2002). MCL1 provides a window on the role of the BCL2 family in cell proliferation, differentiation and tumorigenesis. Leukemia 16, 444-454. Danial, N. N., and Korsmeyer, S. J. (2004). Cell death: critical control points. Cell 116, 205-219. Domina, A. M., Smith, J. H., and Craig, R. W. (2000). Myeloid cell leukemia 1 is phosphorylated through two distinct pathways, one associated with extracellular signal-regulated kinase activation and the other with G2/M accumulation or protein phosphatase 1/2A inhibition. J Biol Chem 275, 21688-21694. Du, C., Fang, M., Li, Y., Li, L., and Wang, X. (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33-42. Dyer, R. B., and Herzog, N. K. (1995). Isolation of intact nuclei for nuclear extract preparation from a fragile B-lymphocyte cell line. Biotechniques 19, 192-195. Fujise, K., Zhang, D., Liu, J., and Yeh, E. T. (2000). Regulation of apoptosis and cell cycle progression by MCL1. Differential role of proliferating cell nuclear antigen. J Biol Chem 275, 39458-39465. Gottschalk, L. R., and Leiden, J. M. (1990). Identification and functional characterization of the human T-cell receptor beta gene transcriptional enhancer: common nuclear proteins interact with the transcriptional regulatory elements of the T-cell receptor alpha and beta genes. Mol Cell Biol 10, 5486-5495. Grillot, D. A., Merino, R., Pena, J. C., Fanslow, W. C., Finkelman, F. D., Thompson, C. B., and Nunez, G. (1996). bcl-x exhibits regulated expression during B cell development and activation and modulates lymphocyte survival in transgenic mice. J Exp Med 183, 381-391. Gross, A., McDonnell, J. M., and Korsmeyer, S. J. (1999). BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13, 1899-1911. Harada, H., Becknell, B., Wilm, M., Mann, M., Huang, L. J., Taylor, S. S., Scott, J. D., and Korsmeyer, S. J. (1999). Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. Mol Cell 3, 413-422. Hromas, R., Orazi, A., Neiman, R. S., Maki, R., Van Beveran, C., Moore, J., and Klemsz, M. (1993). Hematopoietic lineage- and stage-restricted expression of the ETS oncogene family member PU.1. Blood 82, 2998-3004. Hsu, H., Shu, H. B., Pan, M. G., and Goeddel, D. V. (1996). TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84, 299-308. Hsu, H., Xiong, J., and Goeddel, D. V. (1995). The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 81, 495-504. Huang, H. M., Huang, C. J., and Yen, J. J. (2000). Mcl-1 is a common target of stem cell factor and interleukin-5 for apoptosis prevention activity via MEK/MAPK and PI-3K/Akt pathways. Blood 96, 1764-1771. Inoshita, S., Takeda, K., Hatai, T., Terada, Y., Sano, M., Hata, J., Umezawa, A., and Ichijo, H. (2002). Phosphorylation and inactivation of myeloid cell leukemia 1 by JNK in response to oxidative stress. J Biol Chem 277, 43730-43734. Jameson, S. C., Hogquist, K. A., and Bevan, M. J. (1995). Positive selection of thymocytes. Annu Rev Immunol 13, 93-126. Jamil, S., Sobouti, R., Hojabrpour, P., Raj, M., Kast, J., and Duronio, V. (2005). A proteolytic fragment of Mcl-1 exhibits nuclear localization and regulates cell growth by interaction with Cdk1. Biochem J 387, 659-667. Jourdan, M., De Vos, J., Mechti, N., and Klein, B. (2000). Regulation of Bcl-2-family proteins in myeloma cells by three myeloma survival factors: interleukin-6, interferon-alpha and insulin-like growth factor 1. Cell Death Differ 7, 1244-1252. Kerr, J. F., Wyllie, A. H., and Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26, 239-257. Klemsz, M. J., McKercher, S. R., Celada, A., Van Beveren, C., and Maki, R. A. (1990). The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene. Cell 61, 113-124. Kozopas, K. M., Yang, T., Buchan, H. L., Zhou, P., and Craig, R. W. (1993). MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci U S A 90, 3516-3520. Krajewski, S., Bodrug, S., Gascoyne, R., Berean, K., Krajewska, M., and Reed, J. C. (1994). Immunohistochemical analysis of Mcl-1 and Bcl-2 proteins in normal and neoplastic lymph nodes. Am J Pathol 145, 515-525. Krajewski, S., Bodrug, S., Krajewska, M., Shabaik, A., Gascoyne, R., Berean, K., and Reed, J. C. (1995). Immunohistochemical analysis of Mcl-1 protein in human tissues. Differential regulation of Mcl-1 and Bcl-2 protein production suggests a unique role for Mcl-1 in control of programmed cell death in vivo. Am J Pathol 146, 1309-1319. Kuwana, T., Mackey, M. R., Perkins, G., Ellisman, M. H., Latterich, M., Schneiter, R., Green, D. R., and Newmeyer, D. D. (2002). Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111, 331-342. Lakso, M., Pichel, J. G., Gorman, J. R., Sauer, B., Okamoto, Y., Lee, E., Alt, F. W., and Westphal, H. (1996). Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc Natl Acad Sci U S A 93, 5860-5865. Leu, C. M., Chang, C., and Hu, C. (2000). Epidermal growth factor (EGF) suppresses staurosporine-induced apoptosis by inducing mcl-1 via the mitogen-activated protein kinase pathway. Oncogene 19, 1665-1675. Li, L. Y., Luo, X., and Wang, X. (2001). Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95-99. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S., and Wang, X. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489. Liu, H., Peng, H. W., Cheng, Y. S., Yuan, H. S., and Yang-Yen, H. F. (2005). Stabilization and enhancement of the antiapoptotic activity of mcl-1 by TCTP. Mol Cell Biol 25, 3117-3126. Maraskovsky, E., Teepe, M., Morrissey, P. J., Braddy, S., Miller, R. E., Lynch, D. H., and Peschon, J. J. (1996). Impaired survival and proliferation in IL-7 receptor-deficient peripheral T cells. J Immunol 157, 5315-5323. Maurer, U., Charvet, C., Wagman, A. S., Dejardin, E., and Green, D. R. (2006). Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell 21, 749-760. Mitchell, P. J., Timmons, P. M., Hebert, J. M., Rigby, P. W., and Tjian, R. (1991). Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes Dev 5, 105-119. Mitchell, P. J., Wang, C., and Tjian, R. (1987). Positive and negative regulation of transcription in vitro: enhancer-binding protein AP-2 is inhibited by SV40 T antigen. Cell 50, 847-861. Montminy, M. (1997). Transcriptional regulation by cyclic AMP. Annu Rev Biochem 66, 807-822. Motoyama, N., Wang, F., Roth, K. A., Sawa, H., Nakayama, K., Nakayama, K., Negishi, I., Senju, S., Zhang, Q., Fujii, S., and et al. (1995). Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267, 1506-1510. Moulding, D. A., Quayle, J. A., Hart, C. A., and Edwards, S. W. (1998). Mcl-1 expression in human neutrophils: regulation by cytokines and correlation with cell survival. Blood 92, 2495-2502. Nguyen, L. Q., Kopp, P., Martinson, F., Stanfield, K., Roth, S. I., and Jameson, J. L. (2000). A dominant negative CREB (cAMP response element-binding protein) isoform inhibits thyrocyte growth, thyroid-specific gene expression, differentiation, and function. Mol Endocrinol 14, 1448-1461. Nijhawan, D., Fang, M., Traer, E., Zhong, Q., Gao, W., Du, F., and Wang, X. (2003). Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev 17, 1475-1486. Ohta, K., Iwai, K., Kasahara, Y., Taniguchi, N., Krajewski, S., Reed, J. C., and Miyawaki, T. (1995). Immunoblot analysis of cellular expression of Bcl-2 family proteins, Bcl-2, Bax, Bcl-X and Mcl-1, in human peripheral blood and lymphoid tissues. Int Immunol 7, 1817-1825. Opferman, J. T., Letai, A., Beard, C., Sorcinelli, M. D., Ong, C. C., and Korsmeyer, S. J. (2003). Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 426, 671-676. Puthier, D., Bataille, R., and Amiot, M. (1999). IL-6 up-regulates mcl-1 in human myeloma cells through JAK / STAT rather than ras / MAP kinase pathway. Eur J Immunol 29, 3945-3950. Reynolds, J. E., Yang, T., Qian, L., Jenkinson, J. D., Zhou, P., Eastman, A., and Craig, R. W. (1994). Mcl-1, a member of the Bcl-2 family, delays apoptosis induced by c-Myc overexpression in Chinese hamster ovary cells. Cancer Res 54, 6348-6352. Rinkenberger, J. L., Horning, S., Klocke, B., Roth, K., and Korsmeyer, S. J. (2000). Mcl-1 deficiency results in peri-implantation embryonic lethality. Genes Dev 14, 23-27. Rodriguez-Tarduchy, G., Collins, M., and Lopez-Rivas, A. (1990). Regulation of apoptosis in interleukin-3-dependent hemopoietic cells by interleukin-3 and calcium ionophores. Embo J 9, 2997-3002. Rosenberg, D., Groussin, L., Jullian, E., Perlemoine, K., Bertagna, X., and Bertherat, J. (2002). Role of the PKA-regulated transcription factor CREB in development and tumorigenesis of endocrine tissues. Ann N Y Acad Sci 968, 65-74. Rudolph, D., Tafuri, A., Gass, P., Hammerling, G. J., Arnold, B., and Schutz, G. (1998). Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein. Proc Natl Acad Sci U S A 95, 4481-4486. Shmueli, A., and Oren, M. (2005). Life, death, and ubiquitin: taming the mule. Cell 121, 963-965. Sun, P., Enslen, H., Myung, P. S., and Maurer, R. A. (1994). Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev 8, 2527-2539. Tenen, D. G., Hromas, R., Licht, J. D., and Zhang, D. E. (1997). Transcription factors, normal myeloid development, and leukemia. Blood 90, 489-519. Thompson, C. B. (1995). Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456-1462. Thompson, C. B., Rathmell, J. C., Frauwirth, K. A., Lindsten, T., Rudin, C. M., Opferman, J. T., Ashton-Rickardt, P. G., Harris, M. H., Chandel, N. S., Schumacker, P. T., and Vander Heiden, M. G. (1999). What keeps a resting T cell alive? Cold Spring Harb Symp Quant Biol 64, 383-387. Townsend, K. J., Trusty, J. L., Traupman, M. A., Eastman, A., and Craig, R. W. (1998). Expression of the antiapoptotic MCL1 gene product is regulated by a mitogen activated protein kinase-mediated pathway triggered through microtubule disruption and protein kinase C. Oncogene 17, 1223-1234. Townsend, K. J., Zhou, P., Qian, L., Bieszczad, C. K., Lowrey, C. H., Yen, A., and Craig, R. W. (1999). Regulation of MCL1 through a serum response factor/Elk-1-mediated mechanism links expression of a viability-promoting member of the BCL2 family to the induction of hematopoietic cell differentiation. J Biol Chem 274, 1801-1813. Veis, D. J., Sorenson, C. M., Shutter, J. R., and Korsmeyer, S. J. (1993). Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75, 229-240. Verhagen, A. M., Ekert, P. G., Pakusch, M., Silke, J., Connolly, L. M., Reid, G. E., Moritz, R. L., Simpson, R. J., and Vaux, D. L. (2000). Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43-53. Wang, J. M., Chao, J. R., Chen, W., Kuo, M. L., Yen, J. J., and Yang-Yen, H. F. (1999). The antiapoptotic gene mcl-1 is up-regulated by the phosphatidylinositol 3-kinase/Akt signaling pathway through a transcription factor complex containing CREB. Mol Cell Biol 19, 6195-6206. Wang, J. M., Lai, M. Z., and Yang-Yen, H. F. (2003). Interleukin-3 stimulation of mcl-1 gene transcription involves activation of the PU.1 transcription factor through a p38 mitogen-activated protein kinase-dependent pathway. Mol Cell Biol 23, 1896-1909. Williams, T., Admon, A., Luscher, B., and Tjian, R. (1988). Cloning and expression of AP-2, a cell-type-specific transcription factor that activates inducible enhancer elements. Genes Dev 2, 1557-1569. Williams, T., and Tjian, R. (1991). Analysis of the DNA-binding and activation properties of the human transcription factor AP-2. Genes Dev 5, 670-682. Willis, S. N., Chen, L., Dewson, G., Wei, A., Naik, E., Fletcher, J. I., Adams, J. M., and Huang, D. C. (2005). Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 19, 1294-1305. Xing, J., Ginty, D. D., and Greenberg, M. E. (1996). Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 273, 959-963. Yang, T., Buchan, H. L., Townsend, K. J., and Craig, R. W. (1996). MCL-1, a member of the BLC-2 family, is induced rapidly in response to signals for cell differentiation or death, but not to signals for cell proliferation. J Cell Physiol 166, 523-536. Yang, T., Kozopas, K. M., and Craig, R. W. (1995). The intracellular distribution and pattern of expression of Mcl-1 overlap with, but are not identical to, those of Bcl-2. J Cell Biol 128, 1173-1184. Zha, J., Harada, H., Yang, E., Jockel, J., and Korsmeyer, S. J. (1996). Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 87, 619-628. Zhang, C. Y., Wu, Y. L., and Boxer, L. M. (2002). Impaired proliferation and survival of activated B cells in transgenic mice that express a dominant-negative cAMP-response element-binding protein transcription factor in B cells. J Biol Chem 277, 48359-48365. Zhong, Q., Gao, W., Du, F., and Wang, X. (2005). Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 121, 1085-1095. Zhou, P., Levy, N. B., Xie, H., Qian, L., Lee, C. Y., Gascoyne, R. D., and Craig, R. W. (2001). MCL1 transgenic mice exhibit a high incidence of B-cell lymphoma manifested as a spectrum of histologic subtypes. Blood 97, 3902-3909. Zhou, P., Qian, L., Bieszczad, C. K., Noelle, R., Binder, M., Levy, N. B., and Craig, R. W. (1998). Mcl-1 in transgenic mice promotes survival in a spectrum of hematopoietic cell types and immortalization in the myeloid lineage. Blood 92, 3226-3239. Zhou, P., Qian, L., Kozopas, K. M., and Craig, R. W. (1997). Mcl-1, a Bcl-2 family member, delays the death of hematopoietic cells under a variety of apoptosis-inducing conditions. Blood 89, 630-643. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32126 | - |
| dc.description.abstract | mcl-1屬於Bcl-2家族蛋白中具有抗細胞凋亡功能的一員,在諸多受調控的細胞生死程式中扮演重要的上游角色。組織特異基因剔除老鼠研究指出mcl-1對於早期和晚期的血球發育及維持都是不可獲缺的。Mcl-1是一個受到高度調控的基因,其表現可以被許多細胞激素或是生長因子所誘導。我們實驗室先前已經證明在Ba/F3 pro-B細胞中,IL-3主要是經由順位調控子SIE(-87)和CRE-2(-70)去誘導mcl-1基因的轉錄。為了探討這些順位調控子在生理上扮演的角色,我們製造了SIE和CRE-2突變的小鼠(Mcl-1mSC/mSC)。研究發現相較於野生型小鼠,突變小鼠的次級淋巴組織中CD8+ T細胞約減少了一半。同時也發現mcl-1的RNA和蛋白質表現量在突變小鼠的T細胞是比較少的,但是在B細胞中並沒有減少的現象。這些結果顯示mcl-1基因轉錄的調控在T細胞和B細胞中可能是不同的。為了更近一步的研究可能的機制,我們使用電泳速度變動分析法(EMSA)來測試T細胞和B細胞核萃取蛋白質與含有mcl-1基因啟動子片段的DNA探針反應後,比較其蛋白質核酸結合的活性有無差異。我們發現在T細胞和B細胞中在mcl-1基因啟動子-97到-65片段,都可以偵測到SIE和CRE-2 complex的形成,同時SIE和CRE-2 complex中分別具有PU.1和phsphorylated CREB。另外,我們也發現在B細胞中,mcl-1啟動子上-156位置的順位調控子(AP2-like element)上會形成B細胞較多結合的蛋白質核酸複合體(B cell enriched binding complex, BEB complex)。綜合突變小鼠的表現型分析,以及相對於T細胞,在B細胞中具有較多的BEB complex結合於mcl-1啟動子上,因此我們推測在B細胞中mcl-1基因的轉錄可能主要是受到BEB complex的調控,而在T細胞中則主要是受到SIE和CRE-2順位調控子的調控。未來尚需要更多的實驗去驗證以上的結論。 | zh_TW |
| dc.description.abstract | Mcl-1, an anti-apoptotic member of Bcl-2 family proteins, functions at an apical step in many regulatory programs that control cell survival and death. Conditional depletion of mcl-1 in lymphoid organs suggested that it is essential for the development and maintenance of lymphocytes at both early and late stages. Mcl-1 is a highly regulated gene which can be induced by many cytokines and growth factors. Our lab has previously demonstrated that in Ba/F3 pro-B cells, IL-3 stimulation of Mcl-1 gene expression is mediated mainly through two upstream DNA motifs, which are located at positions -70 (the CRE-2 site) and -87 (the SIE site). To further investigate the physiological role of these regulatory cis-elements, the mice with mutant SIE and CRE-2 (mSC) sites were generated. A 50% decrease of peripheral CD8+T cells was found in Mcl-1mSC/ mSC mice. Mcl-1 protein and RNA levels were both decreased significantly in the T-cell lineages of Mcl-1mSC/ mSC mice but not in the B-cell lineage. These data suggested that T and B cells might have different transcription regulation of the mcl-1 gene. To determine possible mechanism responsible for this difference, EMSA was performed using radiolabeled probe containing mcl-1 promoter and nuclear extracts from lymph node T and B cells. We found that in both cell types both SIE and CRE-2 complex could be detected on the mcl-1 promoter region from –97 to –65. Besides, we confirmed that the SIE and CRE-2 complexes contained PU.1 and phosphorylated CREB, respectively. Interestingly, with the mcl-1 -203/+10 promoter DNA as a probe, a B cell enriched binding complex (BEB complex) was found to be formed on an AP2-like element at position -156 of the mcl-1 promoter. Taken together, the mutant mouse phenotype and the prominently enriched amount of the BEB complex in B cells compared with that in T cells suggest that in B cells, mcl-1 transcription is mainly regulated by the BEB complex, whereas in T cells, mcl-1 transcription is mainly controlled by both the SIE and the CRE-2 elements. Further experiments would be required to confirm this conclusion. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:32:53Z (GMT). No. of bitstreams: 1 ntu-95-R93448005-1.pdf: 1725658 bytes, checksum: b93c5366f8ca4d0f0977a5e381318319 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Table of content………………1
中文摘要……………………………5 Abstract…………………6 Introduction…………7 Apoptosis……………7 Intrinsic cell death pathway…………………………………………………………………7 Extrinsic cell death pathway………………………9 Apoptosis in the development of immune system……………9 Myeloid cell leukemia-1…………………………………10 Structure organization of Mcl-1……………………………11 Mcl-1 has an anti-apoptotic function……………………11 Mcl-1 acts as an apical sensor in the apoptosis……13 Mcl-1 is not a redundant player in apoptosis control……13 Regulation of Mcl-1 expression……………………………14 Regulation of Mcl-1 protein stability………………………16 Mcl-1 interacting proteins……………………………………………16 IL-3 simulates Mcl-1 expression through the SIE and CRE-2 elements……………..17 Specific aims………………18 Material and methods………………19 Plasmids……………19 Genotyping……………………19 Primary culture of bone marrow cells and IL-3 induction…………………………….20 Western blots…………………20 RNA isolation and quantitative real time PCR……………21 Isolation of total T cells and total B cells from lymph nodes…………………22 Preparation of nuclear extracts………………………………………22 Electrophoretic mobility shift assay (EMSA)……………23 Flow cytometric analysis………………………………………………24 Results………………………………26 Generation of Mcl-1mSC/mSC mice………………………26 The numbers of peripheral CD8+ single positive T cells are decreased in the Mcl-1mSC/mSC mice…………………………………………27 Stimulation of Mcl-1 expression of the Mcl-1mSC/mSC mice is attenuated in the bone marrow cells……………………………………29 Mcl-1 protein is specifically decreased in the T cell linage of lymphoid organs from Mcl-1mSC/mSC mice……………………………………………29 Mcl-1 RNA was significantly decreased in lymph node T cells, but not B cells of the Mcl-1mSC/mSC mice…………………………………………………30 Mcl-1 protein levels were not significantly altered in the non-lymphoid organs of the Mcl-1mSC/mSC mice………………………………………………………31 Both T and B cells have the SIE and CRE-2 specific binding complex.…………31 PU.1 and phosphorylated CREB are involved in the SIE and CRE-2 specific binding complexes, respectively……………………………………………………32 B cell nuclear extracts have another specific binding complex recognizing sequence within the mcl-1 (-203/+10) promoter fragment………………………………33 BEB complex recognizes a sequence within the upstream half of the mcl-1 (-203/+10) promoter……………………34 DNA motif containing an AP2-like element is the binding site of the BEB complex in the B cells………………………35 BCL1 and P3X cells have the AP2 specific BEB complex………………………35 Discussion…………………………37 A 50% reduction of peripheral CD8+ T cells in Mcl-1mSC/mSC mice is mainly attributed by mutation in the CRE-2 element……………………………………………37 Impaired survival leads to reduced numbers of CD8+ T cells in the Mcl-1mSC/mSC mice…………………………………………38 CD8+ T cell is more sensitive than other T cell lineages to reduced expression of Mcl-1………………………………39 The BEB complex may play a major role in transcription regulation of the mcl-1 gene in B cells…………………………………………………40 Figure……………42 FIGURE 1. General model of signaling pathways that mediate apoptosis………42 FIGURE 2. The mammalian BCL-2 family members…………………………43 FIGURE 3. mcl-1 is an immediate-early gene activated by the interleukin 3 (IL-3) signaling pathways……………………………………………………44 FIGURE 4. Targeted mutation of the mcl-1 gene promoter………………………45 FIGURE 5. Genotyping and Mendelian ratio…………………………………46 FIGURE 6. Flow cytometric analysis of hematopoietic cell compositions of Mcl-1wt/wt and Mcl-1mSC/mSC mice…………………………………………47 FIGURE 7. Early T cell development is normal in the thymus of Mcl-1mSC/mSC mice………………………48 FIGURE 8. Myeloid cell development is slightly attenuated in the bone marrow of Mcl-1mSC/mSC mice………………………………………49 FIGURE 9. CD8+ SP T cell deficiency in the spleen of Mcl-1mSC/mSC mice………50 FIGURE 10. CD8+ T cell deficiency in the lymph node of Mcl-1mSC/mSC mice…51 FIGURE 11. IL-3 induction of Mcl-1 protein in the bone marrow cells is attenuated in Mcl-1mSC/mSC mice………………………………………………52 FIGURE 12. The IL-3 induction of Mcl-1 RNA in the bone marrow cells of Mcl-1mSC/mSC mice is less than that of Mcl-1wt/wt mice…………………………53 FIGURE 13. Mcl-1 expression is attenuated in the T-cell lineage of Mcl-1mSC/mSC mice………………………54 FIGURE 14. Mcl-1 mRNA is significantly reduced in lymph node T cells, but not B cells of Mcl-1mSC/mSC mice……………………………………………………………55 FIGURE 15. No consistent difference in Mcl-1 levels in the non-lymphoid organs of Mcl-1wt/wt and Mcl-1mSC/mSC mice………………………………………………………56 FIGURE 16. Complex formed on the SC fragment………………………………57 FIGURE 17. The SC promoter region binds proteins complexes contained PU.1 and/or phosphorylated CREB………………………………………………58 FIGURE 18. Schematic representation of mcl-1 -203/+10 WT and mutant promoter…………………………59 FIGURE 19. The mcl-1 promoter contains an abundant protein complex (BEB) in the lymph node B cells……………………………………………………60 FIGURE 20. The BEB complex does not contain PU.1 or phosphorylated CREB...61 FIGURE 21. The BEB complex is formed on the mcl-1 promoter between -203 and -87 region…………………………………62 FIGURE 22. Identification of the nuclear protein binding site of the BEB complex……………………………………63 FIGURE 23. The BEB complex specifically forms on the AP2 element (at position -156) within the mcl-1 promoter………………………………………………………64 FIGURE 24. BCL1, A20 and P3X cells have a BEB-like complex formed on the mcl-1 promoter........65 FIGURE 25. The BEB-like complex formed on the mcl-1 promoter in the BCL1 mature B cells is very similar to that formed in the CD19+ primary B cells……66 FIGURE 26. The BEB-like complex is also formed in the P3X plasma B cells……67 Reference………68 | |
| dc.language.iso | en | |
| dc.subject | B淋巴球細胞 | zh_TW |
| dc.subject | mcl-1 | zh_TW |
| dc.subject | 轉錄 | zh_TW |
| dc.subject | T淋巴球細胞 | zh_TW |
| dc.subject | mcl-1 | en |
| dc.subject | transcription | en |
| dc.subject | B lymphocytes | en |
| dc.subject | T lymphocytes | en |
| dc.title | 探討SIE和CRE-2順位調控子在T細胞和B細胞中對於Mcl-1轉錄調控所扮演的角色 | zh_TW |
| dc.title | Characterization of the role of the SIE and CRE-2 elements in the regulation of Mcl-1 transcription in T and B lymphocytes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 嚴仲陽,李芳仁,許秉寧 | |
| dc.subject.keyword | mcl-1,轉錄,T淋巴球細胞,B淋巴球細胞, | zh_TW |
| dc.subject.keyword | mcl-1,transcription,T lymphocytes,B lymphocytes, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-28 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
