請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32119完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪淑蕙 | |
| dc.contributor.author | Cheng-Chien Peng | en |
| dc.contributor.author | 彭振謙 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:32:34Z | - |
| dc.date.available | 2006-07-31 | |
| dc.date.copyright | 2006-07-31 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-26 | |
| dc.identifier.citation | Bevis, M., The curvature of Wadati-Benioff zones and the torsional rigidity of subducting plates, Nature, 323, 52-53, 1986.
Bevis, M., Seismic slip and down-dip strain rates in Wadati-Banioff zones, Sciences, 240, 1317-1319, 1988. Bondar, V. D., On the compatibility equations in terms of strains and stresses, J. Appl. Math. Mech., 33, 1058-1068, 1970. Chiao, L.-Y., Membrane Deformation Rate and the Geometry of Subducting Slabs [Ph.D. thesis]: Seattle, University of Washington, 144 p, 1991. Chiao, L.-Y., and K.C. Creager, Geometry and the membrane deformation rate of the subducting Cascadia slab, The Cascadia Subduction Zone and Related Subduction Systems-Seismic, Structure, Intraslab Earthquakes and Processes, and Earthquake Hazards, Kirby, S., K. Wang, and S. Dunlop eds., 169 p., U.S. Geological Survey Open-File Report 02-328, and Geological Survey of Canada OpenFile 4350.,2002. Creager, K.C., and T.M. Boyd, The geometry of Aleutian subduction: Three-dimensional kinematic flow modeling, J. Geophys. Res., 96, 2293-2307, 1991. Creager, K.C., L.-Y. Chiao, J.P. Winchester Jr., E.R. Engdahl, Membrane strain rates in the subducting plate beneath South America, Geophys. Res. Lett., 22, 2321-2324, 1995. Cahill, T., and B,L. Isacks, Seismicity and shape of the subducted Nazca Plate., J. Geophys. Res., 97, 17503-17529, 1992. Calladine, C, R., Theory of shell structures, Cambridge University Press, Cambridge, 763 p, 1988. Chiu, J.-M., B.L. Isacks, R.K. Cardwell, 3-D configuration of subducted lithosphere in the western Pacific, Geophys. J. Int., 106, 99-111, 1991. Danielson, D.A., Vectors and Tensors in Engineering and Physics: Redwood City, Addison-Wesley publishing company, 280 p, 1992. Do Carmo, A. P., Differential Geometry of Curves and Surfaces: Prentice-Hall, 503p, 1976. Dziewonski, A.M., and J.H. Woodhouse, An experiment in the systematic study of global seismicity: centroid-moment tensor for 201 moderate and large earthquakes of 1981, J. Geophys. Res., 88, 3247-3271, 1983. Frank, F.C., Curvature of island arcs, Nature, 220, 363, 1968. Gauss, Disquisitiones generales circa superficies curves, Gottingen Comm. Rec., t6, 1828. Lancaster, P., and K. Salkauskas, Curve and Surface Fitting, Academic press, London, 280 pp, 1988. Laravie, J. A. Geometry and lateral strain of subduction plates in island arcs, Geology, 3, 484-486, 1975. Lisle, R.J., Detection of zones of abnormal strains in structures using Gaussian curvature analysis, Annual Association Petroleum Geology Bulletin, 78, 1811-1819, 1994. Lundgren P.R. and D. Giardini, Lateral structure of the subducting Pacific Plate beneath the Hokkaido corner from intermediate and deep earthquakes, PAGEOPH, 134, 385-404, 1990. Morgan, W. J., Rise, trench, great faults, and crustal blocks, J. Geophys. Res., 73, 1959-1982, 1968. Nothard, S., D. Mckenzie, J. Haines, and J. Jackson, Gaussian curvature and the relationship between the shape and the deformation of the Toga slab, Geophys. J. Int., 127, 311-327, 1996. Pearson, C. E. (ed.), Handbook of Applied Methematics, 2nd ed., Van nostrand Reinhold, New York, 1306 pp., 1990. Rogers, G.C., Seismotectonics of British Columbia, Ph.D. thesis, Univ. British Columbia, Vancouver, 277pp., 1983. Scales, J.A., P. Docherty, and A. Gerstenkorn, Regularization of the inverse problem: imaging the near-surface weathering layer, Inverse Problems, 6, 115-131, 1990. Stoker, J. J., Differential Geometry ,Wiley, New York, 1969. Strobach, K., Curvature of island arcs and plate tectonics, J. Geophys., 39, 819-831, 1973. Tovish, A. and G. Schubert, Island arc curvature, velocity of convergence and angle of subduction, Geophys. Res. Lett., 5, 329-332, 1978. Tuba, I. S., Compatibility equations for arbitrary orthogonal curvilinear coordinates, American Inst. Aeronautics and Astronautics J., 4, 1695-1696, 1966. Vassiliou, M. S. and B. H. Hager, Subduction zone earthquakes and the sress in slabs, PAGEOPH, 128, 547-624, 1988. Yamaoka, K., Y. Fuako, and M. Kumazawa, Spherical shell tectonics: Effects of sphericity and inextensibility on the geometry of the decending lithosphere, Rev. Geophys., 24, 27-55, 1986. Zhou, H.-W., Observations on earthquake stress axes and seismic morphology of deep slabs, Geophys. J. Int., 103, 377-401, 1990 Zienkiewicz, O.C., The Finite element method, 3rd ed. McGraw-Hill Book Comp., London, 787 pp., 1977. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32119 | - |
| dc.description.abstract | Plate kinematics on the surface of the Earth has been described successfully by the Eulerian rotation without intraplate deformation. It is, however, difficult to specify the kinematics of the lithosphere subduction. Connected with the surface plate velocity across the pivot axis, the trench, the velocity vector field of the subducted slab had been conventionally defined by simply rotating the surface Eulerian kinematics with respect to the local strike onto the slab surface. It usually results in unrealistic in-plane deformation rates within the slab surface. Alternatively, the flow field as well as the observed slab geometry can be shown to be natural consequences of attaining the kinematic field with the minimum dissipation power. The dependence of the deformation rates, associated with such flow field as defined following the minimization, upon the intrinsic geometry of the non-Euclidean surface is, however, implicit and opaque. We derive, in this study, the fundamental compatibility equation of the strain-rates tensor for the subduction flow field to highlight the fundamental dependency. There are two factors; one is associated with the variation of the Gaussian curvature along the stream lines. The other is the local compressibility amplified by the in situ Gaussian curvature. We discuss the implications of these factors and point out that to delineate the potential membrane deformation rates of the subducted slab, unambiguous information on the subduction kinematics is essential in addition to mapping the Gaussian curvature variation of the subducted slab. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:32:34Z (GMT). No. of bitstreams: 1 ntu-95-R93224209-1.pdf: 926300 bytes, checksum: 7261cbf7e55df586380e94e1a7de3d41 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 目錄 I
圖目錄 II 摘要 III 第一章 序論 1.1運動學與幾何空間 ……………………………………………………………1 1.2應變的相容方程式 ……………………………………………………………3 第二章 基本理論 2.1對於隱沒板塊的假設 …………...…………………………………………….7 2.2 薄板變形與撓曲變形 ……………...…………………………………………8 2.3 薄板變形率:順推問題 ……..……………………………………………….9 2.3.1 薄板變形率張量……………………………………………………………9 2.3.2 投影算符(Projection operator) ….…………………………………………10 2.3.3 將三維問題簡化至二維 …………………………………………………13 2.4 薄板變形率:逆推問題 ……….. …………………………………………..14 2.4.1 總應變率功率 ……………………………………………………………14 2.4.2逆推隱沒流場 …………………………………….………………………15 2.4.2.a牛頓流體的線性逆推問題 .…………………………………………...15 2.4.2.b 指數率流體的非線性逆推問題 ……………...………………………..15 第三章 西北太平洋實驗 3.1 西北太平洋地震活動與板塊幾何 …....…………………………………….17 3.2 前人實驗 …………………………………………………………………….18 3.3 西北太平洋實驗 …………………………………………………………….23 第四章 非歐空間中的應變率相容方程式 4.1 共變微分(Covariant derivative)與平行性(Parallelism) ………….....……….27 4.2高斯理論(Gauss theorem egregium) …….………………..………..…………29 4.3 應變相容方程式……......………………….…..…………………..………….29 4.4 應變相容方程式回顧 …………………………………………..……………30 4.5 非歐空間中的應變率相容方程式 …………………………..………………31 第五章 結論與討論 ……………………………………………..……………….33 參考資料 ………………………………………………………..………………...34 附錄一推導非歐空間中的應變相容方程式 ……………….……………………37 附錄二 推廣的應變相容方程式在橢圓面上的應用 …….….………………….39 | |
| dc.language.iso | zh-TW | |
| dc.subject | 高斯曲率 | zh_TW |
| dc.subject | 隱沒板塊 | zh_TW |
| dc.subject | 應變相容方程式 | zh_TW |
| dc.subject | subduction | en |
| dc.subject | Gaussian curvature | en |
| dc.subject | compatibility equations | en |
| dc.title | 隱沒板塊運動應變相容方程式之探討 | zh_TW |
| dc.title | Capatibility Conditions for the Kinematics of Subduction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 喬凌雲 | |
| dc.contributor.oralexamcommittee | 龔源成,郭本垣 | |
| dc.subject.keyword | 隱沒板塊,應變相容方程式,高斯曲率, | zh_TW |
| dc.subject.keyword | subduction,compatibility equations,Gaussian curvature, | en |
| dc.relation.page | 40 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-28 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 904.59 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
