請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32109
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許輝吉 | |
dc.contributor.author | Pou-Chu Pun | en |
dc.contributor.author | 潘寶珠 | zh_TW |
dc.date.accessioned | 2021-06-13T03:32:07Z | - |
dc.date.available | 2010-08-04 | |
dc.date.copyright | 2006-08-04 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-27 | |
dc.identifier.citation | Aigner S., Sthoeger Z. M., Fogel M., Weber E., Zarn J., Ruppert M., Zeller Y., Vestweber D., Stahel R., Sammar M., and Altevogt P. (1997). CD24, a mucin-type glycoprotein, is a ligand for P-selectin on human tumor cells. Blood 89: 3385-95.
Aina O. H., Sroka T. C., Chen M. L., and Lam K. S. (2002). Therapeutic cancer targeting peptides. Biopolymers 66: 184-99. Alterman L. A., Crispe I. N., and Kinnon C. (1990). Characterization of the murine heat-stable antigen: an hematolymphoid differentiation antigen defined by the J11d, M1/69 and B2A2 antibodies. Eur J Immunol 20: 1597-602. Arbuthnot P., Kew M., and Fitschen W. (1991). c-fos and c-myc oncoprotein expression in human hepatocellular carcinomas. Anticancer Res 11: 921-4. Baumann P., Cremers N., Kroese F., Orend G., Chiquet-Ehrismann R., Uede T., Yagita H., and Sleeman J. P. (2005). CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res 65: 10783-93. Begum N. A., Mori M., Matsumata T., Takenaka K., Sugimachi K., and Barnard G. F. (1995). Differential display and integrin alpha 6 messenger RNA overexpression in hepatocellular carcinoma. Hepatology 22: 1447-55. Belvindrah R., Rougon G., and Chazal G. (2002). Increased neurogenesis in adult mCD24-deficient mice. J Neurosci 22: 3594-607. Berry M. G., Goode A. W., Puddefoot J. R., Vinson G. P., and Carpenter R. (2003). Integrin beta1-mediated invasion of human breast cancer cells: an ex vivo assay for invasiveness. Breast Cancer 10: 214-9. Blumenthal R. D., Hansen H. J., and Goldenberg D. M. (2005). Inhibition of adhesion, invasion, and metastasis by antibodies targeting CEACAM6 (NCA-90) and CEACAM5 (Carcinoembryonic Antigen). Cancer Res 65: 8809-17. Burridge K., Turner C. E., and Romer L. H. (1992). Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J Cell Biol 119: 893-903. Camonis J. H., and White M. A. (2005). Ral GTPases: corrupting the exocyst in cancer cells. Trends Cell Biol 15: 327-32. Carragher N. O., and Frame M. C. (2004). Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion. Trends Cell Biol 14: 241-9. Cary L. A., Chang J. F., and Guan J. L. (1996). Stimulation of cell migration by overexpression of focal adhesion kinase and its association with Src and Fyn. J Cell Sci 109 ( Pt 7): 1787-94. Cheung W. M., Chu A. H., Chu P. W., and Ip N. Y. (2001). Cloning and expression of a novel nuclear matrix-associated protein that is regulated during the retinoic acid-induced neuronal differentiation. J Biol Chem 276: 17083-91. Choi Y. L., Kim S. H., Shin Y. K., Hong Y. C., Lee S. J., Kang S. Y., and Ahn G. (2005). Cytoplasmic CD24 expression in advanced ovarian serous borderline tumors. Gynecol Oncol 97: 379-86. Collier J. D., Guo K., Mathew J., May F. E., Bennett M. K., Corbett I. P., Bassendine M. F., and Burt A. D. (1992). c-erbB-2 oncogene expression in hepatocellular carcinoma and cholangiocarcinoma. J Hepatol 14: 377-80. Coussens L. M., Fingleton B., and Matrisian L. M. (2002). Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295: 2387-92. Deichmann M., Kurzen H., Egner U., Altevogt P., and Hartschuh W. (2003). Adhesion molecules CD171 (L1CAM) and CD24 are expressed by primary neuroendocrine carcinomas of the skin (Merkel cell carcinomas). J Cutan Pathol 30: 363-8. Ding S. F., Habib N. A., Dooley J., Wood C., Bowles L., and Delhanty J. D. (1991). Loss of constitutional heterozygosity on chromosome 5q in hepatocellular carcinoma without cirrhosis. Br J Cancer 64: 1083-7. Droz D., Rousseau-Merck M. F., Jaubert F., Diebold N., Nezelof C., Adafer E., and Mouly H. (1990a). Cell differentiation in Wilms' tumor (nephroblastoma): an immunohistochemical study. Hum Pathol 21: 536-44. Droz D., Zachar D., Charbit L., Gogusev J., Chretein Y., and Iris L. (1990b). Expression of the human nephron differentiation molecules in renal cell carcinomas. Am J Pathol 137: 895-905. Emi M., Fujiwara Y., Nakajima T., Tsuchiya E., Tsuda H., Hirohashi S., Maeda Y., Tsuruta K., Miyaki M., and Nakamura Y. (1992). Frequent loss of heterozygosity for loci on chromosome 8p in hepatocellular carcinoma, colorectal cancer, and lung cancer. Cancer Res 52: 5368-72. Emonard H., Christiane Y., Smet M., Grimaud J. A., and Foidart J. M. (1990). Type IV and interstitial collagenolytic activities in normal and malignant trophoblast cells are specifically regulated by the extracellular matrix. Invasion Metastasis 10: 170-7. Ennas M. G., Cocchia D., Silvetti E., Sogos V., Riva A., Torelli S., and Gremo F. (1992). Immunocompetent cell markers in human fetal astrocytes and neurons in culture. J Neurosci Res 32: 424-36. Enomoto A., Murakami H., Asai N., Morone N., Watanabe T., Kawai K., Murakumo Y., Usukura J., Kaibuchi K., and Takahashi M. (2005). Akt/PKB regulates actin organization and cell motility via Girdin/APE. Dev Cell 9: 389-402. Fassina G., Ferrari N., Brigati C., Benelli R., Santi L., Noonan D. M., and Albini A. (2000). Tissue inhibitors of metalloproteases: regulation and biological activities. Clin Exp Metastasis 18: 111-20. Figarella-Branger D., Moreau H., Pellissier J. F., Bianco N., and Rougon G. (1993). CD24, a signal-transducing molecule expressed on human B lymphocytes, is a marker for human regenerating muscle. Acta Neuropathol (Berl) 86: 275-84. Fischer G. F., Majdic O., Gadd S., and Knapp W. (1990). Signal transduction in lymphocytic and myeloid cells via CD24, a new member of phosphoinositol-anchored membrane molecules. J Immunol 144: 638-41. Fogel M., Friederichs J., Zeller Y., Husar M., Smirnov A., Roitman L., Altevogt P., and Sthoeger Z. M. (1999). CD24 is a marker for human breast carcinoma. Cancer Lett 143: 87-94. Friederichs J., Zeller Y., Hafezi-Moghadam A., Grone H. J., Ley K., and Altevogt P. (2000). The CD24/P-selectin binding pathway initiates lung arrest of human A125 adenocarcinoma cells. Cancer Res 60: 6714-22. Giannelli G., Astigiano S., Antonaci S., Morini M., Barbieri O., Noonan D. M., and Albini A. (2002). Role of the alpha3beta1 and alpha6beta4 integrins in tumor invasion. Clin Exp Metastasis 19: 217-23. Gorodinsky A., and Harris D. A. (1995). Glycolipid-anchored proteins in neuroblastoma cells form detergent-resistant complexes without caveolin. J Cell Biol 129: 619-27. Guan J. L. (1997). Role of focal adhesion kinase in integrin signaling. Int J Biochem Cell Biol 29: 1085-96. Hsu H. C., Peng S. Y., Lai P. L., Sheu J. C., Chen D. S., Lin L. I., Slagle B. L., and Butel J. S. (1994). Allelotype and loss of heterozygosity of p53 in primary and recurrent hepatocellular carcinomas. A study of 150 patients. Cancer 73: 42-7. Hsu H. C., Tseng H. J., Lai P. L., Lee P. H., and Peng S. Y. (1993). Expression of p53 gene in 184 unifocal hepatocellular carcinomas: association with tumor growth and invasiveness. Cancer Res 53: 4691-4. Huang L. R., and Hsu H. C. (1995). Cloning and expression of CD24 gene in human hepatocellular carcinoma: a potential early tumor marker gene correlates with p53 mutation and tumor differentiation. Cancer Res 55: 4717-21. Hwang Y. H., Choi J. Y., Kim S., Chung E. S., Kim T., Koh S. S., Lee B., Bae S. H., Kim J., and Park Y. M. (2004). Over-expression of c-raf-1 proto-oncogene in liver cirrhosis and hepatocellular carcinoma. Hepatol Res 29: 113-121. Jackson D., Waibel R., Weber E., Bell J., and Stahel R. A. (1992). CD24, a signal-transducing molecule expressed on human B cells, is a major surface antigen on small cell lung carcinomas. Cancer Res 52: 5264-70. Jacob J., Bellach J., Grutzmann R., Alldinger I., Pilarsky C., Dietel M., and Kristiansen G. (2004). Expression of CD24 in adenocarcinomas of the pancreas correlates with higher tumor grades. Pancreatology 4: 454-60. Kadmon G., von Bohlen und Halbach F., Horstkorte R., Eckert M., Altevogt P., and Schachner M. (1995). Evidence for cis interaction and cooperative signalling by the heat-stable antigen nectadrin (murine CD24) and the cell adhesion molecule L1 in neurons. Eur J Neurosci 7: 993-1004. Karran L., Jones M., Morley G., van Noorden S., Smith P., Lampert I., and Griffin B. E. (1995). Expression of a B-cell marker, CD24, on nasopharyngeal carcinoma cells. Int J Cancer 60: 562-6. Kawate S., Fukusato T., Ohwada S., Watanuki A., and Morishita Y. (1999). Amplification of c-myc in hepatocellular carcinoma: correlation with clinicopathologic features, proliferative activity and p53 overexpression. Oncology 57: 157-63. Kay R., Rosten P. M., and Humphries R. K. (1991). CD24, a signal transducer modulating B cell activation responses, is a very short peptide with a glycosyl phosphatidylinositol membrane anchor. J Immunol 147: 1412-6. Kay R., Takei F., and Humphries R. K. (1990). Expression cloning of a cDNA encoding M1/69-J11d heat-stable antigens. J Immunol 145: 1952-9. Kennedy S. G., Wagner A. J., Conzen S. D., Jordan J., Bellacosa A., Tsichlis P. N., and Hay N. (1997). The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev 11: 701-13. Kim D., Kim S., Koh H., Yoon S. O., Chung A. S., Cho K. S., and Chung J. (2001). Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production. Faseb J 15: 1953-62. Kooyman D. L., Byrne G. W., McClellan S., Nielsen D., Tone M., Waldmann H., Coffman T. M., McCurry K. R., Platt J. L., and Logan J. S. (1995). In vivo transfer of GPI-linked complement restriction factors from erythrocytes to the endothelium. Science 269: 89-92. Kornberg L., Earp H. S., Parsons J. T., Schaller M., and Juliano R. L. (1992). Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion-associated tyrosine kinase. J Biol Chem 267: 23439-42. Kornberg L. J. (1998). Focal adhesion kinase and its potential involvement in tumor invasion and metastasis. Head Neck 20: 745-52. Kristiansen G., Denkert C., Schluns K., Dahl E., Pilarsky C., and Hauptmann S. (2002). CD24 is expressed in ovarian cancer and is a new independent prognostic marker of patient survival. Am J Pathol 161: 1215-21. Kristiansen G., Pilarsky C., Pervan J., Sturzebecher B., Stephan C., Jung K., Loening S., Rosenthal A., and Dietel M. (2004a). CD24 expression is a significant predictor of PSA relapse and poor prognosis in low grade or organ confined prostate cancer. Prostate 58: 183-92. Kristiansen G., Sammar M., and Altevogt P. (2004b). Tumour biological aspects of CD24, a mucin-like adhesion molecule. J Mol Histol 35: 255-62. Kristiansen G., Schluns K., Yongwei Y., Denkert C., Dietel M., and Petersen I. (2003a). CD24 is an independent prognostic marker of survival in nonsmall cell lung cancer patients. Br J Cancer 88: 231-6. Kristiansen G., Winzer K. J., Mayordomo E., Bellach J., Schluns K., Denkert C., Dahl E., Pilarsky C., Altevogt P., Guski H., and Dietel M. (2003b). CD24 expression is a new prognostic marker in breast cancer. Clin Cancer Res 9: 4906-13. Lee T. Y., Wu H. C., Tseng Y. L., and Lin C. T. (2004). A novel peptide specifically binding to nasopharyngeal carcinoma for targeted drug delivery. Cancer Res 64: 8002-8. Levy S. E., and Hyman S. L. (2005). Novel treatments for autistic spectrum disorders. Ment Retard Dev Disabil Res Rev 11: 131-42. Liew C. T., Li H. M., Lo K. W., Leow C. K., Lau W. Y., Hin L. Y., Lim B. K., Lai P. B., Chan J. Y., Wang X. Q., Wu S., and Lee J. C. (1999). Frequent allelic loss on chromosome 9 in hepatocellular carcinoma. Int J Cancer 81: 319-24. Lim S. C., and Oh S. H. (2005). The role of CD24 in various human epithelial neoplasias. Pathol Res Pract 201: 479-86. Linton P. L., Decker D. J., and Klinman N. R. (1989). Primary antibody-forming cells and secondary B cells are generated from separate precursor cell subpopulations. Cell 59: 1049-59. Liu S. H., Lin C. Y., Peng S. Y., Jeng Y. M., Pan H. W., Lai P. L., Liu C. L., and Hsu H. C. (2002). Down-regulation of annexin A10 in hepatocellular carcinoma is associated with vascular invasion, early recurrence, and poor prognosis in synergy with p53 mutation. Am J Pathol 160: 1831-7. Liu Y., Jones B., Aruffo A., Sullivan K. M., Linsley P. S., and Janeway C. A., Jr. (1992). Heat-stable antigen is a costimulatory molecule for CD4 T cell growth. J Exp Med 175: 437-45. Los M., Van de Craen M., Penning L. C., Schenk H., Westendorp M., Baeuerle P. A., Droge W., Krammer P. H., Fiers W., and Schulze-Osthoff K. (1995). Requirement of an ICE/CED-3 protease for Fas/APO-1-mediated apoptosis. Nature 375: 81-3. Miller B. A., Antognetti G., and Springer T. A. (1985). Identification of cell surface antigens present on murine hematopoietic stem cells. J Immunol 134: 3286-90. Morgan M., Kniss D., and McDonnell S. (1998). Expression of metalloproteinases and their inhibitors in human trophoblast continuous cell lines. Exp Cell Res 242: 18-26. Nedelec J., Pierres M., Moreau H., Barbet J., Naquet P., Faivre-Sarrailh C., and Rougon G. (1992). Isolation and characterization of a novel glycosyl-phosphatidylinositol-anchored glycoconjugate expressed by developing neurons. Eur J Biochem 203: 433-42. Nielsen P. J., Lorenz B., Muller A. M., Wenger R. H., Brombacher F., Simon M., von der Weid T., Langhorne W. J., Mossmann H., and Kohler G. (1997). Altered erythrocytes and a leaky block in B-cell development in CD24/HSA-deficient mice. Blood 89: 1058-67. Oshita F., Kameda Y., Ikehara M., Tanaka G., Yamada K., Nomura I., Noda K., Shotsu A., Fujita A., Arai H., Ito H., Nakayama H., and Mitsuda A. (2002). Increased expression of integrin beta1 is a poor prognostic factor in small-cell lung cancer. Anticancer Res 22: 1065-70. Pan H. W., Ou Y. H., Peng S. Y., Liu S. H., Lai P. L., Lee P. H., Sheu J. C., Chen C. L., and Hsu H. C. (2003). Overexpression of osteopontin is associated with intrahepatic metastasis, early recurrence, and poorer prognosis of surgically resected hepatocellular carcinoma. Cancer 98: 119-27. Park B. K., Zeng X., and Glazer R. I. (2001). Akt1 induces extracellular matrix invasion and matrix metalloproteinase-2 activity in mouse mammary epithelial cells. Cancer Res 61: 7647-53. Peng S. Y., Chen W. J., Lai P. L., Jeng Y. M., Sheu J. C., and Hsu H. C. (2004). High alpha-fetoprotein level correlates with high stage, early recurrence and poor prognosis of hepatocellular carcinoma: significance of hepatitis virus infection, age, p53 and beta-catenin mutations. Int J Cancer 112: 44-50. Peng S. Y., Lai P. L., Chu J. S., Lee P. H., Tsung P. T., Chen D. S., and Hsu H. C. (1993a). Expression and hypomethylation of alpha-fetoprotein gene in unicentric and multicentric human hepatocellular carcinomas. Hepatology 17: 35-41. Peng S. Y., Lai P. L., and Hsu H. C. (1993b). Amplification of the c-myc gene in human hepatocellular carcinoma: biologic significance. J Formos Med Assoc 92: 866-70. Piao Z., Park C., Park J. H., and Kim H. (1998). Deletion mapping of chromosome 4q in hepatocellular carcinoma. Int J Cancer 79: 356-60. Pierres M., Naquet P., Barbet J., Marchetto S., Marics I., Devaux C., Barad M., Hyman R., and Rougon G. (1987). Evidence that murine hematopoietic cell subset marker J11d is attached to a glycosyl-phosphatidylinositol membrane anchor. Eur J Immunol 17: 1781-5. Pirruccello S. J., and LeBien T. W. (1986). The human B cell-associated antigen CD24 is a single chain sialoglycoprotein. J Immunol 136: 3779-84. Poncet C., Frances V., Gristina R., Scheiner C., Pellissier J. F., and Figarella-Branger D. (1996). CD24, a glycosylphosphatidylinositol-anchored molecules is transiently expressed during the development of human central nervous system and is a marker of human neural cell lineage tumors. Acta Neuropathol (Berl) 91: 400-8. Raife T. J., Lager D. J., Kemp J. D., and Dick F. R. (1994). Expression of CD24 (BA-1) predicts monocytic lineage in acute myeloid leukemia. Am J Clin Pathol 101: 296-9. Rougon G., Alterman L. A., Dennis K., Guo X. J., and Kinnon C. (1991). The murine heat-stable antigen: a differentiation antigen expressed in both the hematolymphoid and neural cell lineages. Eur J Immunol 21: 1397-402. Sakai K., Nagahara H., Abe K., and Obata H. (1992). Loss of heterozygosity on chromosome 16 in hepatocellular carcinoma. J Gastroenterol Hepatol 7: 288-92. Sammar M., Aigner S., and Altevogt P. (1997). Heat-stable antigen (mouse CD24) in the brain: dual but distinct interaction with P-selectin and L1. Biochim Biophys Acta 1337: 287-94. Schlaepfer D. D., Hanks S. K., Hunter T., and van der Geer P. (1994). Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 372: 786-91. Shao J., Li H., Liew C. T., Wu Q., Liang X., and Hou J. (1999). [A preliminary study of loss of heterozygosity on chromosome 1p in primary hepatocellular carcinoma]. Zhonghua Bing Li Xue Za Zhi 28: 28-30. Shewan D., Calaora V., Nielsen P., Cohen J., Rougon G., and Moreau H. (1996). mCD24, a glycoprotein transiently expressed by neurons, is an inhibitor of neurite outgrowth. J Neurosci 16: 2624-34. Shih J. Y., Yang S. C., Hong T. M., Yuan A., Chen J. J., Yu C. J., Chang Y. L., Lee Y. C., Peck K., Wu C. W., and Yang P. C. (2001). Collapsin response mediator protein-1 and the invasion and metastasis of cancer cells. J Natl Cancer Inst 93: 1392-400. Shirasawa T., Akashi T., Sakamoto K., Takahashi H., Maruyama N., and Hirokawa K. (1993). Gene expression of CD24 core peptide molecule in developing brain and developing non-neural tissues. Dev Dyn 198: 1-13. Sledz C. A., Holko M., de Veer M. J., Silverman R. H., and Williams B. R. (2003). Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5: 834-9. Smith S. C., Oxford G., Wu Z., Nitz M. D., Conaway M., Frierson H. F., Hampton G., and Theodorescu D. (2006). The metastasis-associated gene CD24 is regulated by Ral GTPase and is a mediator of cell proliferation and survival in human cancer. Cancer Res 66: 1917-22. Stier H., Fahimi H. D., Van Veldhoven P. P., Mannaerts G. P., Volkl A., and Baumgart E. (1998). Maturation of peroxisomes in differentiating human hepatoblastoma cells (HepG2): possible involvement of the peroxisome proliferator-activated receptor alpha (PPAR alpha). Differentiation 64: 55-66. Sun L. C., Luo J., Mackey L. V., Fuselier J. A., and Coy D. H. (2006). A conjugate of camptothecin and a somatostatin analog against prostate cancer cell invasion via a possible signaling pathway involving PI3K/Akt, alphaVbeta3/alphaVbeta5 and MMP-2/-9. Cancer Lett. Takahashi K., Kudo J., Ishibashi H., Hirata Y., and Niho Y. (1993). Frequent loss of heterozygosity on chromosome 22 in hepatocellular carcinoma. Hepatology 17: 794-9. Tanno S., Mitsuuchi Y., Altomare D. A., Xiao G. H., and Testa J. R. (2001). AKT activation up-regulates insulin-like growth factor I receptor expression and promotes invasiveness of human pancreatic cancer cells. Cancer Res 61: 589-93. Trauth B. C., Klas C., Peters A. M., Matzku S., Moller P., Falk W., Debatin K. M., and Krammer P. H. (1989). Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245: 301-5. Tsuda H., Hirohashi S., Shimosato Y., Ino Y., Yoshida T., and Terada M. (1989). Low incidence of point mutation of c-Ki-ras and N-ras oncogenes in human hepatocellular carcinoma. Jpn J Cancer Res 80: 196-9. Tsuda H., Zhang W. D., Shimosato Y., Yokota J., Terada M., Sugimura T., Miyamura T., and Hirohashi S. (1990). Allele loss on chromosome 16 associated with progression of human hepatocellular carcinoma. Proc Natl Acad Sci U S A 87: 6791-4. Vallera D. A., Elson M., Brechbiel M. W., Dusenbery K. E., Burns L. J., Jaszcz W. B., Ramsay N. K., Panoskaltsis-Mortar A., Kuroki D. W., Wagner J. E., Vitetta E. S., and Kersey J. H. (2004). Radiotherapy of CD19 expressing Daudi tumors in nude mice with Yttrium-90-labeled anti-CD19 antibody. Cancer Biother Radiopharm 19: 11-23. Vincent S., Marty L., and Fort P. (1993). S26 ribosomal protein RNA: an invariant control for gene regulation experiments in eucaryotic cells and tissues. Nucleic Acids Res 21: 1498. von Mehren M., Adams G. P., and Weiner L. M. (2003). Monoclonal antibody therapy for cancer. Annu Rev Med 54: 343-69. Wang T. Y., and Nicolson G. L. (1983). Metastatic tumor cell invasion of brain organ tissue cultured on cellulose polyacetate strips. Clin Exp Metastasis 1: 327-39. Weiner L. M., and Adams G. P. (2000). New approaches to antibody therapy. Oncogene 19: 6144-51. Wenger R. H., Ayane M., Bose R., Kohler G., and Nielsen P. J. (1991). The genes for a mouse hematopoietic differentiation marker called the heat-stable antigen. Eur J Immunol 21: 1039-46. Xia Z., Dickens M., Raingeaud J., Davis R. J., and Greenberg M. E. (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270: 1326-31. Yamada T., Yoshikawa M., Kanda S., Kato Y., Nakajima Y., Ishizaka S., and Tsunoda Y. (2002). In vitro differentiation of embryonic stem cells into hepatocyte-like cells identified by cellular uptake of indocyanine green. Stem Cells 20: 146-54. Yang C., Zeisberg M., Lively J. C., Nyberg P., Afdhal N., and Kalluri R. (2003). Integrin alpha1beta1 and alpha2beta1 are the key regulators of hepatocarcinoma cell invasion across the fibrotic matrix microenvironment. Cancer Res 63: 8312-7. Yin X. M., Lee W. T., and Vitetta E. S. (1991). Changes in expression of J11d on murine B cells during activation and generation of memory. Cell Immunol 137: 448-60. Yuen M. F., Wu P. C., Lai V. C., Lau J. Y., and Lai C. L. (2001). Expression of c-Myc, c-Fos, and c-jun in hepatocellular carcinoma. Cancer 91: 106-12. Zarn J. A., Jackson D. G., Bell M. V., Jones T., Weber E., Sheer D., Waibel R., and Stahel R. A. (1995). The small cell lung cancer antigen cluster-4 and the leukocyte antigen CD24 are allelic isoforms of the same gene (CD24) on chromosome band 6q21. Cytogenet Cell Genet 70: 119-25. Zarn J. A., Zimmermann S. M., Pass M. K., Waibel R., and Stahel R. A. (1996). Association of CD24 with the kinase c-fgr in a small cell lung cancer cell line and with the kinase lyn in an erythroleukemia cell line. Biochem Biophys Res Commun 225: 384-91. Zhang X., Xu H. J., Murakami Y., Sachse R., Yashima K., Hirohashi S., Hu S. X., Benedict W. F., and Sekiya T. (1994). Deletions of chromosome 13q, mutations in Retinoblastoma 1, and retinoblastoma protein state in human hepatocellular carcinoma. Cancer Res 54: 4177-82. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32109 | - |
dc.description.abstract | CD24是一個透過GPI anchor,連接到細胞膜表面的一個短小和高度醣化的膜蛋白,是血液系統的分化群組cluster of differentiation (CD) ,主要表現在先驅B淋巴球,中性球,神經組織和再生中的肌肉。因此,CD24在先驅B淋巴球的發育和神經生成中扮演重要角色,也有作為P-selectin 和 L1的粘合分子的作用。目前諸多證據指出CD24跟腫瘤和轉移有關。儘管已有許多人類組織研究認為CD24的表現與腫瘤生長有關連,但在這些過程中CD24所牽動的機制或是治療潛能尚未釐清,尤其是對肝細胞癌(HCC) 。之前,我們發現CD24 mRNA在肝細胞癌會有過度表現,與腫瘤不良分化和p53突變有關。
在本篇研究中,我們利用螢光免疫染色確認了CD24位在於細胞膜上。利用反式retinoic acid處理造成分化的NT2細胞與不繼代處理造成分化的HepG2細胞中,CD24的mRNA和蛋白表現量都會隨之減少。這些結果顯示CD24跟細胞分化有著相關性。我們建立了三種減少CD24表現的方法去證明CD24在生長,侵犯以及它的治療潛能:分別是利用反義RNA有效地持續抑制的方法,短暫抑制的 RNAi oligos方法和專一抗CD24的抗體中和作用。藉由RNAi系統,發現經由反義RNA有效地持續抑制和短暫抑制的RNAi oligos方法都可以達到減緩細胞的生長速率,降低細胞在soft agar的非附著性生長能力,且在含有第一型膠原蛋白的3D膠或Matrigel中,細胞的侵犯能力都有減低。在腫瘤生長的角色,我們把有降低CD24表現的細胞株和對照組注射到NOD-SCID小鼠,觀察小鼠的腫瘤生長速率。我們發現有降低CD24表現的細胞株的生長速率都有明顯下降。除此之外,有短暫抑制CD24表現的細胞,它們附著到不同ECM,包括vitronectin (玻連蛋白)、collagen IV (第四型膠原蛋白)、laminin(層粘連蛋白)或fibronectin(纖維粘連蛋白)的能力都會降低,FAK相關分子也會有減少的表現,包括p-FAK,p-Akt,MMP2 或MMP-9。在Ha22T 細胞,附著到這四種ECM都會減少; Huh-7 細胞附著到laminin(層粘連蛋白)或HeLa 細胞附著到vitronectin (玻連蛋白) 的能力都有下降。有持續抑制CD24表現的Huh-7細胞在第一型膠原蛋白的3D膠的侵犯能力下降,利用反義RNA短暫抑制的HeLa和 RNAi oligos 短暫抑制的 HeLa 和Ha22T細胞侵犯Matrigel gel 的細胞數目也會減少。這些結果證明了CD24的表現改變可以透過 Akt的下降,使得Ha22T和Huh-7的生長速度都減慢,而且侵犯能力的下降有部分會是因為Huh-7 和Ha22T細胞的MMP9表現下降。除了利用RNAi系統外,我們也證明了利用CD24的單株抗體也會達到抑制腫瘤細胞的侵犯能力。 總而言之,我們的研究結果顯示了減少CD24的表現可以抑制腫瘤生長和侵犯能力,因此CD24可以作為肝細胞癌的治療標的,特別是針對膜蛋白CD24的特殊抗體治療法。 | zh_TW |
dc.description.abstract | CD24 is a surface protein consisting of a short, heavily-glycosylated protein core linked to plasma membrane by a glycosylphosphatidylinositol (GPI) anchor. CD24 is a cluster of differentiation (CD) marker of hematopoietic lineages and plays a role in B-cell development and neurogenesis. CD24 functions as an adhesion molecule and interacts with P-selectin and L1. Cumulative evidence has demonstrated CD24 expression in many common malignancies and association with metastasis. Despite the multitude of human tissue studies correlating CD24 expression with tumorigenesis, the molecular mechanisms which define the role of CD24 in tumorgenesis, and its potential as therapeutic target are not fully understood, especially in hepatocellular carcinoma (HCC), in which CD24 mRNA is overexpressed and correlated with poor tumor differentiation and p53 mutation.
In this study, we confirmed the membrane localization of CD24 by immunofluorescence staining. The mRNA and protein levels of CD24 decreased after the differentiation of NT2 cells induced by prolonged trans-retinoic acid treatment and HepG2 cells induced by prolonged cultivation without passage. These findings suggest that CD24 gene is involved in cell differentiation. We have established 3 approaches to knockdown the expression of CD24 and to clarify the role of CD24 in tumorigenesis, invasion and its therapeutic potential: stable knockdown by antisense strand RNA, transient knockdown using RNAi oligos, and neutralization with specific anti-CD24 antibody. With the RNAi system, CD24 stable knockdown and RNAi oligos transient transfected cells showed significant reduction of cell proliferation rate, anchorage-independent colony formation in soft agar assay and invasion ability in 3-dimensional gel containing collagen type I or Matrigel assay. In 3-dimensional collagen type Ι gel, the Huh-7 stable knockdown clones showed less invasive capability whereas the transient antisense transfected HeLa and the RNAi oligos transient transfected HeLa and Ha22T cells showed reduced number of cells invading through the Matrigel. To elucidate the role in tumorigenesis, we inoculated CD24 downregulated clones and control cells into NOD-SCID mice. We found that stable knockdown clones had a significantly slower tumor growth rate. Moreover, the CD24 transient knockdown cells showed altered adhesion to extracellular matrix (ECM) including vitronectin, collagen IV, laminin and fibronectin. There was reduced binding ability to all four types of ECM in Ha22T cells; to laminin in Huh-7 and to vitronectin in HeLa cells. Furthermore, the decreased expression of FAK-mediated pathway molecules, including p-FAK, p-Akt, MMP2 or MMP-9 suggested that altered expression of CD24 changed the proliferation of Ha22T and Huh-7 cells through the downregulation of Akt, and the reduced invasive capability, at least in part through the downregulation of MMP-9. In addition to RNAi system, we also showed inhibition of in vitro tumor cell invasion activity by antibody neutralization using monoclonal anti-CD24 antibody. In conclusion, our study demonstrated that CD24 may serve as a therapeutic target in HCC since RNAi knockdown of CD24 suppresses the in vivo tumorigenesis and in vitro invasion. Besides, CD24, a membrane protein, may serve as an excellent target for immuno-therapy of HCC. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T03:32:07Z (GMT). No. of bitstreams: 1 ntu-95-R93444004-1.pdf: 2791046 bytes, checksum: 6ec20a1c786cae216d1112fe6213944b (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 中文摘要..............1
Abstract..............3 Introductio...........5 Materials and Methods.13 Results...............17 Discussion............22 Figures...............32 Reference.............52 | |
dc.language.iso | en | |
dc.title | CD24是肝細胞癌的可能標的: 在腫廇細胞生長、分化與侵犯的角色 | zh_TW |
dc.title | CD24 is a Potential Therapeutic Target of Hepatocellular Carcinoma: Role in cell proliferation, differentiation and invasion | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李玉梅,呂勝春,郭明良 | |
dc.subject.keyword | 肝細胞癌,醣蛋白,治療標的,腫瘤轉移,抗體中和作用, | zh_TW |
dc.subject.keyword | Hepatocellular carcinoma,CD24,therapeutic target,invasion and progression, antisense RNA,antibody neutralization, | en |
dc.relation.page | 62 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-28 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 病理學研究所 | zh_TW |
顯示於系所單位: | 病理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 2.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。