Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32086
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾孫霖(Sun-Lin Chung)
dc.contributor.authorYu-Hsuan Liangen
dc.contributor.author梁育瑄zh_TW
dc.date.accessioned2021-06-13T03:31:04Z-
dc.date.available2006-07-29
dc.date.copyright2006-07-29
dc.date.issued2006
dc.date.submitted2006-07-27
dc.identifier.citationAlam, M., Alam, M.M., Curray, J.R., Chowdhury, M.L.R., Gani, M.R., 2003, An overview of the sedimentary geology of the Bengal Basin in relation to the regional tectonic framework and basin-fill history: Sed. Geol., 155, 179-208.
Allègre, C.J., and 34 others, 1984, Structure and evolution of the Himalayan-Tibet orogenic belt: Nature, 307, 17–22.
Blichert-Toft, J., and Albarede, F., 1997, The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system: Earth Planet. Sci. Lett., 148: 243–258.
Bodet, F., Scharer, U., 2000, Evolution of the SE-Asian continent from U-Pb and Hf isotopes in single grains of zircon and baddeleyite from large rivers: Geochimica et Cosmochimica Acta, 64, 2067–2091.
Brookfield, M.E., 1993, The Himalayan passive margin from Precambrian to Cretaceous: Sedimentary Geol., 84, 1–35.
Brookfield, M.E., 1998, The evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision: Rivers draining southward: Geomorphology, 22, 285–312.
Burchfield, B.C., Chen, Z., Hodges, K.V., Liu, Y., Royden, L.H., et al., 1992, The South Tibetan Detachment System, Himalayan orogen: extension contemporaneous with and parallel to shortening in a collisional mountain belt: Geol. Soc. Am. Spec. Pap., 269, 1–41.
Burg, J.P., Chen, G.M., 1984, Tectonics and structural formation of southern Tibet, China: Nature, 311, 219–223.
Burrard, S.G., Hayden, H.H., 1907, Geography and geology of Himalayan Mountains and Tibet, part 3: the rivers of Himalaya and Tibet, 119–230, Govt. of India Press, Calcutta.
Chang C.F., Zheng S.L., 1973, Tectonic features of the Mount Jolmo Lungma region in southern Tibet, China: Scientia Geologica Sinica, 1, 1–12.
Cawood, P.A., Nemchin, A.A., Freeman, M., Sircombe, K., 2003, Linking source and sedimentary basin: Detrital zircon record of sediment flux along a modern river system and implications for provenance studies: Earth Planet. Sci. Lett., 210, 259-268.
Chu, M.-F., Chung, S.-L., Song, B., Liu, D.-Y., O’Reilly, S.Y., Pearson, N.J., Ji, J.-Q., Wen, D.-J., 2006, Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet: Geology, in press.
Chung, S.-L., Liu, D., Ji, J., Chu, M.-F., Lee, H.-Y., Wen, D.-J., Lo, C.-H., Lee, T.-Y., Qian, Q. and Zhang, Q., 2003, Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet: Geology, v. 31; no. 11; p. 1021–1024.
Chung, S.-L., Chu, M.-F., Zhang, Y., Xie, Y., Lo, C.-H., Lee, T.-Y., Lan, C.-Y., Li, X., Zhang, Q. and Wang, Y., 2005, Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism: Earth-Science Reviews, v. 68, p.173–196.
Clark, M.K., Schoenbohm, L.M., Royden, L.H., Whipple, K.X., Burchfiel, B.C., Zhang, X., Tang, W., Wang, E., Chen, L., 2004, Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns: Tectonics, 23, TC1006, doi:10.1029/2002TC001402.
Colchen, M., Bassoullet, J.P., Mascle, G., 1982, La paleogeographie des orogenes, l’example de l’Himalaya: Mem. Geol. l’Univ. Dijon., 7, 453–471.
Coulon, C., Maluski, H., Bollinger, C., Wang, S., 1986, Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar/40Ar dating, petrological characteristics and geodynamical significance: Earth Planet. Sci. Lett., 79, 281–302.
Curray, J.R., 1991, Possible green schist metamorphism at the base of a 22 km sedimentary section, Bay of Bengal: Geology, 19, 1097-1100.
DeCelles, P.G., Gehrels, G.E., Quade, J., LaReau, B., Spurlin, M., 2000, Tectonic Implications of U-Pb Zircon Ages of the Himalayan Orogenic Belt in Nepal: Science, 288, 497-499.
DeCelles, P.G., Gehrels, G.E., Najman, Y., Martin, A.J., Carter, A., Garzanti, E., 2004, Detrital geochronology and geochemistry of Cretaceous-Early Miocene strata of Nepal: implications for timing and diachroneity of initial Himalayan orogenesis: Earth Planet. Sci. Lett., 277, 313-330.
Dewey, J.F., Shackelton, R.M., Chang, C., Sun, Y., 1988, The tectonic evolution of the Tibetan Plateau: Phil. Trans. R. Soc. Lond., A327, 379–413
Gaetani, M., Garzanti, E., 1991, Multicyclic history of the northern India continental margin (northwestern Himalaya): Am. Assoc. Pet. Geol. Bull., 75, 1427–1446.
Gaudette, H.E., Vitrac-Michard, A., Allegre, C.J., 1981, North American Precambrian history recorded in single sample and high-resolution U-Pb systematic of the Potsdam sandstone detrital zircons, New York State: Earth Planet. Sci. Lett., 54, 248-260.
Grauert, B., Hanny, R., Spotrajanova, G., 1973, Age and origin of detrital zircons from the Pre-permian basements of the Bohemian Massif and the Alps: Contrib. Mineral. Petrol., 40, 105-130.
Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E., O’Reilly, S.Y., and Shee, S.R., 2000, The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta, 64: 133–147.
Harris, N.B.W., Xu, R., Lewis, C.L., Hawkeworth, C.J., Zhang, Y., 1988, Isotope geochemistry of the 1985 Tibet Geotraverse, Lhasa to Golmud: Phil. Trans. R. Soc. Lond., A327, 263–285.
Harrison, T.M., Copeland, P., Kidd, W.S.F., Yin, A., 1992, Raising Tibet: Science, 255, 1663-1670.
Heim, A., Gansser, A., 1939, Central Himalaya Geological Observations of Swiss Expedition, pp. 1–246. Zurich: Gebruder Fretz.
Hoskin, P. W. O. and Black, L. P., 2000, Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon: Journal of Metamorphic Geology, v. 18, p. 423-439.
Hughes, N.C., Jell, P.A., 1999, Biostratigraphy and biogeography of Himalayan Cambrian trilobites: In Himalaya and Tibet: Mountain Roots to Mountain Tops, ed. A. Macfarlane, R.B. Sorkhabi, Geol. Soc. Am. Spec. Pap., 328, 109–116.
Jackson, S. E., Pearson, N. J., Griffin, W. L., and Belousova, E. A., 2004, The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology: Chemical Geology, 211, 47-69.
Kinny, P. D. and Maas, R., 2003. Lu-Hf and Sm-Nd isotope systems in zircon. In: Hanchar, J. M. and Hoskin, P. W. O (eds.), Zircon. Rev. Mineral: Geochem., 53: 327-341.
Koons, P.O., 1995, Modelling the topographic evolution of collisional mountain belts: Annual Reviews of Earth and Planetary Sciences, v. 23, p. 375–408.
Knudsen, T. L., Griffin, W. L., Hartz, E. H., Andresen, A. and Jackson, S. E., 2001. In-situ hafnium and lead isotope analyses of detrital zircons from the Devonian sedimentary basin of NE Greenland: a record of repeated crustal reworking. Contrib: Mineral. Petrol., 141: 83-94.
Leeder, M.R., Smith, A.B., Yin, J., 1988, Sedimentology, palaeoecology and palaeoenvironmental evolution of the 1985 Lhasa to Golmud Geotraverse: Phil. Trans. R. Soc. Lond., A327, 107–143.
Le Fort, P., 1996, Evolution of the Himalaya: In The Tectonics of Asia, ed. A. Yin, T.M. Harrison, pp. 95–106. New York: Cambridge Univ. Press.
Liu, Z.Q., 1988, Geologic Map of the Qinghai-Xizang Plateau and its Neighboring Regions (scale at 1:1,500,000): Chengdu Institute of Geology and Mineral Resources., Beijing: Geologic Publishing House.
Meert, J.G., Van der Voo, R., 1997, The assembly of Gondwana 800–550 Ma: J. Geodyn., 23, 223–235.
Molnar, P., England, P., Martinod, J., 1993, Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon: Rev. Geophys., 31, 357-396.
Murphy, J.B., Nance, R.D., 1991, Supercontinent model for the contrasting character of Late Proterozoic orogenic belts: Geology, 19, 469–472.
Murphy, M.A., Yin, A., Harrison, T.M., Durr, S.B., Chen, Z., et al., 1997, Significant crustal shortening in south-central Tibet prior to the Indo-Asian collision: Geology, 25, 719–722.
Murphy, M.A., Yin, A., Kapp, P., Harrison, T.M., Din, L., Guo, J.H., 2000, Southward propagation of the Karakoram fault system into southwest Tibet: timing and magnitude of slip: Geology, 28, 451-454.
Myrow, P.M., Hughes, N.C., Paulsen, T.S., Williams, I.S., Parcha, S.K., Thompson, K.R., Bowring, S.A., Peng, S.C., Ahluwalia, A.D., 2003, Integrated tectonostratigraphic analysis of the Himalaya and implications for its tectonic reconstruction: Earth Planet. Sci. Lett., 212, 433-441.
Nowell, G. M., Kempton, P. D., Noble, S. R., Fitton, J. G., Saunders, A. D., Mahoney, J. J. & Taylor, R. N., 1998. High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle. Chem. Geol., 149: 211-233.
Parrish, R.R., Hodges, K.V., 1996, Isotopic constraints on the age and provenance of the Lesser and Greater Himalayan sequences, Nepalese Himalaya: Bull. Geol. Soc. Am., 108, 904–911.
Patchett, P.J., Kouvo, O., Hedge, C.E., Tatsumoto, M., 1981. Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes: Contrib. Mineral. Petrol. 78: 279-297.
Pell, S.D., Williams, I.S., Chivas, A.R., 1997, The use of protolith zircon-age fingerprints in determining the protosource areas for some Australian dune sands: Sed. Geol., 109, 233-260.
Pierce, J.A., Mei, H., 1988, Volcanic rocks of the 1985 Tibet Geotraverse Lhasa to Golmud: Phil. Trans. R. Soc. Lond., A327, 203–213.
Raymo, M.E., Ruddiman, W.F., 1992, Tectonic forcing of late Cenozoic climate: Nature, 359, 117-122.
Seeber, L., Gornitz, V., 1983, River profiles along the Himalayan arc as indicators of active tectonics: Tectonophysics, 92, 335-367.
Sengor, A.M.C., Natal'in B.A., 1996, Paleotectonicsof Asia: fragments of a synthesis: In The Tectonics of Asia, ed. A. Yin, T.M. Harrison, pp. 486–640. New York: Cambridge Univ. Press.
Scherer E. E., Cameron K. L. and Blichert-Toft, J., 2000. Lu-Hf garnet geochronology: closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions. Geochim. Cosmochim. Acta, 64: 3413-3432.
Shi, X., Yin, J., Jia, C., 1996, Mesozoic to Cenozoic sequence stratigraphy and sea-level changes in the Northern Himalayas, southern Tibet, China: Newsl. Stratigr., 33, 15–61.
Wang, S., Li, Z., Qiangba, X., 1983, Unpublished geologic map (1:1,000,000) and geologic report of the Xigaze area: Xizang Bureau of Geology and Mineral Resources, 568 pp.
Wen, D.-J., Chung, S.-L., Liu, D., Ji, J., Chu, M.-F., Song, B., Lo, C.-H. and Lee, T.-Y., 2003, New SHRIMP U–Pb zircon ages from the Gangdese batholith and implications for the trans-Himalayan magmatic evolution: EGS-AGU-EUG Joint Meeting Abstract Volume, p. 494.
Wen, D.-J., Chung, S.-L., Song, B., Ji, J., Liu, D., Qian, Q., Chu, M.-F. and Lo, C.-H., 2005, The Gangdese Batholith: Ages, geochemical characteristics and geodynamic implications: Abstract Volume of the Petrology and Geodynamics Conference, Hangzhou, China, p. 339.
Willems, H., Zhou, Z., Zhang, B., Grafe K.U., 1996, Stratigraphy of the Upper Cretaceous and Lower Tertiary strata in the Tethyan Himalayas of Tibet (Tingri area, China): Geol. Rundsch., 85, 723–754.
Wu, F.-Y., Yang, Y.-H., Xie, L.-W., Yang, J.-H. and Xu, P., 2006, Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology: Chemical Geology, in press.
Xu, R.H., Schärer, U., Allègre, C.J., 1985, Magmatism and metamorphism in the Lhasa block (Tibet): a geochronological study: J. Geol., 93, 41–57.
Yin, A., Harrison, T.M., Ryerson, F.J., Chen, W., Kidd, W.S.F., Copeland, P., 1994, Tertiary structural evolution of the Gangdese thrust system, southeastern Tibet: J. Geophys. Res., 99, 18175–18201.
Yin, A., Nie, S., 1996, A Phanerozoic palinspastic reconstruction of China and its neighboring regions: In The Tectonics of Asia, ed. A. Yin, T.M. Harrison, pp. 442–485. New York: Cambridge Univ. Press.
Yin, A., Harrison, T.M., Murphy, M.A., Grove, M., Nie, S., et al., 1999, Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision: Geol. Soc. Am. Bull., 111, 1644–1664.
Yin, A., Harrison, T.M., 2000, Geologic evolution of the Himalayan-Tibetan orogen: Annu. Rev. Earth Planet. Sci., 28, 211-280.
Yin, J., Xu, J., Liu, C., Li, H., 1988, The Tibetan plateau: regional stratigraphic context and previous work: Phil. Trans. R. Soc. Lond., A327, 5–52.
Yin, J., 1997, Stratigraphic Geology of Gandwanan Facies of Qinghai-Xiang (Tibet) Plateau and Adjacent Areas: Beijing: Geologic Publishing House, 206 pp.
Yu, Z., Zheng, A.Z., 1979, Unpublished geologic map of the Lhasa region at a scale of 1:1,000,000 and geologic report: Xizang Bureau of Geology and Mineral Resources, p. 284 (in Chinese).
Zeitler, P.K., Meltzer, A.S., 2001, Koons, P.O., Craw, D., Hallet, B., Chamberlain, C.P., Kidd, W.S.F., Park, S.K., Seeber, L., Bishop, M., Shroder, J., Erosion, Himalayan geodynamics, and the geomorphology of metamorphism: GSA Today, 11, 4-9.
宋彪, 張玉海, 萬渝生, 簡平, 2002, 鋯石SHRIMP樣品靶製作、年齡測定及有關現象討論。地質評論, 48, 26-30。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32086-
dc.description.abstract自新生代喜馬拉雅造山帶形成以來,大地構造抬升與河流侵蝕堆積之間的交互作用,是影響當地地形的主要因素。為了對喜馬拉雅造山結與青藏高原東南部有更進一步的認識,本研究採集了雅魯藏布江與伊洛瓦底江沿岸的河流沉積物,並分選出其中的碎屑鋯石,利用北京離子探針中心的SHRIMP II進行原位的鈾鉛定年,並利用LAM-MC-ICPMS進行鉿同位素分析。結合本研究的分析結果與藏南主要岩體的鈾鉛定年與鉿同位素分析資料,可以更定量的檢視這些河流沉積物的來源區域─或者說是其「源岩」─的組成比率。
  從河流的上游至南迦巴瓦峰以西的研究結果顯示,主要物源所佔的百分比會隨著不同流段而有顯著的改變;當Tethyan Himalayan sequences所佔的比例從80%降至小於50%之時,岡底斯岩體所佔的百分比卻從18%提高至50%左右。在河流進入大拐彎區域之前,岡底斯岩體所提供的鋯石約佔此處河沙鋯石中的40%左右,但到了墨脫地區卻又增加至50%。此外,在不同河段中所淘選出的岡底斯鋯石皆顯示了不同的鉿同位素特徵,表示沉積物的物源比例主要受控於鄰近區域的岩體。由此可見雅魯藏布江在青藏高原及東喜馬拉雅造山結處的侵蝕作用強烈,且為現今世界上最活躍的河川之ㄧ。
  從緬甸伊洛瓦底江流域的晚中新世沉積岩中所分選出的碎屑鋯石裡的62顆已定年的鋯石中,有47顆的206Pb/238U年齡為白堊紀至古新世,且有24顆鋯石的eHf(T)值介於0至+16之間。不但此年齡的鋯石廣泛分布在拉薩地塊上的深成岩體中,且這樣的eHf(T)值只被報導在藏南岡底斯岩體的資料裡。本研究的結果支持在中新世時,這切穿岡底斯岩體的雅魯藏布江曾經匯入伊洛瓦底江中,且其演化應與嘉黎斷裂帶在中新世的活動高峰期有關。山嶽河川對大地構造所造成的影響可由南迦巴瓦構造結的抬升得到證實,此處的抬升所使布拉馬普特拉河的溯源侵蝕加劇且襲奪了雅魯藏布江,成為今日的東喜馬拉雅河流系統之濫觴。
zh_TW
dc.description.abstractThe interactions among tectonic uplift, river erosion and alluvial deposition are fundamental processes that have shaped the landscape of the Himalayan-Tibetan orogen since its creation from early Cenozoic time. To understand these processes around the eastern Himalayan Syntaxis and southeastern Tibet, we conducted a study of riverbank sediments along the Yarlung-Tsangpo and Irrawaddy River. Detrital zircons separated from the sediments were subjected to in-situ U-Pb dating using SHRIMP II at the Beijing SHRIMP Center and Hf isotope measurements using LAM-MC-ICPMS. These results, together with the U-Pb ages and Hf isotope data that we have recently obtained for the Transhimalayan plutonic and surrounding basement rocks, allow a more quantitative examination of the provenance or “protosource” areas for the riverbank sediments.
From the upper reaches of the River in the west to the Namche Barwa Syntaxis in the east, our results indicate that the percentage inputs from the major source provenances vary significantly, e.g., those of detrital zircons from the Gangdese batholith increase from ~18% to ~50% and those from the Tethyan Himalayan sequences decrease from ~80% to <50%. Before the River flows into the Big Bend gorge, the percentage of Gangdese-derived zircons lowers to ~40%, but it arises back to ~50% in the Muotuo area. Moreover, in each part of the River, these Gangdese-derived zircons show characteristic eHf(T) values that could be correlated to the neighboring batholithic values. Strong erosional processes are suspected to have been taking place in Tibet and the eastern Himalayan Syntaxis that, in turn, implies the Yarlung-Tsangpo and Brahmaputra River system to be one of the most dynamic mountain rivers on modern Earth.
The first in situ Hf and U-Pb isotope analyses of detrital zircons from a Late Miocene sandstone in the Inner-Burma Tertiary Basin enable us to study the sedimentary source to sink relation and river system evolution around eastern Himalayas. Among 47 out of 62 dated zircons that exhibit Cretaceous and Paleogene 206Pb/238U ages, 24 grains have positive eHf(T) isotope values up to +16. Whilst zircons of such ages are common in the Transhimalayan plutons, those showing high eHf(T) values have been observed only in the Gangdese batholith, southeastern Tibet. Our results, therefore, validate the notion that by Late Miocene time the Yarlung-Tsangpo River, which cuts across the Gangdese batholith, drained into the Irrawaddy River. We attribute this river routing to the dextral Jiali faulting that was most active in the Middle Miocene. Subsequent reorganization of the mountain rivers was affiliated with uplift of the Namche Barwa Syntaxis, resulting from enhanced headward erosion of the Brahmaputra River that eventually captured the Yarlung-Tsangpo drainage to form the modern eastern Himalayan river system.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:31:04Z (GMT). No. of bitstreams: 1
ntu-95-R93224105-1.pdf: 35357646 bytes, checksum: 128edca56493585672e2d435872216f5 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要 ...............................................................i
英文摘要 ..............................................................ii
目錄 ..................................................................iv
圖目 ..................................................................vi
表目 .................................................................vii
一、緒論─研究動機與目的 ................................................1
二、相關地質背景 ........................................................3
2.1 拉薩地塊 (Lhasa Terrane) ........................................3
2.1.1 拉薩地塊基盤岩 ...........................................3
2.1.2 拉薩地塊上之火成活動 .....................................5
2.2 印度地塊 (Indian Block) .........................................6
2.2.1 Tethyan Himalaya ..........................................6
2.2.2 Greater Himalaya ..........................................7
2.2.3 Lesser Himalaya ...........................................7
三、既有之水系演化模式 ..................................................9
四、研究方法 ...........................................................15
4.1 碎屑鋯石同位素示蹤應用 ........................................15
4.1.1 碎屑鋯石U-Pb年齡示蹤應用 ...............................15
4.1.2 碎屑鋯石Hf同位素示蹤應用 ...............................16
4.2 標本採集 ......................................................17
4.3 分析前處理 ....................................................20
4.3.1 SHRIMP樣品靶(target)的製備 ..............................20
4.3.1.1 鋯石的黏貼 ........................................22
4.3.1.2 環氧樹脂的配製與灌注 ..............................22
4.3.1.3 打磨和拋光 ........................................23
4.3.1.4 樣品靶的顯微照相 ..................................24
4.3.1.5 樣品靶的清洗及鍍金 ................................25
4.3.2 LA-ICP-QMS樣品靶 (target) 的製備 .........................26
4.4 鈾-鉛定年分析 .................................................26
4.5 鉿同位素分析 ..................................................27
五、分析結果 ...........................................................29
5.1 雅魯藏布江河沙碎屑鋯石分析結果 ................................29
5.2 拉薩地塊基盤沉積岩,Tethyan Himalaya地層之沉積岩碎屑鋯石,與波密─察隅岩體鋯石分析結果 ........................................29
5.3 緬甸伊洛瓦底江流域沉積岩碎屑鋯石 ..............................30
六、討論 ...............................................................55
6.1 雅魯藏布江河沙鋯石示蹤討論 ....................................55
6.1.1 鋯石U-Pb年齡示蹤討論 ...................................55
6.1.1.1 主流上游至中游河段(T159 & ST050) .................57
6.1.1.2 主流中下游進入大拐彎前河段(T023) ................57
6.1.1.3 主流大拐彎河段(ET006 & DD-2) .....................58
6.1.1.4 北側支流帕隆藏布江(ET013)與東側支流察隅河(ET109) 58
6.1.2 鋯石Hf同位素示蹤討論 ...................................59
6.2 雅魯藏布江、布拉馬普特拉河與伊洛瓦底江之間的水系演化 ...........61
七、結論 ...............................................................66
八、誌謝...............................................67
九、參考文獻 ...........................................................68
附錄 ..................................................................74
dc.language.isozh-TW
dc.subject鉿同位素zh_TW
dc.subject碎屑鋯石zh_TW
dc.subject雅魯藏布江zh_TW
dc.subject伊洛瓦底江zh_TW
dc.subject鈾-鉛定年zh_TW
dc.subjectGangdese batholithen
dc.subjectHf and U-Pb isotopesen
dc.subjectZirconen
dc.subjectYarlung-Tsangpo Riveren
dc.subjectHimalayan river systemen
dc.subjectIrrawaddyen
dc.title雅魯藏布江與伊洛瓦底江碎屑鋯石同位素示蹤研究zh_TW
dc.titleDetrital zircon study of the Yarlung-Tsangpo and Irrawaddy Riversen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳正宏(Cheng-Hong Chen),藍晶瑩(Ching-Ying Lan),陳中華(Chang-Hwa Chen),楊懷仁(Huai-Ren Yang)
dc.subject.keyword碎屑鋯石,雅魯藏布江,伊洛瓦底江,鈾-鉛定年,鉿同位素,zh_TW
dc.subject.keywordZircon,Hf and U-Pb isotopes,Yarlung-Tsangpo River,Irrawaddy,Gangdese batholith,Himalayan river system,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2006-07-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
34.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved