請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32084完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭生興(Sang-Heng Kok) | |
| dc.contributor.author | Tai-Ming Wu | en |
| dc.contributor.author | 吳岱明 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:30:58Z | - |
| dc.date.available | 2008-08-04 | |
| dc.date.copyright | 2006-08-04 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-28 | |
| dc.identifier.citation | 1. Abbi S., Guan J.L., Focal adhesion kinase: protein interactions and cellular functions, Histol. Histopathol., 2002; 17: 1163-71.
2. Andrea A., Cristina B., and Silvano G. et al., Wine, beer and spirits and risk of oral and pharyngeal cancer: a case –control study fron Italy and Switzerland, Oral Oncol., 2004; 40: 904-9. 3. Birge R. B., Fajardo J. E., and Reichman C. et al., Identification and characterization of a high-affinity interaction between v-Crk and tyrosine-phosphrylated paxillin in CT lo-transformed fibroblasts, Molecul. Cellular Biol., 1993; 13: 4648-56. 4. Burridge K., Turner C. E., and Romer L. H., Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly, J. of Cell Biol., 1992; 119: 893-903. 5. Bockholt S. M. and Burridge K., Cell spreading on extracellular matrix proteins induces tyrosine phosphorylation of tensin, J. of Biol. Chem., 1993; 268: 14565-7. 6. Boris Gabriel, Axel zur Hausen, and Elmar Stickeler et al., Weak expression of focal adhesion kinase(pp125FAK) in patients with cervical cancer is associated with poor disease outcome, Clinical cancer research, 2006; 12: 2476-83. 7. Brooks PC, Montgomery AMP, Rosenfeld M et al., Integrin antagonists promote tumor regression by inducing apoptosis of angiogeneic blood vessels, Cell, 1994; 79: 1157-64. Bouton A.H., Riggins R.B. , Bruce-Staskal P.J., Functions of the adapter protein Cas: signal convergence and the determination of cellular responses, Oncogene, 2001; 20: 6448-58. 8. Beviglia L., Golubovskaya V., Xu L. et al., FAK N-terminus in breast carcinoma cells induces rounding, detachment and apoptosis, Biolchem. J., 2003; 373: 201-10. 9. Bergers G. and Benjamin L.E., Tumorigenesis and the angiogenic switch, Nature Rev. Cancer 2003; 3: 401-10. 10. Cooper L. A., Shen T. L., and Guan J. L., Regulation of focal adhesion kinase by its amino-terminal domain through an autoinhibitory interaction, Mol. Cell Biol., 2003; 23: 8030-41. 11. Calalb M. B., Polte T. R., and Hanks S. K., Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src-family kinase, Mol. Cell Biol., 1995; 15: 954-63. 12. Carmeliet P. and Jain R.K. Angiogenesis in cancer and other disease. Nature 2000; 407: 249-57. 13. Chang C. and Werb Z. The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trend Cell Biol. 2001; 11: 537-43. 14. Cobb B. S., Schaller M. D., Leu T. H. et al., Stable association of pp60src and pp59fyn with the focal adhesion-associated protein tyrosine kinase pp125 FAK, Mol. Cell Biol., 1994; 14: 147-55. 15. Coussens L.M., Fingleton B. and Matrisian L.M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 2005; 295: 2387-92. 16. Damsky C. H., Ilic D., Integrin signaling: it’s where the action is, Curr. Opin. Cell Biol., 2002; 14: 594- 602. 17. Dike L. E. and Farmer S. R., Cell adhesion induces expression of growth-associated genes in suspension arrested fibroblasts, Proc. Natl. Acad. Science USA, 1988; 85: 6792-6. 18. Frisch S., Vuori K., Ruoslahti E., Chan H. P., Control of adhesion-dependent cell survival by focal adhesion kinase.J Cell Biol. 1996; 134: 793–99. 19. Frisch S. M. and Screaton R. A., Anoikis mechanisms, Current option in cell biology, 2001; 13: 555-62. 20. Golubovskaya V. M., Simultaneous inhibition of focal adhesion kinase and Src enhances detachment and apoptosis in colon cancer lines, Mol. Cancer Res., 2003; 1, 755-64. 21. Gilmond C., Ven Der Flier A., and Van Delft S. et al., Induction of cell scattering by expression of β1 integrins in β1-deficient epithelial cells requires activation of members of the rho family of GTPase and downregulation of cadherin and catenin function, J. of Cell Biol., 1999; 147: 1325-40. 22. Guan J. L., Trevithick J. E., and Hynes R. O., Fibronectin/integrin interaction induces tyrosine phosphorylation of a 120-kDa protein, Cell Regulation, 1991; 2: 951-64. 23. Guan J. L., Role of focal adhesion kinase in integrin signaling, Int. J. Biochem. Cell Biol., 1997; 29: 1085-96. 24. Guadagno T. M., Ohtsubo M., Roberts J. M., A link between cycline A expression and adhesion-depedent cell cycle proliferation, Science, 1993; 262: 1572-5. 25.Gerald M. F., Dennis S., Cell junctions, cell-cell adhesion, & the extracellular matrix, Molecular basis of medical cell boil, 2001; 148-66 26. Geiger B., Ayalon O., Cadherins. Annu Rev Cell Biol 1992; 8:307 27. Gumbiner B, Cell adhesion: The molecular basis of tissue architecture and morphogenesis. Cell, 1996; 84:345 28. Golubovskaya, V. M. et al. Simultaneous inhibition of focal dhesion kinase and SRC enhances detachment and apoptosis in colon cancer cell lines. Mol. Cancer Res., 2003; 1, 755–64. 29. Giovanni C., Vincenzo B., and Antonella Z. et al., A meta-analysis of alcohol consumption and the risk of 15 diseases, Prev Med., 2004; 38: 613-9. 30. Gabarra-Niecko V., Schaller M. D., and Dunty J. M., FAK regulates biological processes important for the pathogenesis of cancer, Cancer Metastasis Rev., 2003; 22: 359- 74. 31. Giancotti F.G., Complexity and specificity of integrin signalling, Nat. Cell Biol. 2000; 2: 13-4. 32. Gilmore A. P. and Romer L. H., Inhibition of FAK signaling in focal adhesion decreases cell motility and proliferation. Mol. Biol. of the Cell, 1996; 7: 1209-24. 33. Hanks S. K., Ryzhova L., and Shin N.Y. et al., Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility, Front. Biosci., 2003; 8: 982-96. 34. Hungerford J. E., Compton M. T., and Matter M. L. et al., Inhibition of pp125FAK in cultured fibroblasts results in apoptosis, J. of Cell Biol., 1996; 135: 13833-900. 35. Hildebrand J. D., Schaller M. D., and Parsons J. T., Identification of sequences required for the efficient localisation of the focal adhesion kinase, pp125FAK, to cellular focal adhesions, J. Cell Biol., 1993; 123: 993-1005. 36. Hynes R. O., Integrins: bidirectional, allosteric signaling machines, Cell, 2002; 110: 673-87. 37. Hood J. D. and Cheresh D. A., Role of integrins in cell invasion and migration. Nature Rev. Cancer 2002; 2: 91-100 38. Hudson B. G., Reeders S. T., Tryggvason K., Type IV collagen: Structure, gene organization, and role in human disease., J. Biol. Chem., 1993; 268:26033 39. Hecker T. P., Gladson C. L., Focal adhesion kinase in cancer, Front. Biosci., 2003; 8: 705-14. 40. Ilic D., Fututa Y., and Kanazawa S. et al., Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice, Nature, 1995; 377: 539-44. 41. Juliano R. L., Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin- superfamily members, Annu. Rev. Pharmacol. Toxicol., 2002; 42: 283-323. 42. Judson P. L., He X., Cance W. G. et al., Overexpression of focal adhesion kinase, a protein tyrosine kinase, in ovarian carcinoma, Cancer, 1999; 86: 1551-6. 43. Kerbel R. and Folkman J., Clinical translation of angiogenesis inhibitors. Nature Rev. Cancer 2002, 2: 727-39. 44. Kirchner J., Kam Z., and Tzur G. et al., Live-cell monitoring of tyrosine phosphorylation in focal adhesions following microtubule disruption, J. of Cell Science, 2003; 116: 975-86. 45. Kurenova E., Focal adhesion kinase suppresses apoptosis by binding to the death domain of receptorinteracting protein. Molecular Cell Biology 2004; 24: 4361-71. 46. Kornberg L. J., Focal adhesion kinase expression in oral cancers. Head Neck. 1998; 20: 634-9. 47. Lewis J. M., and Schwartz M. A., Mapping in vivo association of cytoplasmic proteins with integrin β1 cytoplasmic domain mutants, Mol. Biol of the Cell, 1995; 6: 151-60. 48. Lauren Pecorino, Metastasis, Molecular biology of cancer, 2005; 157-79. 49. Lu Z., Jiang G., and Blume-Jensen P. et al., Epidermal growth factor-induced tumor cell invasion and metastasis initiated by dephosphorylation and down-regulation of focal adhesion kinase, Mol. Cell Biol., 2001; 21: 4016-31. 50. Miyamoto S., Akiyama S., and Yamada K. M., Synergistic roles for receptor occupancy and aggregation in integrin transmenbrane function, Science, 1995; 267: 883-5. 51. Matter A., Tumour angiogenesis as a therapeutic target. DDT; 2001, 6: 1005-20. 52. Madhusudan S. and Harris A. L., Drug inhibition of angiogenesis, Curr. Opin. Pharm., 2002; 2: 403-14. 53. Malik, A.K. and Gerber, H.-P. Targeting VEGF ligands and receptors in cancer. Targets, 2004; 2: 48-57. 54. McCarty M. F., Liu W., and Fan F. et al., Promises and pitfalls of anti-angiogenic therapy in clinical trials. Trend Mol. Med. 2003; 9: 53-8. 55. Mecham R. P., Laminin receptors, Annu Rev Cell Biol, 1991; 7:1. 56. Merediyh J. E., Fazeli B.,and Schwartz et al., The extracellular matrix as a cell survival factor, Mol. Biol. Cell, 1993; 4: 953-61. 57. Michael S., Heather M., and Garrett Hauptman et al., Expression of focal adhesion kinase and phosphorylated focal adhesion kinase in squamous cell carcinoma of the larynx, The Laryngoscope, 2003; 113: 1944-8. 58. Michele A., Wozniak, and Lina Kwong et al., Focal adhesion regulation of cell behavior, Biochem. Et biophysica, 2004; 1692: 103-19. 59. Miyazaki T., Kato H., and Nakajima M. et al., FAK overexpression is correlated with tumor invasiveness and lymph node metastasis in esophageal squamous cell carcinoma, Br. J. Cancer, 2003; 89: 140-5. 60. McLean G. W., Avizienyte E., Frame M. C., Focal adhesion kinase as a potential target in oncology, Expert Opin. Pharmacother, 2003; 4: 227-34. 61. Monica C., Javier G., and Jorge M. et al., Overexpression of RhoA-GTP induces activation of the Epidermal Growth Factor Receptor, dephosphorylation of focal adhesion kinase and increased motility in breast cancer cells, Experimental Cell Res., 2005; 309: 229-38. 62. Nojima Y., Morino N., and Mimura T. et al., Integrin-mediated cell adhesion promotes tyrosine phosphorylation of p130Cas, a Src, homology 3-containing molecule having multiple Src homology 2-binding motifs, J. of Biol. Chem., 1995; 270: 15398-402. 63. Nobes C.D. and Hall A., Rho,Rac, and Cdc42 GTPases regulate the assembly of focal adhesions and actin stress fibers in response to growth factor, Cell, 1992; 70: 389-99. 64. Oktay M. H., Oktay K., and Hamele-Bena D. et al., FAK as a marker of malignant phenotype in breast and cervical carcinomas, Human Pathology, 2003; 34: 240-5. 65. Owens L. V., Xu L., and Dent G. A. et al., Focal adhesion kinase as amarker of invasive potential in differentiated human thyroid cancer, Ann Surg Oncol., 1996; 3:100-5. 66. Polte T. R. and Hanks S. K., Interaction between focal adhesion kinase and Crk-association tyrosine kinase substrate p130Cas, Proceeding of Academy of Science U.S.A., 1995; 92: 10678-82. 67. Parsons J. T., Focal adhesion kinase: the first ten years, J. Cell. Sci., 2003; 116: 1409-16. 68. Pankov R., Cukierman E., and Katz B. Z. et al., Integrin dynamics and matrix assembly: tensin-dependent translocation of α5β1 integrins promotes early fibronectin fibrillogenesis, J.Cell Biol. 2000; 148: 1075-90. 69. Richardson A. and Parsons T., A mechanism for regulation of the adhesion-associated protein tyrosine kinase pp125FAK, Nature, 1996; 380: 538-40. 70. Ridley A. J. and Hall A., The small GTP-bonding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factor, Cell 1992; 70: 389-99. 71. Rashna M., Matthew B. S., and Rubina C. et al., Focal adhesion proteins as markers of malignant transformation and prognostic indicators in breast carcinoma, Human Pathology, 2006; 37: 9-15. 72. Ruoslahti E., Specialization of tumour vasculature. Nature Rev. Cancer, 2002; 2: 83-90. 73. Shen Y. and Schellar M. D., Focal adhesion targeting the critical determinant of FAK regulation and substrate phosphorylation, Mol. Biol. Cell, 1999; 10: 2507-18. 74. Schaller M. D., Hilbebrand J. D, and Parsons J. T., Complex formation with focal adhesion kinase: a mechanism to regulate activity and subcellular localization of Src kinase, Mol. Cell Biol., 1999; 10: 3489-505. 75. Schaller M. D. and Parsons J. T., pp125FAK-dependent tyrosine phosphorylation of paxillin creats a high-affinity binding site for Crk, Mol. Cellular Biol., 1995; 15: 2635-45. 76. Schaller M. D., Biochemical signals and biological responses elicited by the focal adhesion kinase, Biochim. Biophys. Acta, 2001; 1540: 1-21. 77. Schwartz M. A., Schaller M. D., and Ginsberg M. H., Integrins: Emerging paradigms of signal transduction, Annu. Rev. Cell Dev. Biol., 1995; 11:549. 78. Schwartz M. A., Integrin signaling revisited, Trends Cell Biol., 2001; 11: 466- 70. 79. Stanley J. R., Autoantibodies against adhesion molecules and structures in blistering skin disease, J. Exp. Med., 1995; 181:1. 80. Sonoda Y., Anti-apoptotic role of focal adhesion kinase (FAK). Induction of inhibitor of apoptosis proteins and apoptosis suppression by the overexpression of FAK in a human leukemic cell line, HL-60. J. Biol. Chem. 2000; 275, 16309-15. 81. Sakurai S., Mutated focal adhesion kinase induces apoptosis in a human glioma cell line, T98G. Biochem. Biophys. Res. Commun. 2002; 293, 174-81. 82. Schlaepfer D. D., Hanks S., and Hunter T. et al., Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature, 1994; 372: 786–91. 83. Schlaepfer D. D., and Hunter T., Focal adhesion kinase overexpression enhances Ras-dependent integrin signaling to ERK2/MAPK through interactions with and activation of C-Src, J. Biol. Chem., 1997; 272: 13189-95. 84. Schlaepfer D. D., Hauck C. R., and Sieg D. J. et al., Signaling through focal adhesion kinase, Prog. Biophys. Mol. Biol., 1999; 71: 435-78. 85. Schaller M. D., Paxillin: a focal adhesion-associated adaptor protein, Oncogene, 2001; 20: 6459-72. 86. Theocharis S. E., Kouraklis G. P., and Kakisis J. D. et al., Focal adhesion kinase expression is not a prognostic predictor in colon adenocarcinoma patients, European J. of Surgical oncology, 2003; 29: 571-4. 87. Turner C. E. and Miller J., Primary sequence of paxillin contains putative SH2 and SH3 domain binding motif and multiple LIM domains: identification of a vinculin and pp125FAK binding region, J. Cell Science, 1994; 107: 1583-91. 88. Turner C. E., Paxillin and focal adhesion signalling, Nat. Cell Biol., 2000; 2: 231-6. 89. Tsutomu F., Katsumi K., and Shuji N. et al., Focal adhesion kinase is overexpressed in hepatocellular carcinoma and can be served as an independent prognostic factor, J. Hepatology, 2004, 4: 104-11. 90. Taylor J. M. , Mack C. P. , and Nolan K. et al., Selective expression of an endogenous inhibitor of FAK regulates proliferation and migration of vascular smooth muscle cells, Mol. Cell. Biol., 2001; 21: 1565-72. 91. Ulrich A., Felix S., and Heinz M. et al., Effect of alcohol on gastrointestinal cell regeneration as a possible mechanism in alcohol-associated carcinogenesis, Elsevier Science Inc., 1999, 12: 111-5. 92. Vuori K. and Ruoslathi E., Activation of protein kinase C precedes α5β1 integrin-mediated cell spreding on fibronectin, J. of Biol. Chem., 1993; 268: 21459-62. 93. Wichert V., Haimovich B., and Feng, G. S. et al., Force dependent integrin-cytoskeleton linkage formation requires downregulation of focal complex dynamics by Shp2. EMBO J. 22, 2003; 5023–35. 94. Weiner T. M., Liu E. T., Craven R. J. et al., Expression of focal adhesion kinase gene and invasive cancer, Lancet, 1993; 342: 1024-5. 95. Withers B. E., Hanks S. K., and Fry D. W. et al., Correlation between the expression, phosphorylation content and enzymatic activity of focal adhesion kinase pp125FAK in tumor and nontransformed cell, Cancer Biochem. Biophy., 1996; 15: 127-39. 96. Wozniak M. A., Desai R., and Solski P. A. et al., ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimension collagen matrix, J. Cell Biol., 2003; 163 : 583-95. 97. Xiong W. C., Mei L., Roles of FAK family kinases in nervous system, Front. Biosci., 2003; 8: 676-82. Yamada K. M., Pankov R., Cukierman E., Dimensions and dynamics in integrin function, Brazil Journal Medical Biology Res. 2003; 36: 959-66. 98. Yu D. H., Qu C. K., Henegariu O. et al., Protein-tyrosine phosphatase Shp-2 regulates cell spreading, migration, and focal adhesion. J. Biol. Chem. 1998; 273, 21125–31. 99. Zhu X., Ohtsubo M., and Bohner R. M. et al., Adhesion-dependent cell cycle progression linked to the expression of cyclin D1, activation of cycle E-cdk2, and phosphorylation of the retinoblastoma protein, J. of Cell Biol., 1996; 133: 391-403. 100. Zaidel-Ba R., Ballestrem C., and Kam Z. et al., Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells, J. Cell. Sci., 2003; 116: 4605-13. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32084 | - |
| dc.description.abstract | Focal adhesion kinase (FAK)在細胞黏著的訊息傳遞中,佔有重要角色。過去研究顯示,在腫瘤細胞的運動和增生過程中,FAK之mRNA及蛋白質表現都會顯著增加,然而FAK表現與口腔鱗狀細胞癌各臨床變數間之關係至今未明,而且過往大多數的實驗都是探測全體FAK (total FAK),但FAK其實是在tyrosine 397位置被磷酸化之後,才開始活化。本研究利用total FAK及FAK pY397抗體,以免疫組織化學染色法,探討FAK於76例口腔鱗狀細胞癌中的表現及其預後價值,並以21例正常口腔黏膜為對照組,利用Fisher’s exact test分析FAK表現與各臨床變數之相關性,再以Kaplan-Meier Method顯現FAK表現與存活率之關係。結果發現total FAK與FAK pY397之染色在正常口腔黏膜均為陰性。口腔鱗狀細胞癌中,total FAK呈陰性、弱陽性與強陽性之比例分別為48.7%、23.7%與27.6% ; FAK pY397之陰性、弱陽性與強陽性之比例則是34.3%、28.9%與36.8%。total FAK的表現與腫瘤大小(p =0.002)與有無局部淋巴轉移(0.003)及臨床分期(p = 0.001)有顯著的相關性,腫瘤較小時,total FAK過度表現的比例較高,較大的腫瘤與局部淋巴轉移的病例,total FAK的表現反而較不明顯,在臨床分期上,分期低者較分期高者有較強烈的total FAK表現。因此total FAK表現較低之病例,整體存活率也明顯較差(p =0.007)。飲酒歷史較長久之患者,其total FAK的表現較不明顯(0.013)。至於FAK pY397之表現,研究發現除了細胞質外,在部分腫瘤中FAK pY397還會表現在細胞核,有部分在細胞核與細胞質均有表現。但是其表現與各項臨床變數間並無顯著相關性,在統計學上並無顯著差異。
本研究顯示total FAK之過度表現出現在腫瘤成長的初期,伴隨著較佳的預後。至於 FAK pY397在腫瘤成長中所扮演的角色,則尚待釐清。 | zh_TW |
| dc.description.abstract | Focal adhesion kinase (FAK) has been considered as a key player of the signal transduction in cell adhesion. Studies have demonstrated that motility and proliferation of tumor cells are associated with increased expression of FAK, both at mRNA and protein levels. However, the relationship between FAK expression and various clinical parameters of oral squamous cell carcinoma (OSCC) remains controversial. Furthermore, most of the previous studies examined only total FAK, but FAK becomes activated only after phosphorylation at the position of tyrosine 397. In this study, the expressions of total FAK and FAK pY397 and their prognostic values were examined in 76 OSCC specimens. Twenty-one cases of normal oral mucosa were used as control. The relation between FAK expression and clinical parameters was analyzed by Fisher’s exact test and Kaplan-Meier method was employed to examine the influence of FAK expression on survival. Results showed that normal mucosa was negative for immunostaining of total FAK and FAK pY397. In OSCC specimens, the rates of negative, weakly positive and strongly positive staining for total FAK were respectively 48.7%, 23.7% and 27.6%, and for FAK pY397 were respectively 34.3%, 28.9% and 36.8%. Expression of total FAK was significantly related to the size of primary tumor (0.002), nodal metastasis status (0.003) and clinical stage (0.001). A higher rate of total FAK expression was found in tumors of smaller size and those without lymph node metastasis. Larger tumors and cases with metastasis node had lower expression of total FAK. Early stage diseases had stronger expression of total FAK than cases of late stage. Therefore, expression of total FAK was negatively related to survival (0.007). Lower expression of total FAK was also found in patients with longer history of alcohol drinking (0.013). As for FAK pY397, both cytoplasmic and nuclear stains were found but no significant relationship between immunostaining and various clinical parameters was noted.
In conclusion, the study demonstrated that overexpression of total FAK tended to occur in early stage OSCC and denoted a better prognosis. The role of FAK pY397 expression in tumor growth was unclear and need further investigation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:30:58Z (GMT). No. of bitstreams: 1 ntu-95-R93422015-1.pdf: 1883466 bytes, checksum: 03320e74b961a128cda75f63d8bd5056 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 中文摘要……………………………………………… IV
英文摘要…………………………………………… VI 第一章 緒論及文獻回顧 第一節 細胞的接合與調控…………………………1 第二節 癌細胞轉移…………………………………7 第三節 FAK基因產物於細胞內所扮演的角色…… 13 第四節 FAK與癌症……………………………………17 第五節 台灣口腔癌之流行病學……………………… 20 第二章 材料和方法……………………………………22 第三章 結果………………………………………… 31 第四章 討論……………………………………………38 第五章 結論……………………………………………48 第六章 附表與附圖……………………………………50 第七章 參考文獻………………………………………70 | |
| dc.language.iso | zh-TW | |
| dc.subject | 過度表現 | zh_TW |
| dc.subject | 細胞黏著 | zh_TW |
| dc.subject | 磷酸化 | zh_TW |
| dc.subject | 口腔鱗狀細胞癌 | zh_TW |
| dc.subject | phosphorylation | en |
| dc.subject | cell adhesion | en |
| dc.subject | oral squamous cell carcinoma | en |
| dc.subject | overexpression | en |
| dc.title | Focal adhesion kinase表現於口腔鱗狀細胞癌之預後價值 | zh_TW |
| dc.title | Prognostic Value of Focal Adhesion Kinase Expression in Oral Squamous Cell Carcinoma | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江俊斌(Chun-Pin Chiang),張龍昌,郭英雄 | |
| dc.subject.keyword | 細胞黏著,磷酸化,過度表現,口腔鱗狀細胞癌, | zh_TW |
| dc.subject.keyword | cell adhesion,phosphorylation,overexpression,oral squamous cell carcinoma, | en |
| dc.relation.page | 81 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-28 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
