請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32057
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡丁貴(Tin-Kuei Tsay) | |
dc.contributor.author | Fu-Ru Lin | en |
dc.contributor.author | 林福如 | zh_TW |
dc.date.accessioned | 2021-06-13T03:29:49Z | - |
dc.date.available | 2008-07-31 | |
dc.date.copyright | 2006-07-31 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-27 | |
dc.identifier.citation | Amani, A. and Lebel, T., (1997). “Lagrangian kriging for sahelian rainfall estimation at small time steps.”, J. Hydrol., 192: 125–157.
Anagnostou, E. N., Krajewski, W. F., Seo, D. J.,and Johnson, E. R. (1998). “Mean-field radar rainfall bias studies for WSR-88D”, ASCE J. Hydrol. Engng, 3 (3), 149–159. Borga, M. and Vizzaccaro, A. (1997). “On the interpolation of hydrologic variables: formal equivalence of multiquadratic surface fitting and kriging.” , J. Hydrol., 195: 160-171. Bishop, Christopher M. (1995). Neural Networks for Pattern Recognition (Paperback). Golding, B.W. (1998). Nimrod: A system for generating automated very short range forecasts. Meterol. Appl., 5, 1–16 Holland, J. H. (1975). Adaptation in Natural and Artificial Systems, Ann Arbor., The University of Michigan Press. Jain A. K., and Dubes R. C. (1988). Algorithms for Clustering Data, Prentice Hall, Englewood Cliffs, New Jersey. Joss, J. and Waldvogel, A. (1993). “Precipitation measurement and hydrology”, Radar in Meteorology, 577–597. Joss, J.,and Lee, R. (1995). “The application of radar–gauge comparisons to operational precipitation profile corrections”, J. Appl. Meteor., 34, 2612–2630. Kohonen, T. (1982). “Self-organized formation of topologically correct feature maps”, Biological Cybernetics, 43, 59-69. Kohonen, T. (1984). “Self-organizing map”, IEEE Proceedings, 78, 1464-1480. Luk, K. C., Ball, J. E., and Sharma, A. (2001). “An application of artificial neural networks for rainfall forecasting”, Mathematical and Computer Modelling, 33, 683–693. Luk, K. C., Ball, J. E., and Sharma, A. (2001). “A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting”, Journal of Hydrology, 227, 56–65. Mein, R. G., Laurenson, E. M. and McMahon, T. A. (1974). “Simple nonlinear model for flood estimation.” ASCE, Journal of the Hydraulics Division, vol. 100, hy11, 1507-1518. Nash, J. E., (1957). “The form of the instantaneous unit hydrograph,” IASH publication no. 45, vol. 3-4, 114–121. Olsson, J., Uvo, C. B., Jinno, K., and Kawamura, A. (2004). “Neural networks for rainfall forecasting by atmospheric downscaling”, Journal of Hydrologic Engineering, no. 1,vol. 9 ,1–12 Punj, G. and Stewart, D. W. (1983). “Cluster analysis in marketing research: review and suggestions for application,” Journal of Marketing Research (May 1983), 134–148. Tryon, R. and Bailey, D. (1970). Cluster Analysis, McGraw- Hill Book Co., New York. Rosenfeld, D. and Ulbrich, C. (2002). “Cloud microphysical properties, processes, and rainfall estimation opportunities”, Meteorological Monographs, no. 52, vol. 30, 237–258. Seo, D. J., Breidenbach, J. P., and Johnson, E. R. (1999). “Real-time estimation of mean-field bias in radar rainfall data,” J. Hydrol., 223 (3–4), 131–147. Sherman, L. K. (1932). “Streamflow from rainfall by the unit-graph method,” Eng. New-Rec., 108, 501–505. Wooding, R. A. (1965). “A hydraulic model for the catchment-stream problem, I. Kinematic-wave theory,” J. Hydrol., 3(3), 254–267. 王時鼎(1992),「侵台颱風路徑、強度、結構及風雨整合研究」,行政院國家科學委員會防災科技研究報告。 吳宗堯、謝信良、喬鳳倫、陳正改(1982),「曾文水庫集水區降雨特性分析及颱風降雨預報之研究」,大氣科學第八期。 高士傑(2001),「區域性設計雨型建立方法之研究」,國立台灣大學土木工程研究所碩士論文。 易任(1990),「主成分分析與群集分析應用於雨量空間分布之研究」,國科會專題報告研究計畫成果(NSC79-0410-E002-06)。 易任、葉惠中(1990),「主成分分析與群集分析應用於雨量空間分布之研究」,易任論文集,549-563。 張智星(2005),「資料群聚與樣式辨認」,網路線上課程:http://neural.cs.nthu.edu.tw/jang/books/dcpr/index.asp 張斐章、張麗秋、黃浩倫(2003),類神經網路─實務與操作,東華書局,台北市。 黃俊英(2003),多變量分析,華泰書局,台北市。 黃彥豪(2002),「利用自組織映射圖網路於區域雨型分類之研究」,國立台灣大學土木工程研究所碩士論文。 葉怡成(1995),類神經網路─模式應用與實作,儒林圖書,台北市。 蔡丁貴、賴經都(2002),「基隆河洪水預報模式建置計畫」,經濟部水利署第十河川局委託計畫期末報告(W10D90C008)。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32057 | - |
dc.description.abstract | 近年來人工智慧之研究蓬勃發展,其中以類神經網路為最具代表性的成果之一。類神經網路分為監督式與非監督式架構,其中非監督式學習之網路架構具有相當高的容錯能力,在一個分類完成的架構下,即使輸入的資料有一部分殘缺不全,仍可由殘餘的資訊辨別出該筆資料所屬之類別,進而利用辨識的結果,作為輸出,成為預報的成果。針對此一特性,本研究提出結合型態辨識法與統計學上的集群分析來對集水區內降雨之空間與時間分佈分類以及進行預報,並進一步用於雨量資料的補遺,以期建立一套具通用性的預報模式。而且不論是那幾個雨量站有缺資料,模式都能進行雨量資料的預報。
本研究基於地理環境與氣象因素的考量,假設降雨在空間上與時間上之分佈可能存有某幾種特定的類型,而提出一套以型態辨識法結合集群分析來建構降雨預報模式的程序。利用前一段時間之降雨在空間上與時間上之分佈,即可預報集水區各站下一個小時的降雨情形。無需氣象、氣候等觀測條件。經過驗證與測試,本模式用於淡水河流域之雨量預報具有相當良好之結果。當新的降雨型態被納入模式辨識時,模式也能顯示更好結果。 | zh_TW |
dc.description.abstract | Recently, the research of artificial intelligence is full of vitality. The Artificial Neural Networks (ANNs) is one of the most representative of achievements. The ANNs can divide into two kinds: supervised learning and unsupervised learning. Unsupervised learning has powerful ability of holding error. A clustered construction, even the input data is imperfect, still can identify the coordinate data from the remainder data. Take the result of recognition into output, it will become the output of forecasting. In connection of the characteristic, the research brings up the pattern recognition and cluster analysis in statistics to classify the rainfall in space and time and to forecast. It is intended to build an all-purpose forecast model. Whenever any data in rain gage is missing, the model also can hold on.
Based on the consideration of factors in meteorology and geography, this research assumes that rainfall exist certain pattern of space and time. A procedure of rainfall forecast of model construction is proposed. Only rainfall data of space and time in the previous time are needed to forecast the condition of rainfall next time steps. It doesn’t need any other condition in meteorology and in climate. Present proposed forecast model is tested using historical rainfall data in Danshui River basin. Reasonably good results have been observed. It indicates that the model will perform better every time when new rainfall patterns are integrated. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T03:29:49Z (GMT). No. of bitstreams: 1 ntu-95-R93521318-1.pdf: 674005 bytes, checksum: 4c979898c9a815efddd9510b77f5bb17 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 摘要 I
ABSTRACT II 目錄 III 圖目錄 V 表目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 1 1.3 研究目的 4 1.4 論文架構 5 第二章 研究方法 7 2.1 集群分析簡介 7 2.1.1 基本概念 7 2.1.2 決策流程 8 2.1.3 相似性衡量 9 2.1.4 集群方法的選擇 10 2.2 型態辨識法理論說明 17 第三章 模式架構與驗證 20 3.1 模式架構 20 3.2 模式驗證方法 22 3.3 模式應用 23 第四章 實際案例 27 4.1 研究區域 27 4.2 颱洪事件的選定 29 4.2.1 率定組 29 4.2.2 驗證組 31 4.3 研究結果 31 4.3.1 最佳網路架構下之率定結果 38 4.3.2 最佳網路架構下之驗證結果 45 4.4 其他測試 68 第五章 結論與建議 78 5.1 結論 78 5.2 建議 79 參考文獻 80 | |
dc.language.iso | zh-TW | |
dc.title | 結合型態辨識與集群分析在定量降雨預報之研究 | zh_TW |
dc.title | A Study on Pattern Recognition and Cluster Analysis for Rainfall Forecasting | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 徐年盛,張斐章 | |
dc.subject.keyword | 類神經網路,型態辨識,集群分析,淡水河流域,降雨預報, | zh_TW |
dc.subject.keyword | ANNs,pattern recognition,cluster analysis,Danshui River basin,rainfall forecast, | en |
dc.relation.page | 84 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-28 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 658.21 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。