Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32053
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor翁作新(Tzou-Shin Ueng)
dc.contributor.authorJian-Xu Chenen
dc.contributor.author陳建旭zh_TW
dc.date.accessioned2021-06-13T03:29:39Z-
dc.date.available2006-07-31
dc.date.copyright2006-07-31
dc.date.issued2006
dc.date.submitted2006-07-27
dc.identifier.citation參考文獻
[1] Seed, H. B., Tokimatsu, K., Harder, L. F. and Chung, R. M. (1985), “The influence of SPT procedures in soil liquefaction resistance evaluations,” Journal of Geotechnical Engineering Vol. 111, No. 12, pp. 1425-1445.
[2] Youd, T. L., Idriss, I. M., Andrus, R. D., Arango, I., Castro, G., Christian, J. T., Dobry, R., Liamfinn, W. D., Harder Jr., L. F., Hynes, M. E., Ishihara, K., Koester, J. P., Liao, S. S. C., Marcuson Ⅲ, W. F., Martin, G. R., Mitchell, J. K., Moriwaki, Y., Power, M. S., Robertson, P. K., Seed, R. B., and Stokoe Ⅱ, K. H. (2001), “Liquefaction resistance of soils:summary report from the 1996 NCEER/NSF workshops on evaluation of liquefaction resistance of soils,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 10, pp. 817-833.
[3] Troncoso, J. H. (1990), “Failure risks of abandoned tailings dams,” Proc. Int. Sym. on Safety and Rehabilitation of Tailings Dams, International Commission on Large Dams, Paris, pp. 82-89.
[4] Koester, J. P. (1993), “Effects of fines type and content on liquefaction potential of low-to-medium plasticity fine-grained soils,” Proc., 1993, Nat. Earthquake Conf.,Central United States Earthquake Consortium, Memphis, Tenn., Vol. 1, pp. 67-75.
[5] Thevanayagam, S., Fiorillo, M. and Liang, J. (2000), “Effect of non-plastic fines on undrained cyclic strength of silty sands,” Geotechnical Special Publication, No. 107, pp. 77-91.
[6] Chang, N. Y. (1990), Influence of Fines Content and Plasticity on Earthquake-induced Soil Liquefaction, contract No. DACW3988-C-0078, US Army WES, MS.
[7] 陳界文(2001),「細粒料特性對土壤抗液化強度之影響」,國立台灣大學土木工程學研究所,碩士論文。
[8] Kuerbis, R., Negussey, D. and Vaid, Y. P. (1982), “Effect of gradation and fines content on the undrained response of sand,” Geotechnical Special Publication, No .21, ASCE, pp. 330-345.
[9] Vaid, Y. P. (1994), “Liquefaction of silty soils,” Ground Failure Under Seismic Conditions, Geotechnical Special Publication, No. 44, ASCE, pp. 1-16.
[10] Singh, S. (1996), “Liquefaction characteristics of silts,” Geotechnical and Geological Engineering, Vol. 14, ASCE, pp. 1-19.
[11] Ishihara, K., Troncoso, J., Kawase, Y. and Takahashi, Y. (1980), “Cyclic strength characteristics of tailing materials,” Soils and Foundations, Vol. 20, pp. 127-142.
[12] 陳嘉裕(1999),「細粒料含量對砂土液化潛能之影響研究」,國立成功大學土木工程學研究所,碩士論文。
[13] Chien, L. K., Oh, Y. N. and Chang, C. H. (2002), “Effects of fines content on liquefaction strength and dynamic settlement of reclaimed soil,” Canada Geotech. J., Vol. 39, pp. 1-12.
[14] Lee, K. L. and Fitton, J. A. (1969), “Factors affecting the cyclic loading strength of soil,” Vibration Effects of Earthquakes on Soils and Foundations, ASTM STP 450, American Society for Testing and Materials, pp. 71-95.
[15] Kaufman, L. P. (1981), “Percentage silt content in sand and its effect on liquefaction potential,” Ph. D. Thesis, University of Colorado.
[16] Chung, Kin, Y. C. and Wong, I. H. (1982), “Liquefaction Potential of soils with plastic fines,” Soil Dynamics and Engineering Conference, Southampton, pp. 887-897.
[17] Sandoval, J. (1989), “Liquefaction and settlement characteristics of silt soils,” Ph. D. Thesis, University of Missouri-Rolla, Mo.
[18] Guo, Tianqiang. and Prakash, Shamsher. (1999), “Liquefaction of silts and silt-clay mixtures,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No. 8, pp. 706-710.
[19] El Hosri, M. S., Biarez, H. and P. Y. (1984), “Liquefaction characteristics of silty clay,” Proc., 8th World Conf. on Earthquake Engrg., Prentice-Hall, Englewood Cliffs, N. J., Vol. 3, pp. 277-284.
[20] Seed, H. Bolton, Idriss I. M., Arango, Ignacio(1983), “Evaluation of liquefaction potential using field performance data,” Journal of Geotechnical Engineering, Vol. 109, No. 3, pp. 458-482.
[21] Campanella, R. G., Robertson, P. K., Gillespie, D. G. and Greig, J. (1985) “Recent developments in in-situ testing of soils,” Proceedings of ⅩI th ICSMFE, San Francisco, August.
[22] Seed, H. B. and De Alba, P. (1986) “Use of SPT and CPT tests for evaluating the liquefaction resistance of soils,” Proceedings of the Specialty Conference on the Use of In Situ Tests in Geotechnical Engineering, Blacksburg, VA, ASCE, Geotechnical Special Publication No. 6, pp. 120-134.
[23] Shibata, T., and Teparaksa, W. (1988), “Evaluation of liquefaction potentials of soils using cone penetration tests,” Soils and Foundations, Vol. 28, No. 2, pp. 49-60.
[24] Stark, T. D. and Olson, S. M. (1995), “Liquefaction resistance using CPT and field case histories,” Journal of Geotechnical Engineering, ASCE, Vol. 121, No. 12, pp. 856-869.
[25] Seed, H. B., K. Tokimatsu, L. F. Harder, and Chung, R. M. (1985) “The influence of SPT procedures in soil liquefaction resistance evaluation,” Journal of Geotechnical Engineering, ASCE, Vol. 111, No. 12, pp. 1425-1445.
[26] Olsen, R. S. (1997), “Cyclic Liquefaction based on the Cone Penetrometer Test,” Proceedings of the NCEER Workshop of Evaluation of Liquefaction Resistance of Soils, pp. 225-276.
[27] Seed, H. B., and Idriss, I. M. (1971), “Simplified procedure for evaluating soil liquefaction potential,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM9, pp. 1249-1273.
[28] 1995 Seed Memorial Lecture, University of California at Berkeley.
[29] Lunne, T., Robertson, P. K., and Powell, J. J. J. (1997), Cone Penetration Testing In Geotechnical Practice, Chapman & Hall.
[30] Robertson, P. K. (1990), “Soil classification using the cone penetration test,” Canadian Geotechnical Journal, Vol. 27, No. 1, pp. 151-158.
[31] Robertson, P. K. and Wride, C. E. (1998), “Evaluating cyclic liquefaction potential using the cone penetration test,” Canada Geotech. J., Vol. 35, pp. 442-459.
[32] Marcuson Ⅲ, W. F., Hynes, M. E., and Franklin, A. G. (1990), “Evaluaton and use of residual strength in seismic safety analysis of embankments,” Earthquake Spectra, 6(3), pp. 529-572.
[33] Wang, W. (1979), “Some findings in soil liquefaction,” Water Conservancy and Hydroelectric Power Scientific Research Institute, Beijing, China.
[34] Youd, T. L. and Noble, S. K. (1997), “Magnitude scaling factors,” Proc., NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Nat. Ctr. For Earthquake Engrg. Res., University of New York at Buffalo, pp. 149-165.
[35] 古志生(2000),「CPT土壤分類與液化評估之研究」,國立成功大學土木工程研究所,博士論文。
[36] Seed, R. B. et al. (2003), “Recent advances in soil liquefaction engineering:a unified and consistent framework,” 26th Annual ASCE Los Angeles Geotechnical Spring Seminar, pp. 1-71.
[37] 黃安斌,林志平,紀雲曜,古志生(2005),「台灣中西部粉土細砂液化行為分析」,地工技術,第103期,第5-30頁。
[38] Ghionna, V. N., and Jamiolkowski, M. (1991), “A critical appraisal of calibration chamber testing of sands,” Proceeding of The First International Symposium on Calibration Chamber Testing/ISOCCT1, H. B. Huang(ed), Potsdam, NY, pp. 13-40.
[39] Holden, J. G. (1977), “The calibration of electrical penetrometers in sand,” Norwegian Geotech. Inst., Int., Int. Rep. 52108-2, (29pp).
[40] Been, K., Crooks, J. H. A., Becker, D. E. and Jefferies, M. G. (1986), “The cone penetration test in sands:part I, state parameter interpretation,” Geotechnique, Vol. 36, No. 2, pp. 239-249.
[41] Been, K., Crooks, J. H. A. and Rothenburg, L. (1988), “A critical appraisal of CPT calibration chamber tests,” Proceedings, The First International Symposium on Penetration Testing, ISOPT-1, Orlando, Florida, editor, De Ruiter, Balkema, Rotterdam, pp. 651-660.
[42] Parkin, A. K. (1988), “The calibration of cone penetrometers,” Proceedings, The First International Symposium on Penetration Testing, ISOP-1, Orlando, Florida, editor, De Ruiter, Balkema, Rotterdam, pp. 221-243.
[43] Parkin, A. K., and Lunne, T. (1982), “Boundary effects in the laboratory calibration of a cone penetrometer for sand,” Proceedings of the Second European Symposium on Penetration Testing, Amsterdam, Vol. 2, pp. 761-768.
[44] Houlsby, G. T. and Hitchman, R. (1988), “Calibration chamber tests of a cone penetrometer in sand,” Geotechnique, Vol. 38, No. 1, pp. 39-44.
[45] Mayne, P. W. and Kulhawy, F. H. (1991), “Calibration chamber database and boundary effects correction for CPT data,” Proceedings, First International Symposium on Calibration Chamber Testing, Potsdam, New York, Editor, Huang, A. B., Elsevier, New York, pp. 257-264.
[46] Ma, M. Y. (1991), “Numerical simulation of cone penetration tests in a particular assembly,” Master Thesis, Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York.
[47] ASTM(2006), “Standard test method for performing electronic friction cone and piezocone penetration testing of soils,” Annual Book of ASTM Standards, D 5778-95.
[48] 吳紹華(2006),「砂土細料含量對動力三軸試驗超額孔隙水壓量測之影響」,國立台灣大學土木工程學研究所,碩士論文。
[49] Seed, H. B., and Idriss, I. M. (1971), “A simplified procedure for evaluating soil liquefaction potential,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 97, No. SM9, pp. 249-274.
[50] Liao, Samson S., and Whitman, Robert V. (1986), “Overburden correction factors for SPT in sand,” Journal of Geotechnical Engineering, Vol. 112, No. 3, pp. 373-377.
[51] 台安工程技術顧問股份有限公司(2004),「中央大學南投CPT試驗報告」。
[52] Bellotti, R., Crippa, V., Ghionna, V. N. and Pedroni, S. (1988), “Saturation of sand specimen for calibration chamber tests,” Proceedings, The First International Symposium on Penetration Testing, ISOP-1, Orlando, Florida, editor, De Ruiter, Balkema, Rotterdam, pp. 661-671.
[53] Sanglerat, G. (1972), The Penetrometer and Soil Exploration, Elsevier Publishing Company, Amsterdam, Netherlands, p. 160.
[54] Schmertmann, J. H. (1978), Guidelines for Cone Penetration Tests, Performance and Design, Federal Highway Adiministration, FHWA-TS-78-209.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32053-
dc.description.abstract摘要
本研究採用南投市貓羅溪岸土壤為土樣,準備不同細料含量之試體,以微型電子式貫入錐在自行設計之試驗圓槽中進行K0狀態下飽和土壤之圓錐貫入試驗。同時以CKC動力三軸儀求取不同細料含量土壤之液化強度,探討貓羅溪岸土壤細料含量對於圓錐貫入阻抗與套筒摩擦阻抗之影響及其與土壤液化強度之間的關係。
根據試驗結果,若控制試體乾密度與其所受垂直向有效應力相同時, 隨著細料含量的增加,正規化圓錐貫入阻抗會呈現下降之趨勢。由此推測CPT液化潛能評估法中對圓錐貫入阻抗所做細料含量的修正,是因為隨著細料含量的增加正規化圓錐貫入阻抗會下降,而液化強度並無太大改變的緣故。
本研究亦評估目前常用之CPT液化潛能評估法對本試驗結果之適合性,但結果並不理想。探討其中原因,除了這些評估法大都根據國外液化案例資料,經統計分析而得,對於本土高細料含量土壤之適用性有待更進一步確認外,主要是這些方法對細料含量的修正皆有其不完善之處。
zh_TW
dc.description.abstractAbstract
This study conducted mini-cone penetration test under K0 condition in a self-designed chamber with saturated Maoluo River sand samples of different fines content. The liquefaction resistances of soils with different fines content were also obtained using the CKC cyclic triaxial test apparatus. The effect of fines content on cone penetration resistance and sleeve friction resistance was studied and the relationship between cone penetration resistance, sleeve friction resistance and the liquefaction resistance of the soil was also evaluated.
According to the test results, normalized cone penetration resistance decreased with increasing fines content for soils of the same dry density and the vertical effective stress. Hence, we speculated the reason of fines content adjustment for cone penetration resistance in CPT-based liquefaction potential evaluation method was because the small liquefaction resistance changes while a more significant normalized cone penetration resistance decreasing with increasing fines content.
This study also shows the commonly used CPT-based liquefaction potential evaluation methods do not give good agreement with the findings in this study. The main reason is that that these methods do not have the suitable fines content adjustment for the local soils with high fines content in Taiwan.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:29:39Z (GMT). No. of bitstreams: 1
ntu-95-R93521116-1.pdf: 5868685 bytes, checksum: beb389983e3cd76b0502507337853f72 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents目錄
誌 謝 I
摘要 II
Abstract III
目錄 IV
表目錄 VI
圖目錄 VII

第一章 緒論 1
1-1 研究動機及目的 1
1-2 研究內容與方法 2
第二章 前人研究 3
2-1 細料對土壤液化強度之影響 3
2-1-1 以試體整體孔隙比或乾密度作為控制參數 3
2-1-2 以試體砂結構孔隙比作為控制參數 4
2-1-3 以試體相對密度作為控制參數 4
2-1-4 塑性性質對土壤液化強度之影響 5
2-2 CPT液化潛能評估法 6
2-2-1 Shibata and Teparaksa法 6
2-2-2 Stark and Olson法 8
2-2-3 Olsen法 10
2-2-4 Robertson and Wride法 11
2-2-5 上述方法之適用性 14
2-3 CPT標度槽之評估 16
第三章 試驗內容與試驗設備 28
3-1 試驗土樣之基本性質與特性 28
3-2 試驗儀器與設備 29
3-2-1 微電子式貫入錐 29
3-2-2 試驗圓槽與貫入設備 30
3-2-3 動力三軸試驗儀 32
3-3 微型電子式貫入錐之標定 32
3-3-1 套筒摩擦阻抗之標定 33
3-3-2 圓錐貫入阻抗之標定 33
3-4 圓錐貫入試驗步驟 33
3-4-1 重模試體準備 33
3-4-2 重模試體與量測儀器安裝 34
3-4-3 試體飽和 34
3-4-4 施加垂直載重 35
3-4-5 圓錐貫入 35
3-5 動力三軸試驗步驟 36
3-5-1 重模試體準備 36
3-5-2 重模試體安裝 36
3-5-3 試體飽和 37
3-5-4 試體壓密 38
3-5-5 液化強度試驗 38
第四章 試驗結果與討論 58
4-1 細料含量對貓羅溪土壤液化強度之影響 58
4-2 細料含量對圓錐貫入阻抗(qc)、套筒摩擦阻抗(fs) 及圓錐貫入時超額孔隙水壓激發的影響 59
4-2-1 細料含量對圓錐貫入阻抗(qc)的影響 59
4-2-2 細料含量對套筒摩擦阻抗(fs)的影響 60
4-2-3 細料含量對圓錐貫入時超額孔隙水壓激發的影響 61
4-3 與CPT液化潛能評估法之比較 61
4-3-1 與Shibata and Teparaksa法評估結果之比較 62
4-3-2 與Stark and Olson法評估結果之比較 62
4-3-3 與Olsen法評估結果之比較 63
4-3-4 與Robertson and Wride法評估結果之比較 63
4-4 細料含量對正規化圓錐貫入阻抗(qc1)與土壤液化強度之間關係的影響 64
第五章 結論與建議 78
5-1 結論 78
5-2 建議 79
參考文獻 80
dc.language.isozh-TW
dc.subject套筒摩擦阻抗zh_TW
dc.subject貓羅溪zh_TW
dc.subject細料含量zh_TW
dc.subject微型電子式貫入錐zh_TW
dc.subject試驗圓槽zh_TW
dc.subject圓錐貫入試驗zh_TW
dc.subjectCKC動力三軸儀zh_TW
dc.subject液化強度zh_TW
dc.subject圓錐貫入阻抗zh_TW
dc.subject正規化圓錐貫入阻抗zh_TW
dc.subjectCPT液化潛能評估法zh_TW
dc.subjectnormalized cone penetration resistanceen
dc.subjectcone penetration resistanceen
dc.subjectsleeve friction resistanceen
dc.subjectCPT-based liquefaction potential evaluation methoden
dc.subjectchamberen
dc.subjectmini-cone penetration testen
dc.subjectMaoluo Riveren
dc.subjectfines contenten
dc.subjectliquefaction resistanceen
dc.subjectCKC cyclic triaxial test apparatusen
dc.title以微型錐貫入試驗評估不同細料含量貓羅溪土壤之液化強度zh_TW
dc.titleMini Cone Penetration Test for the Liquefaction Resistance of Maoluo River Soils with Different Fines Contenten
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳正興(Cheng-Hsing Chen),黃安斌(An-Bin Huang)
dc.subject.keyword貓羅溪,細料含量,微型電子式貫入錐,試驗圓槽,圓錐貫入試驗,CKC動力三軸儀,液化強度,圓錐貫入阻抗,套筒摩擦阻抗,正規化圓錐貫入阻抗,CPT液化潛能評估法,zh_TW
dc.subject.keywordmini-cone penetration test,chamber,Maoluo River,fines content,liquefaction resistance,CKC cyclic triaxial test apparatus,cone penetration resistance,sleeve friction resistance,normalized cone penetration resistance,CPT-based liquefaction potential evaluation method,en
dc.relation.page87
dc.rights.note有償授權
dc.date.accepted2006-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
5.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved