Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32043
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor孔祥智(John T. Kung)
dc.contributor.authorPei Ying Leeen
dc.contributor.author李姵瑩zh_TW
dc.date.accessioned2021-06-13T03:29:14Z-
dc.date.available2006-08-04
dc.date.copyright2006-08-04
dc.date.issued2006
dc.date.submitted2006-07-27
dc.identifier.citationAbbas, A. K., Murphy, K. M., and Sher, A. (1996). Functional diversity of helper T lymphocytes. Nature 383, 787-793.
Antje Necker, Najet Reba, Michaela Matthes, Evelyne Jouvin-Marche, Pierre-Andr Cazenave, Pam Swarnworawong, Ed Palmer, H. Robson MacDonald, and Malissen, B. (1991). Monoclonal antibodies raised against engineered soluble mouse T cell receptors and specific for Valpha 8-, Vbeta 2- or Vbeta 10-bearing T cells. European Journal of Immunology 21, 3035-3040.
Aoki, I., Itoh, S., Yokota, S., Tanaka, S. I., Ishii, N., Okuda, K., Minami, M., and Klinman, D. M. (1999). Contribution of mast cells to the T helper 2 response induced by simultaneous subcutaneous and oral immunization. Immunology 98, 519-524.
Boursalian, T. E., Golob, J., Soper, D. M., Cooper, C. J., and Fink, P. J. (2004). Continued maturation of thymic emigrants in the periphery. Nat Immunol 5, 418-425.
Bradding, P., Feather, I. H., Wilson, S., Bardin, P. G., Heusser, C. H., Holgate, S. T., and Howarth, P. H. (1993). Immunolocalization of cytokines in the nasal mucosa of normal and perennial rhinitic subjects. The mast cell as a source of IL-4, IL-5, and IL-6 in human allergic mucosal inflammation. J Immunol 151, 3853-3865.
Brown, D. R., Fowell, D. J., Corry, D. B., Wynn, T. A., Moskowitz, N. H., Cheever, A. W., Locksley, R. M., and Reiner, S. L. (1996). Beta 2-microglobulin-dependent NK1.1+ T cells are not essential for T helper cell 2 immune responses. J Exp Med 184, 1295-1304.
Brown, M. A., Pierce, J. H., Watson, C. J., Falco, J., Ihle, J. N., and Paul, W. E. (1987). B cell stimulatory factor-1/interleukin-4 mRNA is expressed by normal and transformed mast cells. Cell 50, 809-818.
Caron, G., Delneste, Y., Roelandts, E., Duez, C., Bonnefoy, J. Y., Pestel, J., and Jeannin, P. (2001a). Histamine polarizes human dendritic cells into Th2 cell-promoting effector dendritic cells. J Immunol 167, 3682-3686.
Caron, G., Delneste, Y., Roelandts, E., Duez, C., Herbault, N., Magistrelli, G., Bonnefoy, J. Y., Pestel, J., and Jeannin, P. (2001b). Histamine induces CD86 expression and chemokine production by human immature dendritic cells. J Immunol 166, 6000-6006.
Chang, J. F., Thomas, C. A. d., and Kung, J. T. (1991). Induction of high level IL-2 production in CD4+8- T helper lymphocytes requires post-thymic development. J Immunol 147, 851-859.
Chen, H. D., Fraire, A. E., Joris, I., Brehm, M. A., Welsh, R. M., and Selin, L. K. (2001). Memory CD8+ T cells in heterologous antiviral immunity and immunopathology in the lung. Nat Immunol 2, 1067-1076.
Chen, Y. T., Chen, F. L., and Kung, J. T. (1999). Age-associated rapid and Stat6-independent IL-4 production by NK1-CD4+8- thymus T lymphocytes. J Immunol 163, 4747-4753.
Chen, Y. T., and Kung, J. T. (2005). CD1d-independent developmental acquisition of prompt IL-4 gene inducibility in thymus CD161(NK1)-CD44lowCD4+CD8- T cells is associated with complementarity determining region 3-diverse and biased Vbeta2/Vbeta7/Vbeta8/Valpha3.2 T cell receptor usage. J Immunol 175, 6537-6550.
Coffman, R. L., Ohara, J., Bond, M. W., Carty, J., Zlotnik, A., and Paul, W. E. (1986). B cell stimulatory factor-1 enhances the IgE response of lipopolysaccharide-activated B cells. J Immunol 136, 4538-4541.
Comiskey, M., Goldstein, C. Y., De Fazio, S. R., Mammolenti, M., Newmark, J. A., and Warner, C. M. (2003). Evidence that HLA-G is the functional homolog of mouse Qa-2, the ped gene product. Human Immunology 64, 999-1004.
Cook, R. G., Leone, B., Leone, J. W., Widacki, S. M., and Zavell, P. J. (1992). Characterization of T cell proliferative responses induced by anti-Qa-2 monoclonal antibodies. Cellular Immunology 144, 367-381.
Croft, M., and Swain, S. L. (1995). Recently activated naive CD4 T cells can help resting B cells, and can produce sufficient autocrine IL-4 to drive differentiation to secretion of T helper 2-type cytokines. J Immunol 154, 4269-4282.
Damjanovich, S., Gaspar, J. R., Bene, L., Jenei, A., and Matyus, L. (2003). Signal transduction in T lymphocytes and aging. Experimental Gerontology 38, 231-236.
Defrance, T., Aubry, J. P., Rousset, F., Vanbervliet, B., Bonnefoy, J. Y., Arai, N., Takebe, Y., Yokota, T., Lee, F., Arai, K., and et al. (1987). Human recombinant interleukin 4 induces Fc epsilon receptors (CD23) on normal human B lymphocytes. J Exp Med 165, 1459-1467.
Dialynas, D. P., Quan, Z. S., Wall, K. A., Pierres, A., Quintans, J., Loken, M. R., Pierres, M., and Fitch, F. W. (1983). Characterization of the murine T cell surface molecule, designated L3T4, identified by monoclonal antibody GK1.5: similarity of L3T4 to the human Leu-3/T4 molecule. J Immunol 131, 2445-2451.
Egerton, M., Scollary, R., and Shortman, K. (1990). Kinetics of mature T cell dependent in the thymus. Proc Natl Acad Sci USA 87, 2579-2582.
Ernst, D. N., Hobbs, M. V., Torbett, B. E., Glasebrook, A. L., Rehse, M. A., Bottomly, K., Hayakawa, K., Hardy, R. R., and Weigle, W. O. (1990). Differences in the expression profiles of CD45RB, Pgp-1, and 3G11 membrane antigens and in the patterns of lymphokine secretion by splenic CD4+ T cells from young and aged mice. J Immunol 145, 1295-1302.
Ferrick, D. A., Schrenzel, M. D., Mulvania, T., Hsieh, B., Ferlin, W. G., and Lepper, H. (1995). Differential production of interferon-[gamma] and interleukin-4 in response to Th1- and Th2-stimulating pathogens by [gamma][delta] T cells in vivo. Nature 373, 255-257.
Galli, S. J., Kalesnikoff, J., Grimbaldeston, M. A., Piliponsky, A. M., Williams, C. M. M., and Tsai, M. (2005). Mast cells as Tunable effector and immunoregulatory cells:Recent advances. Annual Review of Immunology 23, 749-786.
Garcia, G. G., and Miller, R. A. (2001). Single-Cell Analyses Reveal Two Defects in Peptide-Specific Activation of Naive T Cells from Aged Mice. J Immunol 166, 3151-3157.
Gillis, S., Ferm, M. M., Ou, W., and Smith, K. A. (1978). T cell growth factor: parameters of production and a quantitative microassay for activity. J Immunol 120, 2027-2032.
Globerson, A., and Effros, R. B. (2000). Ageing of lymphocytes and lymphocytes in the aged. Immunology Today 21, 515-521.
Gross, J. A., Callas, E., and Allison, J. P. (1992). Identification and distribution of the costimulatory receptor CD28 in the mouse. J Immunol 149, 380-388.
Hale, J. S., Boursalian, T. E., Turk, G. L., and Fink, P. J. (2006). Thymic output in aged mice. PNAS 103, 8447-8452.
Hasegawa, A., Miki, T., Hosokawa, H., Hossain, M. B., Shimizu, C., Hashimoto, K., Kimura, M. Y., Yamashita, M., and Nakayama, T. (2006). Impaired GATA3-Dependent Chromatin Remodeling and Th2 Cell Differentiation Leading to Attenuated Allergic Airway Inflammation in Aging Mice. J Immunol 176, 2546-2554.
He, X., Tabaczewski, P., Ho, J., Stroynowski, I., and Garcia, K. C. (2001). Promiscuous antigen presentation by the nonclassical MHC Ib Qa-2 is enabled by a shallow, hydrophobic groove and self-stabilized peptide conformation. Structure (Camb) 9, 1213-1224.
Hirokawa, K. (1999). Age-related changes of signal transduction in T cells. Experimental Gerontology 34, 7-18.
Hirokawa, K., Kubo, S., Utsuyama, M., Kurashima, C., and Sado, T. (1986). Age-related change in the potential of bone marrow cells to repopulate the thymus and splenic T cells in mice. Cellular Immunology 100, 443-451.
Hoessli, D., and Rungger-Brandle, E. (1985). Association of specific cell-surface glycoproteins with a triton X-100-resistant complex of plasma membrane proteins isolated from T-lymphoma cells (P 1798). Experimental Cell Research 156, 239-250.
Hu-Li, J., Ohara, J., Watson, C., Tsang, W., and Paul, W. E. (1989). Derivation of a T cell line that is highly responsive to IL-4 and IL-2 (CT.4R) and of an IL-2 hyporesponsive mutant of that line (CT.4S). J Immunol 142, 800-807.
Huels, C., Germann, T., Goedert, S., Hoehn, P., Koelsch, S., Hultner, L., Palm, N., Rude, E., and Schmitt, E. (1995). Co-activation of naive CD4+ T cells and bone marrow-derived mast cells results in the development of Th2 cells. Int Immunol 7, 525-532.
Jane L. Grogan, Markus Mohrs, Brian Harmon, Dee A. Lacy, John W. Sedat, and Locksley, a. R. M. (2001). Early Transcription and Silencing of Cytokine Genes Underlie Polarization of T Helper Cell Subsets
Immunity 14, 205-215.
Karanfilov, C. I., Liu, B., Fox, C. C., Lakshmanan, R. R., and Whisler, R. L. (1999). Age-related defects in Th1 and Th2 cytokine production by human T cells can be dissociated from altered frequencies of CD45RA+ and CD45RO+ T cell subsets. Mechanisms of Ageing and Development 109, 97-112.
Kawakami, T., and Galli, S. J. (2002). Regulation of mast cell and basophil function and survival by IgE. Nature Reviews Immunology 2, 773-786.
Koo, G. C., and Peppard, J. R. (1984). Establishment of monoclonal anti-NK1.1 antibody. Hybridoma 3, 301.
Kubo, R. T., Born, W., Kappler, J. W., Marrack, P., and Pigeon, M. (1989). Characterization of a monoclonal antibody which detects all murine alpha beta T cell receptors. J Immunol 142, 2736-2742.
Ledbetter, J. A., and Herzenberg, L. A. (1979). Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol Rev 47, 63.
Li-Weber, M., and Krammer, P. H. (2003). Regulation of IL-4 gene expression by T cells and therapeutic perspectives. Nature Reviews Immunology 3, 534-543.
Linton, P. J., Haynes, L., Klinman, N. R., and Swain, S. L. (1996). Antigen-independent changes in naive CD4 T cells with aging. J Exp Med 184, 1891-1900.
Lucas, B., Vasseur, F., and Penit, C. (1994). Production, selection, and maturation of thymocytes with high surface density of TCR. J Immunol 153, 53-62.
Makar, K. W., Perez-Melgosa, M., Shnyreva, M., Weaver, W. M., Fitzpatrick, D. R., and Wilson, C. B. (2003). Active recruitment of DNA methyltransferases regulates interleukin 4 in thymocytes and T cells. Nat Immunol 4, 1183-1190.
Masato Kubo, B. C. (1990). Polymorphism of age-related changes in interleukin (IL) production: differential changes of T helper subpopulations, synthesizing IL 2, IL3 and IL4. European Journal of Immunology 20, 1289-1296.
Masopust, D., Vezys, V., Marzo, A. L., and Lefrancois, L. (2001). Preferential Localization of Effector Memory Cells in Nonlymphoid Tissue. Science 291, 2413-2417.
Mayr, S. I., Zuberi, R. I., Zhang, M., de Sousa-Hitzler, J., Ngo, K., Kuwabara, Y., Yu, L., Fung-Leung, W. P., and Liu, F. T. (2002). IgE-dependent mast cell activation potentiates airway responses in murine asthma models. J Immunol 169, 2061-2068.
Mehal, W. Z., Azzaroli, F., and Crispe, I. N. (2001). Antigen Presentation by Liver Cells Controls Intrahepatic T Cell Trapping, Whereas Bone Marrow-Derived Cells Preferentially Promote Intrahepatic T Cell Apoptosis. J Immunol 167, 667-673.
Mekori, Y. A., and Metcalfe, D. D. (1999). Mast cell-T cell interactions. Journal of Allergy and Clinical Immunology 104, 517-523.
Metcalfe, D. D., Baram, D., and Mekori, Y. A. (1997). Mast cells. Physiol Rev 77, 1033-1079.
Nelms, K., Keegan, A. D., Zamorano, J., Ryan, J. J., and Paul, W. E. (1999). The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol 17, 701-738.
Noben-Trauth, N., Hu-Li, J., and Paul, W. E. (2000). Conventional, naive CD4+ T cells provide an initial source of IL-4 during Th2 differentiation. J Immunol 165, 3620-3625.
O'Garra, A. (1998). Cytokines Induce the Development of Functionally Heterogeneous T Helper Cell Subsets. Immunity 8, 275-283.
Okada, C. Y., Holzmann, B., Guidos, C., Palmer, E., and Weissman, I. L. (1990). Characterization of a rat monoclonal antibody specific for a determinant encoded by the V beta 7 gene segment. Depletion of V beta 7+ T cells in mice with Mls-1a haplotype. J Immunol 144, 3473-3477.
Pfeifer, J. D., McKenzie, D. T., Swain, S. L., and Dutton, R. W. (1987). B cell stimulatory factor 1 (interleukin 4) is sufficient for the proliferation and differentiation of lectin-stimulated cytolytic T lymphocyte precursors. J Exp Med 166, 1464-1470.
Pierre Frandji, Walid Mourad, Christine Tkaczyk, Monique Singer, Bernard David , Jean-Herv Colle , and echeri, S. M. (1998). IL-4 mRNA transcription is induced in mouse bone marrow-derived mast cells through an MHC class II-dependent signaling pathway. European Journal of Immunology 28, 844-854.
Robinson, P. J., Millrain, M., Antoniou, J., Simpson, E., and Mellor, A. L. (1989). A glycophospholipid anchor is required for Qa-2-mediated T cell activation. Nature 342, 85-87.
Sakata-Kaneko, S., Wakatsuki, Y., Matsunaga, Y., Usui, T., and Kita, T. (2000). Altered Th1/Th2 commitment in human CD4+ T cells with ageing. Clinical and Experimental Immunology 120, 267-273.
Schmitz, J., Thiel, A., Kuhn, R., Rajewsky, K., Muller, W., Assenmacher, M., and Radbruch, A. (1994). Induction of interleukin 4 (IL-4) expression in T helper (Th) cells is not dependent on IL-4 from non-Th cells. J Exp Med 179, 1349-1353.
Seder, R. A., Boulay, J. L., Finkelman, F., Barbier, S., Ben-Sasson, S. Z., Le Gros, G., and Paul, W. E. (1992). CD8+ T cells can be primed in vitro to produce IL-4. J Immunol 148, 1652-1656.
Sharrow, S. O., Arn, J. S., Stroynowski, I., Hood, L., and Sachs, D. H. (1989). Epitope clusters of Qa-2 antigens defined by a panel of new monoclonal antibodies. J Immunol 142, 3495-3502.
Shizuko, M. (1991). Cytotoxic T lymphocyte precursor cells specific for the major histocompatibility complex class I-like antigen, Qa-2, require CD8aa+T cells to become primed in vivo and to differentiate into effector cells in vitro. European Journal of Immunology 21, 2095-2103.
Smiley, S. T., Kaplan, M. H., and Grusby, M. J. (1997). Immunoglobulin E Production in the Absence of Interleukin-4-Secreting CD1-Dependent Cells. Science 275, 977-979.
Snapper, C. M., and Paul, W. E. (1987). Interferon-γ and B Cell Stimulatory Factor-1 Reciprocally Regulate Ig Isotype Production Science 236, 944-947.
Song, H., Price, P. W., and Cerny, J. (1997). Age-related changes in antibody repertoire: contribution from T cells. Immunological Reviews 160, 55-62.
Spitalny, G. L., and Havell, E. A. (1984). Monoclonal antibody to murine gamma interferon inhibits lymphokine- induced antiviral and macrophage tumoricidal activities. J Exp Med 159, 1560-1565.
Staerz, U. D., Rammensee, H. G., Benedetto, J. D., and Bevan, M. J. (1985). Characterization of a murine monoclonal antibody specific for an allotypic determinant on T cell antigen receptor. J Immunol 134, 3994-4000.
Stein, P. L., Lee, H.-M., Rich, S., and Soriano, P. (1992). pp59fyn mutant mice display differential signaling in thymocytes and peripheral T cells. Cell 70, 741-750.
Stroynowski, I. (1990). Molecules Related to Class-I Major Histocompatibility Complex Antigens. Annual Review of Immunology 8, 501-530.
Stroynowski, I., Soloski, M., Low, M. G., and Hood, L. (1987). A single gene encodes soluble and membrane-bound forms of the major histocompatibility Qa-2 antigen: Anchoring of the product by a phospholipid tail. Cell 50, 759-768.
Stroynowski, I., and Tabaczewski, P. (1996). Multiple products of class Ib Qa-2 genes which ones are functional? Res Immunol 147, 290-301.
Sudo, K., Ema, H., Morita, Y., and Nakauchi, H. (2000). Age-associated Characteristics of Murine Hematopoietic Stem Cells. J Exp Med 192, 1273-1280.
Tabaczewski, P., Chiang, E., Henson, M., and Stroynowski, I. (1997). Alternative peptide binding motifs of Qa-2 class Ib molecules define rules for binding of self and nonself peptides. J Immunol 159, 2771-2781.
Tamar E Boursalian, J. G., David M Soper,Cristine J Cooper & Pamela J Fink (2004). Continued Maturation of thymic emigrants in the periphery. Nature immunology 5, 418-425.
Trowbridge, I. S., Lesley, J., Schulte, R., Hyman, R., and Trotter, J. (1982). Biochemical characterization and cellular distribution of a polymorphic, murine cell-surface glycoprotein expressed on lymphoid tissues. Immunogenetics 15, 299-312.
Tyan, M. L. (1977). Age-related decrease in mouse T cell progenitors. J Immunol 118, 846-851.
Villa, I., Skokos, D., Tkaczyk, C., Peronet, R., David, B., Huerre, M., and Mecheri, S. (2001). Capacity of mouse mast cells to prime T cells and to induce specific antibody responses in vivo. Immunology 102, 165-172.
Vitetta, E. S., Ohara, J., Myers, C. D., Layton, J. E., Krammer, P. H., and Paul, W. E. (1985). Serological, biochemical, and functional identity of B cell-stimulatory factor 1 and B cell differentiation factor for IgG1. J Exp Med 162, 1726-1731.
Wakatsuki, Y., Neurath, M. F., Max, E. E., and Strober, W. (1994). The B cell-specific transcription factor BSAP regulates B cell proliferation. J Exp Med 179, 1099-1108.
Weiss, D. L., and Brown, M. A. (2001). Regulation of IL-4 production in mast cells: a paradigm for cell-type-specific gene expression. Immunological Reviews 179, 35-47.
Yamashita, M., Shinnakasu, R., Asou, H., Kimura, M., Hasegawa, A., Hashimoto, K., Hatano, N., Ogata, M., and Nakayama, T. (2005). Ras-ERK MAPK Cascade Regulates GATA3 Stability and Th2 Differentiation through Ubiquitin-Proteasome Pathway. J Biol Chem 280, 29409-29419.
Yoshimoto, T., and Paul, W. E. (1994a). CD4pos, NK1.1pos T cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3. J Exp Med 179, 1285-1295.
Yoshimoto, T., and Paul, W. E. (1994b). CD4pos, NK1.1pos T cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3. J Exp Med 179, 1285-1295.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32043-
dc.description.abstract在週邊組織和胸腺中的NK1-CD4+8-CD44lo T 細胞其表面的Qa-2會隨著年紀增加而有遞增的現象,但在週邊組織中的NK1-CD4+8-CD44lo T細胞所表現出的最高量Qa-2和胸腺中的細胞來做比較時是呈現較低的情況,隨著年紀遞增其Qa-2表現的特性可能在週邊組織中的細胞是比較有較大的應用價值。Qa-2在各個週邊組織中主要只在 NK1-CD4+8-CD44lo T細胞上表現的較高。另一方面,Qa-2在骨髓和胸腺中的NK1-CD4+8-CD44lo T 細胞表面上表現的較低且較不一致。儘管在胸腺中的細胞其第四介白素誘發能力較高,胸腺和脾臟中的NK1-CD4+8-CD44lo T 細胞都被發現具有第四介白素誘發能力 (IL-4 inducibility)和Qa-2表現量是呈現反相關性的特性。相似的結果也在剔除p59fyn或IL-4R基因的小鼠中發現。經由進一步在脾臟中的Qa-2lowNK1-CD4+8-CD44lo T 細胞分離出Vb(2/7/8)+細胞亞群可以發現有更加強的第四介白素誘發能力。Qa-2lowNK1-CD4+8-CD44lo T 細胞所分泌的第四介白素可以在沒有外加任何細胞激素(cytokine)-的情況下促使本身走向第二型免疫細胞 (TH2 effecter cells )。在第一型免疫反應的誘導(TH1 priming condition)刺激下,脾臟中Qa-2lo 和Qa-2hi 的NK1-CD4+8-CD44lo T細胞亞群都能分化成具大量分泌第三型干擾素(IFN-g)能力的第一型免疫細胞(TH1 effecter cells),且Qa-2lo細胞亞群的分化能力也比Qa-2hi細胞亞群強。在第二型免疫反應的誘導(TH2 priming condition)下,Qa-2lo 和Qa-2hi 的NK1-CD4+8-CD44lo T細胞亞群都能分化成大量分泌第四介白素的第二型免疫細胞(TH2 effecter cells),且Qa-2lo細胞亞群也有較高的分化能力。因此,我們可以得知在擁有低量第四介白素誘發能力的naïve CD4+ T 細胞中主要是透過少量擁有高量第四介白素誘發能力的細胞亞群去分泌第四介白素,而非所有或大部分的細胞都擁有低量的第四介白素誘發能力。此外,這個屬於naïve型態、擁有迅速第四介白素誘發能力,且分布在各個週邊組織中的一小群NK1-CD4+8-CD44lo T 細胞亞群被認為可以透過快速分泌第四介白素去引發第二型免疫反應和其他第四介白素所必須的免疫反應。zh_TW
dc.description.abstractBoth peripheral and thymus NK1-CD4+CD8-CD44low T cells displayed an age-associated increase in Qa-2 expression, but the magnitude of the increase was relatively small for NK1-CD4+CD8-CD44low thymocytes and was much more pronounced for peripheral NK1-CD4+CD8-CD44low T cells. Qa-2 expression was uniformly high for the vast majority of NK1-CD4+CD8-CD44low T cells obtained from peripheral tissues and organs. On the other hand, Qa-2 expression was weaker and more heterogeneous for NK1-CD4+CD8-CD44low T cells from the thymus. An inverse correlation between the level of Qa-2 expression and IL-4 inducibility was found for both thymus and spleen NK1-CD4+CD8-CD44low T cells, although the level of IL-4 inducibility was significantly higher for cells from the thymus than the spleen. Similar enrichment of IL-4 inducibility in peripheral NK1-CD4+CD8-CD44low T cells was observed in mice carrying disrupted p59fyn or il4r genes. Isolation of the Vb(2/7/8)+ subset from spleen Qa-2lowNK1-CD4+CD8-CD44low T cells resulted in further enrichment in IL-4 inducibility. In the absence of exogenously added cytokines, TCR-stimulated IL-4 production by spleen Qa-2lowNK1-CD4+8-CD44low T cells promoted their own differentiation toward Th2 effectors in an IL-4-dependent manner. Under Th1 priming conditions, both Qa-2low and Qa-2hi subsets of spleen NK1-CD4+CD8-CD44low T cells differentiated into high level IFNg-producing Th1 effectors. Under Th2 priming conditions, both Qa-2low and Qa-2hi subsets of spleen NK1-CD4+CD8-CD44low T cells differentiated into high level IL-4-produccing Th2 effectors. Thus, the generally accepted low level IL-4 inducibility by naïve CD4+ T cells is due to high level IL-4 inducibility by a small subpopulation of peripheral CD4+ T cells and not due to low level IL-4 inducibility by all or most naïve CD4+ T cells. Furthermore, this small subset of Qa-2lowNK1-CD4+CD8-CD44low T cells, by virtue of its naïve phenotype, prompt IL-4 inducibility, and distribution in the periphery, is expected to play a significant role in the initial stages of immune response by rapidly releasing IL-4 which may in turn direct Th2 response and other IL-4-dependent processes.en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:29:14Z (GMT). No. of bitstreams: 1
ntu-95-R93449003-1.pdf: 535148 bytes, checksum: 4c6f9fd8568c1627a03ef47a21ac0b0e (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsAbstract……………………………………………………………… i
Abstract(Chinese)…………………………………………………… iii
Chapter I Introduction …………………………………………….. 1
1.1 Background information and related studies…………………. 1
Chapter II Material and Methods…………………………………. 8
2.1 Mice…………………………………………………………... 8
2.2 Surface Marker detection by flow cytometry………………… 9
2.3 T cells isolation……………………………………………….. 11
2.4 T cell subsets isolation by cell sorter…………………………. 13
2.5 Preparation of B cell blasts…………………………………… 15
2.6 T cell activation………………………………………………. 17
2.7 Th cell differentiation………………………………………… 19
2.8 IL-2/4 bioassay………………………………………………. 21
2.9 IFN-g detection by ELISA…………………………………… 23
2.10 RNA extraction……………………………………………… 25
2.11 Real Time PCR……………………………………...……….. 27
2.12 Cell preparation from non-lymphoid organs: liver and lung… 29
Chapter III Experimental Results………………………………… 31
3.1 Qa-2 expression on NK1-CD4+8-CD44lo T cells in thymus, peripheral blood, and spleen…………………………………………... 31
3.2 Age-associated increase in Qa-2 expression by NK1-CD4+8-CD44lo T cells…………………………………………… 32
3.3 Inverse correlation between the level of Qa-2 expression and IL-4 inducibility………………………………………………………. 32
3.4 Low IFN-g production of NK1-CD4+8-CD44lo T cells with different level of surface Qa-2 expression……………………….…… 34
3.5 Qa-2 expression on NK1-CD4+8-CD44lo T cells from different organs and tissues…………………………………………………….. 34
3.6 Incorporatiom of Vb(2/7/8)markers further enriches IL-4 inducibility in Qa-2lowNK1-CD4+8-CD44lo T cells……………………. 35
3.7 Enrichment of IL-4 inducibility in Qa-2lowNK1-CD4+8-CD44lo T cells is p59Fyn- and IL-4R- independent……………………………. 36
3.8 Differentiation of peripheral NK1-CD4+8-CD44lo T cells defined on the basis of differential Qa-2 expression under Th1/Th2 priming conditions…………………………………………………….. 37
Conclusion………………………………………………………… 39
Chapter IV Discussion………………………………………………. 41
4.1 Down-regulation of IL-4 inducibility in NK1-CD4+8-CD44lo T cells from thymus to spleen………………………………………… 41
4.2 Age-dependent decline of IL-4 inducibility of NK1-CD4+8-CD44lo T cells in the spleen…………………..…………. 42
4.3 Heightened TCR stimulated IL-4 gene inducibility in a small Qa-2lo subset in the periphery contribute to immune response………. 44
4.4 TCR-stimulated IL-4 inducibility vs. Qa-2…………………. 45
Reference…………………………………………………………….. 47
Chapter V Experimental Figures…………………………………… 58
Figures…………………………………………………………… 58
dc.language.isoen
dc.subject週邊na&iumlzh_TW
dc.subjectIL-4潛能zh_TW
dc.subjectve CD4+ T細胞zh_TW
dc.subjectperipheral na&iumlen
dc.subjectve CD4+ T cellsen
dc.subjectIL-4 inducibilityen
dc.subjectQa-2en
dc.title分泌IL-4潛能為表現Qa-2low週邊naïve CD4+ T細胞微亞群之特徵zh_TW
dc.titleQa-2lo expression reveals a small subset of peripheral naïve CD4+ T cells with heightened IL-4 inducibilityen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee伍安怡(Betty Wu-Hsieh),繆希椿(Jesse Shi-Chuen Miaw)
dc.subject.keywordIL-4潛能,週邊na&iuml,ve CD4+ T細胞,zh_TW
dc.subject.keywordQa-2,peripheral na&iuml,ve CD4+ T cells,IL-4 inducibility,en
dc.relation.page71
dc.rights.note有償授權
dc.date.accepted2006-07-28
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
Appears in Collections:免疫學研究所

Files in This Item:
File SizeFormat 
ntu-95-1.pdf
  Restricted Access
522.61 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved