請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32031完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周仲島 | |
| dc.contributor.author | Yih-Chin Shen | en |
| dc.contributor.author | 沈義欽 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:28:44Z | - |
| dc.date.available | 2006-07-31 | |
| dc.date.copyright | 2006-07-31 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-28 | |
| dc.identifier.citation | 參考文獻:
林品芳,2003:北台灣地區雹暴形成機制與結構特徵。國立台灣大學大氣科學研究所碩士論文。97頁。 周仲島、洪景山及鄧秀明,1990:梅雨鋒面對流雨帶雙都卜勒雷達分析。大氣科學,18,239-264。 趙坤,周仲島,2005:台灣海峽弓形回波與中尺度渦旋之雷達分析。天氣分析與預報研討會論文彙編,2005年10月,102-107。 陳泰然、周鴻祺、楊進賢、陳熙揚,1999:台灣北部伴隨冰雹之春季颮線個案研究,大氣科學,27,257–271。 陳泰然與周鴻祺,2001:台灣梅雨季弓形回波(Bow Echo)之結構與演變。第七屆全國大氣科學研討會論文彙編,1-13。 陳泰然、王重傑及周鴻祺,2003:TAMEX IOP-13颮線個案特徵之觀測研究。大氣科學,31,131-158。 Arnott, J. M., and N. T. Atkins, 2002: Tornadogenesis within quasi-linear convective systems. Part I: Radar and storm damage analysis of the 29 June 1998 derecho. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 494–497. Atkins, N. T., J. M. Arnott, R. W. Przybylinski, R. A. Wolf, and B. D. Ketcham, 2004: Vortex structure and evolution within bow echoes: Part I: Single-Doppler and damage analysis of the 29 June 1998 Derecho. Mon. Wea. Rev., 132, 2224-2242. Burgess, D. W., V. T. Wood, and R. A. Brown, 1982: Mesocyclone evolution statistics. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 422–424. Burgess, D. W., and B. F. Smull, 1990: Doppler radar observations of a bow echo associated with a long-track severe windstorm. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 203–208. Carbone, R. E., and Coauthors, 1990b: Convective dynamics: Panel report. Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc., 391-400. Chen, C. S., 1991: A numerical study of a squall line over the Taiwan Strait during TAMEX IOP2. Mon. Wea. Rev., 119, 2677–2698. Chen, G. T. J., and H. C. Chou, 1993, General characteristics of squall lines observed in TAMEX, Mon. Wea. Rev., 121, 726– 733. Desrochers, P.R., and R. J.Donaldson Jr., 1992: Automatic tornado prediction with an improved mesocyclone detection algorithm. Wea. Forecasting., 7 , 373-388. DeWald, V. L., T. W. Funk, J. D. Kirkpatrick, and Y.-J. Lin, 1998: The 18 May 1995 squall line over south-central Kentucky: An examination of complex storm reflectivity trends and multiple mesocyclone development. Preprints, 16th Conf. on Weather Analysis and Forecasting, Phoenix, AZ, Amer. Meteor. Soc., 148–151. DeWald, V. L., and T. W. Funk, 2000: WSR-88D reflectivity and velocity trends of a damaging squall line event on 20 April 1996 over south-central Indiana and central Kentucky. Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 177–180. Fujita, 1978: Manual of downburst identification for project NIMROD. Satellite and Mesometeorology Res. Pap. No. 156, University of Chicago, Dept. of Geophysical Sciences, pp. 104. Fujita, T. T., 1979: Objective, operation, and results of Project NIMROD. Preprints, 11th Conf. on Severe Local Storms, Kansas City, MO, Amer. Meteor. Soc., 259–266. Funk, T. W., K. E. Darmofal, J. D. Kirkpatrick, V. L. DeWald, R. W. Przybylinski, G. K. Schmocker, and Y.-J. Lin, 1999: Storm reflectivity and mesocyclone evolution associated with the 15 April 1994 squall line over Kentucky and southern Indiana. Wea. Forecasting., 14, 976–993. Hamilton, R. E., 1970: Use of detailed radar data in mesoscale surface analysis of the July 4, 1969 storm in Ohio. Preprints, 14th Radar Meteorology Conf., Tucson, AZ, Amer. Meteor. Soc., 339-342. Howieson, E. D., and G. A. Tipton, 1998: Tornadogenesis associated with the 1 July 1997 derecho—A radar perspective. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 192–195. Jorgensen, D. P., and B. F. Smull, 1993: Mesovortex circulations seen by airborne Doppler radar within a bow -echo mesoscale convective system. Bull. Amer. Meteor. Soc., 74, 2146–2157. Jorgensen, D. P., M. A. LeMone, and S. B. Trier, 1997: Structure and evolution of the 22 February 1993 TOGA COARE squall line: Aircraft observations of structure, circulation, and near-surface energy fluxes. J. Atmos. Sci., 54, 1961–1985. Jou, B. J. -D., and S. -M. Deng, 1992 : Structure of a low-level jet and its role in triggering and organizing the moist convection over Taiwan: A TAMEX case study. TAO, 3,39-58。 Klemp, J. B., 1987: Dynamics of tornadic thunderstorms. Annu. Rev. Fluid Mech., 19, 369–402. Lee, W. C., R. M. Wakimoto, and R. E. Carbone, 1992: The evolution and structure of a “bow-echo–microburst” event. Part II: The bow echo. Mon. Wea. Rev., 120, 2211–2225. Lemon, L. R., and C. A. Doswell, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 1184–1197. Lin, Y. J., H. Shen, and R. W. Pasken, 1991: Kinetic energy budgets of a subtropical squall line determined from TAMEX dual-Doppler measurements. Mon. Wea. Rev., 119, 2654–2663. Nolen, R.H., 1959: A radar pattern associated with tornadoes.Bull. Amer. Meteor. Soc., 40, 277-279. Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 3413–3436. Pfost, R. L., and A. E. Gerard, 1997: “Bookend vortex”–induced tornadoes along the Natchez Trace. Wea. Forecasting., 12, 572–580. Przybylinski, R. W., 1995: The bow echo: Observations, numerical simulations, and severe weather detection methods. Wea. Forecasting., 10, 203–218. Przybylinski, R. W., and Coauthors,, 1996: Storm reflectivity and mesocyclone evolution associated with the 15 April 1994 derecho. Part I: Storm evolution over Missouri and Illinois. Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 509–515. Przybylinski, R. W., G. K. Schmocker, and Y.-J. Lin, 2000: A study of storm and vortex morphology during the intensifying stage of severe wind mesoscale convective systems. Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 173–176. Ray, P. S., K. K. Wagner, K. W. Johnson, J. J. Stephens, W. C. Bumgarner, and E. A. Mueller, 1978:Triple-doppler observation of a convective storm. J. Appl. Meteor., 17, 1201-1212. Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463–485. Schmocker, G. K., R. W. Przybylinski, and Y.-J. Lin, 1996: Forecasting the initial onset of damaging downburst winds associated with a mesoscale convective system (MCS) using the midlatitude radial convergence (MARC) signature. Preprints, 15th Conf. on Weather Analysis and Forecasting, Norfolk, VA, Amer. Meteor. Soc., 306–311. Schmocker, G. K., R. W. Przybylinski, and E. N. Rasmussen, 2000: The severe bow echo event of 14 June 1998 over the mid-Mississippi valley region: A case of vortex development near the intersection of a preexisting boundary and a convective line. Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 169–172. Smull, B. F., and R. A. Houze Jr., 1985: A midlatitude squall line with a trailing region of stratiform rain: Radar and satellite observations. Mon. Wea. Rev., 113, 117–133. Smull, B. F., and R. A. Houze Jr., 1987: Rear inflow squall lines with trailing stratiform precipitation. Mon. Wea. Rev., 115, 2869–2889. Spoden, P. J., C. N. Jones, J. Keysor, and M. Lamm, 1998: Observations of flow structure and mesoscale circulations associated with the 5 May 1996 asymmetric derecho in the lower Ohio Valley. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 514–517. Tao, W. K., J. Simpson, and S. T. Soong, 1991: Numerical simulation of a subtropical squall line over the Taiwan Strait. Mon. Wea. Rev., 119, 2699–2723. Tessendorf, S. A., and R. J. Trapp, 2000: On the climatological distribution of tornadoes within quasi-linear convective systems. Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 134–137. Trapp, R. J., and M. L. Weisman, 2003: Low-level mesovortices within squall lines and bow echoes. Part II: Their genesis and implications. Mon. Wea. Rev., 131, 2804–2823. Wakimoto, R. M., and J. W. Wilson, 1989: Non-supercell tornadoes. Mon. Wea. Rev., 117, 1113-1140. Weisman, M. L., 1992: The role of convectively generated rear-inflow jets in the evolution of long-lived mesoconvective systems. J. Atmos. Sci., 49, 1826–1847. Weisman, M. L., 1993: The genesis of severe, long-lived bow echoes. J. Atmos. Sci., 50, 645–670. Weisman, M. L., and C. Davis, 1998: Mechanisms for the generation of mesoscale vortices within quasi-linear convective systems. J. Atmos. Sci., 55, 2603–2622. Weisman, M. L., and R. J. Trapp, 2003: Low-level mesovortices within squall lines and bow echoes: Part I: Overview and dependence on environmental shear. Mon. Wea. Rev., 131, 2779–2803. Wolf, R. A., 2002: Doppler radar observations of squall line tornadogenesis near the KDVN WSR-88D. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 507–510. Wood, V.T., 1994: A technique for detecting a tropical cyclone center using a Doppler radar. J. Atmos. and Oceanic Tech., 11 , 1207-1216. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32031 | - |
| dc.description.abstract | 摘 要
北台灣在2004年9月10-11日發生超大豪雨事件。由自動雨量站資料顯示,有兩個主要大降水區,一個在基隆、大台北地區;另一個在桃園、新竹地區。本研究利用都卜勒雷達資料進行中尺度分析,嘗試了解超大豪雨的中尺度現象與過程。 綜觀環境分析結果顯示,該豪雨事件發生期間,在台灣東北方和西南方海面分別存在一個熱帶低壓。西南方低壓帶進旺盛西南氣流,並和東北方低壓伴隨之東北風,在北台灣地區形成低層氣流輻合,並且有明顯風切帶。探空顯示風向隨高度向上為順轉,有明顯暖平流,綜觀環境屬於條件性不穩定。 五分山雷達以及中正雷達每的6~15分鐘回波與徑向風場資料分析,此超大豪雨發生期間有多個準線狀對流雨帶存在於北台灣地區。這些準線狀對流雨帶由西北-東南走向,先轉變為東西走向,之後再轉為東北-西南走向,與海面上兩個熱帶低壓的相對位置有關。進一步分析顯示,這些雨帶可以區分為5個準線狀對流系統(QLCS),其中,QLCS 1發生在台灣西北方海面上,持續時間約4小時,並且在系統內部伴隨弓狀回波。QLCS 2發生在中正雷達站西北方海面上,持續時間約4小時,在系統內部伴隨弓狀回波與中尺度渦旋。QLCS 3發生在台灣東北方沿岸,隨後移進北台灣陸地,持續時間約12小時。QLCS 4發生在桃園、新竹地區陸地,持續時間約12.5小時。QLCS 5發生在台灣東北方海面上,隨後移進陸地與QLCS 3結合後重新組織、發展,持續時間約6.5小時,在系統內部伴隨中尺度渦旋。 針對5個QLCS分析其回波結構與特徵,發現QLCS 1最大回波強度在45~50 dBZ之間以及所在最大高度為4公里高度、QLCS 2最大回波強度在50~55 dBZ之間以及所在最大高度為3公里高度、QLCS 3最大回波強度在40~45 dBZ之間以及所在最大高度為5公里高度、QLCS 4最大回波強度在45~50 dBZ之間以及所在最大高度為6公里高度、QLCS 5最大回波強度在45~50 dBZ之間以及所在最大高度為5公里高度。另外,發生於海上的QLCS 1之10 dBZ回波頂高度(echo top)可達13公里高度;QLCS 2可發展至14公里高度。另外,發生於陸地上的QLCS 3、QLCS 4以及QLCS 5可發展至15公里高度。回波結構分析可以得知,這些對流系統的強對流區主要集中在中、低層,而不論是在海上或陸地上的個案,其垂直發展的高度皆可達中、高層,屬於較為深厚的對流系統。配合地面雨量站資料的分析,可以得知QLCS的發展與降雨的強弱有明顯的相關。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:28:44Z (GMT). No. of bitstreams: 1 ntu-95-R92229014-1.pdf: 9521642 bytes, checksum: 3d990da73892c97cc62683ab38d255be (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 目 錄
誌謝 ----------------------------------------------------------------------------- I 摘要 ---------------------------------------------------------------------------- II 目錄 ----------------------------------------------------------------------------IV 表錄 ----------------------------------------------------------------------------VI 圖錄 ---------------------------------------------------------------------------VII 第一章 前言 ------------------------------------------------------------------1 1.1 論文回顧 ----------------------------------------------------- 1 1.2 研究動機與目的 -------------------------------------------- 6 第二章 資料來源與分析方法 ---------------------------------------------8 2.1 資料來源 ----------------------------------------------------- 8 2.1.1 中正機場都卜勒雷達 ------------------------------8 2.1.2 五分山都卜勒雷達 ---------------------------------9 2.1.3 NCEP FNL資料 -----------------------------------10 2.2 分析方法 ----------------------------------------------------10 2.2.1 雙都卜勒雷達風場合成 --------------------------10 2.2.2 渦旋定位與計算方法 -----------------------------13 第三章 綜觀與中尺度環境特徵 ---------------------------------------- 15 3.1 綜觀環境特徵 ----------------------------------------------15 3.1.1 紅外線與水氣頻道衛星雲圖分析 --------------15 3.1.2 地面與高空分析 -----------------------------------17 3.1.3 探空分析 --------------------------------------------22 3.2 雨帶特徵分析 ----------------------------------------------23 第四章 準線狀對流系統個案分析 ------------------------------------- 26 4.1 QLCS 1的結構與特徵 -----------------------------------27 4.2 QLCS 2的結構與特徵 -----------------------------------30 4.3 QLCS 3的結構與特徵 -----------------------------------33 4.4 QLCS 4的結構與特徵 -----------------------------------35 4.5 QLCS 5的結構與特徵 -----------------------------------38 第五章 討論 -----------------------------------------------------------------43 5.1 環境條件特徵 ----------------------------------------------43 5.2 海上與陸上QLCSs比較 -----------------------------------45 5.3 QLCSs與降雨的關係 -------------------------------------48 第六章 結論 -----------------------------------------------------------------52 參考文獻 -----------------------------------------------------------------------55 表 --------------------------------------------------------------------------------60 圖 --------------------------------------------------------------------------------63 附錄 -----------------------------------------------------------------------------125 | |
| dc.language.iso | zh-TW | |
| dc.subject | 準線狀對流系統 | zh_TW |
| dc.subject | 中尺度渦旋 | zh_TW |
| dc.subject | 弓狀回波 | zh_TW |
| dc.subject | 都卜勒雷達 | zh_TW |
| dc.subject | MesoVortex | en |
| dc.subject | Doppler radar、Bow echo | en |
| dc.subject | Quasi-linear convective system | en |
| dc.title | 北台灣超大豪雨個案之中尺度分析:2004年9月10-11日 | zh_TW |
| dc.title | Mesoscale analysis of extremely torrential rain case in northern Taiwan : 2004 SEP. 10-11 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳泰然,丘台光,李清勝,郭鴻基 | |
| dc.subject.keyword | 準線狀對流系統,都卜勒雷達,弓狀回波,中尺度渦旋, | zh_TW |
| dc.subject.keyword | Quasi-linear convective system,Doppler radar、Bow echo,MesoVortex, | en |
| dc.relation.page | 126 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-28 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 9.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
