Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32015
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳建仁
dc.contributor.authorHwai-I Yangen
dc.contributor.author楊懷壹zh_TW
dc.date.accessioned2021-06-13T03:28:06Z-
dc.date.available2006-08-04
dc.date.copyright2006-08-04
dc.date.issued2006
dc.date.submitted2006-07-28
dc.identifier.citation1. Lee WM. Hepatitis B virus infection. N Engl J Med 1997; 337(24):1733-1745.
2. Chen CJ, Wang LY, Yu MW. Epidemiology of hepatitis B virus infection in the Asia-Pacific region. J Gastroenterol Hepatol 2000; 15 Suppl:E3-E6.
3. Beasley RP. Hepatitis B virus. The major etiology of hepatocellular carcinoma. Cancer 1988; 61(10):1942-1956.
4. McMahon BJ. Hepatocellular carcinoma and viral hepatitis. In: Wilson RA, editor. Viral Hepatitis: Diagnosis, Treatment, Prevention. New York: Marcel Deckker; 1997 p. 315-330.
5. Chen CJ, Chen DS. Interaction of hepatitis B virus, chemical carcinogen, and genetic susceptibility: multistage hepatocarcinogenesis with multifactorial etiology. Hepatology 2002; 36(5):1046-1049.
6. Lok AS, McMahon BJ. Chronic hepatitis B. Hepatology 2001; 34(6):1225-1241.
7. Beasley RP. Hepatitis B virus as the etiological agent in hepatocellular carcinoma: epidemiological consideration. Hepatology 1982; 2:21-26.
8. Chen CJ, Lu SN, You SL et al. [Community-based hepatocellular carcinoma screening in seven townships in Taiwan]. J Formos Med Assoc 1995; 94 Suppl 2:S94-102.
9. Chen DS. From hepatitis to hepatoma: lessons from type B viral hepatitis. Science 1993; 262(5132):369-370.
10. Chu CM, Liaw YF. Natural history of chronic hepatitis B virus infection: an immunopathological study. J Gastroenterol Hepatol 1997; 12(9-10):S218-S222.
11. Beasley RP, Hwang LY, Lin CC, Chien CS. Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22 707 men in Taiwan. Lancet 1981; 2(8256):1129-1133.
12. Chen CJ, Yu MW, Liaw YF. Epidemiological characteristics and risk factors of hepatocellular carcinoma. J Gastroenterol Hepatol 1997; 12(9-10):S294-S308.
13. Hepatitis viruses. Lyons, France: International Agency for Research on Cancer; 1994.
14. Lin SM, Sheen IS, Chien RN, Chu CM, Liaw YF. Long-term beneficial effect of interferon therapy in patients with chronic hepatitis B virus infection. Hepatology 1999; 29(3):971-975.
15. Farrell G. Hepatitis B e antigen seroconversion: effects of lamivudine alone or in combination with interferon alpha. J Med Virol 2000; 61(3):374-379.
16. Liaw YF, Chu CM, Lin DY, Sheen IS, Yang CY, Huang MJ. Age-specific prevalence and significance of hepatitis B e antigen and antibody in chronic hepatitis B virus infection in Taiwan: a comparison among asymptomatic carriers, chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. J Med Virol 1984; 13(4):385-391.
17. Chu CM, Liaw YF, Sheen IS, Lin DY, Huang MJ. Sex difference in chronic hepatitis B virus infection: an appraisal based on the status of hepatitis B e antigen and antibody. Hepatology 1983; 3(6):947-950.
18. Yu MW, You SL, Chang AS, Lu SN, Liaw YF, Chen CJ. Association between hepatitis C virus antibodies and hepatocellular carcinoma in Taiwan. Cancer Res 1991; 51(20):5621-5625.
19. Lu SN, Lin TM, Chen CJ et al. A case-control study of primary hepatocellular carcinoma in Taiwan. Cancer 1988; 62(9):2051-2055.
20. Lin TM, Chen CJ, Lu SN et al. Hepatitis B virus e antigen and primary hepatocellular carcinoma. Anticancer Res 1991; 11(6):2063-2065.
21. Chen CJ, Liang KY, Chang AS et al. Effects of hepatitis B virus, alcohol drinking, cigarette smoking and familial tendency on hepatocellular carcinoma. Hepatology 1991; 13(3):398-406.
22. Tsai JF, Jeng JE, Ho MS et al. Additive effect modification of hepatitis B surface antigen and e antigen on the development of hepatocellular carcinoma. Br J Cancer 1996; 73(12):1498-1502.
23. Pena E, Rohatgi VK. Small sample and efficiency results for the Nelson-Aalen estimator. J Statist Plann Inference 1993; 37:192-202.
24. Breslow N, Crowley J. A large sample study of the life table and product limit estimates under random censorship. Ann Statist 1974; 2:437-453.
25. Aalen O. Nonparametric Inference for A Family of Counting Processes. Ann Statist 1978; 6(4):701-726.
26. Heyward WL, Bender TR, Lanier AP, Francis DP, McMahon BJ, Maynard JE. Serological markers of hepatitis B virus and alpha-fetoprotein levels preceding primary hepatocellular carcinoma in Alaskan Eskimos. Lancet 1982; 2(8304):889-891.
27. Kew MC. Hepatitis viruses and hepatocellular carcinoma. Res Virol 1998; 149(5):257-262.
28. Chisari FV, Klopchin K, Moriyama T et al. Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell 1989; 59(6):1145-1156.
29. Wang JC. DNA topoisomerases. Annu Rev Biochem 1985; 54:665-697.
30. Freeman BA, Crapo JD. Biology of disease: free radicals and tissue injury. Lab Invest 1982; 47(5):412-426.
31. Shafritz DA, Kew MC. Identification of integrated hepatitis B virus DNA sequences in human hepatocellular carcinomas. Hepatology 1981; 1(1):1-8.
32. Matsubara K, Tokino T. Integration of hepatitis B virus DNA and its implications for hepatocarcinogenesis. Mol Biol Med 1990; 7(3):243-260.
33. Popper H, Roth L, Purcell RH, Tennant BC, Gerin JL. Hepatocarcinogenicity of the woodchuck hepatitis virus. Proc Natl Acad Sci U S A 1987; 84(3):866-870.
34. Kim CM, Koike K, Saito I, Miyamura T, Jay G. HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature 1991; 351(6324):317-320.
35. Paterlini P, Poussin K, Kew M, Franco D, Brechot C. Selective accumulation of the X transcript of hepatitis B virus in patients negative for hepatitis B surface antigen with hepatocellular carcinoma. Hepatology 1995; 21(2):313-321.
36. Henkler FF, Koshy R. Hepatitis B virus transcriptional activators: mechanisms and possible role in oncogenesis. J Viral Hepat 1996; 3(3):109-121.
37. Feitelson MA, Zhu M, Duan LX, London WT. Hepatitis B x antigen and p53 are associated in vitro and in liver tissues from patients with primary hepatocellular carcinoma. Oncogene 1993; 8(5):1109-1117.
38. Wang XW, Gibson MK, Vermeulen W et al. Abrogation of p53-induced apoptosis by the hepatitis B virus X gene. Cancer Res 1995; 55(24):6012-6016.
39. Niederau C, Heintges T, Lange S et al. Long-term follow-up of HBeAg-positive patients treated with interferon alfa for chronic hepatitis B. N Engl J Med 1996; 334(22):1422-1427.
40. Yang HI, Lu SN, Liaw YF et al. Hepatitis B e antigen and the risk of hepatocellular carcinoma. N Engl J Med 2002; 347(3):168-174.
41. Chen CJ, Yang HI, You SL. Hepatitis B e antigen and the risk of hepatocellular carcinoma (authors reply). N Engl J Med 2002; 347(21):1722.
42. You SL, Yang HI, Chen CJ. Seropositivity of hepatitis B e antigen and hepatocellular carcinoma. Ann Med 2004; 36(3):215-224.
43. Geier A, Dietrich CG, Gartung C. Antiviral therapy in HBe-Ag-positive hepatitis B with normal aminotransferase levels. Hepatology 2003; 37(3):712-713.
44. Liaw YF, Leung N, Guan R, Lau GK, Merican I. Asian-Pacific consensus statement on the management of chronic hepatitis B: an update. J Gastroenterol Hepatol 2003; 18(3):239-245.
45. Lok ASF, Dietrich CG, Gartung C. Antiviral therapy in HBe-Ag-positive hepatitis B with normal aminotransferase levels (reply). Hepatology 2003; 37(3):713.
46. Mommeja-Marin H, Mondou E, Blum MR, Rousseau F. Serum HBV DNA as a marker of efficacy during therapy for chronic HBV infection: analysis and review of the literature. Hepatology 2003; 37(6):1309-1319.
47. Alberti A. Can serum HBV-DNA be used as a primary end point to assess efficacy of new treatments for chronic hepatitis B? Hepatology 2003; 38(1):18-20.
48. Chu CJ, Hussain M, Lok AS. Quantitative serum HBV DNA levels during different stages of chronic hepatitis B infection. Hepatology 2002; 36(6):1408-1415.
49. Chang MH, Hsu HY, Hsu HC, Ni YH, Chen JS, Chen DS. The significance of spontaneous hepatitis B e antigen seroconversion in childhood: with special emphasis on the clearance of hepatitis B e antigen before 3 years of age. Hepatology 1995; 22(5):1387-1392.
50. Lee PI, Chang MH, Lee CY et al. Changes of serum hepatitis B virus DNA and aminotransferase levels during the course of chronic hepatitis B virus infection in children. Hepatology 1990; 12(4 Pt 1):657-660.
51. Fattovich G, Brollo L, Giustina G et al. Natural history and prognostic factors for chronic hepatitis type B. Gut 1991; 32(3):294-298.
52. Hsu YS, Chien RN, Yeh CT et al. Long-term outcome after spontaneous HBeAg seroconversion in patients with chronic hepatitis B. Hepatology 2002; 35(6):1522-1527.
53. Huo T, Wu JC, Hwang SJ et al. Factors predictive of liver cirrhosis in patients with chronic hepatitis B: a multivariate analysis in a longitudinal study. Eur J Gastroenterol Hepatol 2000; 12(6):687-693.
54. Liaw YF, Tai DI, Chu CM, Chen TJ. The development of cirrhosis in patients with chronic type B hepatitis: a prospective study. Hepatology 1988; 8(3):493-496.
55. Yu MW, Hsu FC, Sheen IS et al. Prospective study of hepatocellular carcinoma and liver cirrhosis in asymptomatic chronic hepatitis B virus carriers. Am J Epidemiol 1997; 145(11):1039-1047.
56. Realdi G, Fattovich G, Hadziyannis S et al. Survival and prognostic factors in 366 patients with compensated cirrhosis type B: a multicenter study. The Investigators of the European Concerted Action on Viral Hepatitis (EUROHEP). J Hepatol 1994; 21(4):656-666.
57. Tamura I, Kurimura O, Koda T et al. Risk of liver cirrhosis and hepatocellular carcinoma in subjects with hepatitis B and delta virus infection: a study from Kure, Japan. J Gastroenterol Hepatol 1993; 8(5):433-436.
58. Fattovich G, Pantalena M, Zagni I, Realdi G, Schalm SW, Christensen E. Effect of hepatitis B and C virus infections on the natural history of compensated cirrhosis: a cohort study of 297 patients. Am J Gastroenterol 2002; 97(11):2886-2895.
59. Fattovich G, Giustina G, Schalm SW et al. Occurrence of hepatocellular carcinoma and decompensation in western European patients with cirrhosis type B. The EUROHEP Study Group on Hepatitis B Virus and Cirrhosis. Hepatology 1995; 21(1):77-82.
60. de Jongh FE, Janssen HL, de Man RA, Hop WC, Schalm SW, van Blankenstein M. Survival and prognostic indicators in hepatitis B surface antigen-positive cirrhosis of the liver. Gastroenterology 1992; 103(5):1630-1635.
61. Andreone P, Gramenzi A, Cursaro C et al. High risk of hepatocellular carcinoma in anti-HBe positive liver cirrhosis patients developing lamivudine resistance. J Viral Hepat 2004; 11(5):439-442.
62. Fattovich G, Giustina G, Realdi G, Corrocher R, Schalm SW. Long-term outcome of hepatitis B e antigen-positive patients with compensated cirrhosis treated with interferon alfa. European Concerted Action on Viral Hepatitis (EUROHEP). Hepatology 1997; 26(5):1338-1342.
63. Liaw YF, Sung JJ, Chow WC et al. Lamivudine for patients with chronic hepatitis B and advanced liver disease. N Engl J Med 2004; 351(15):1521-1531.
64. Di M, V, Marzano A, Lampertico P et al. Clinical outcome of HBeAg-negative chronic hepatitis B in relation to virological response to lamivudine. Hepatology 2004; 40(4):883-891.
65. Lin DY, Sheen IS, Chiu CT, Lin SM, Kuo YC, Liaw YF. Ultrasonographic changes of early liver cirrhosis in chronic hepatitis B: a longitudinal study. J Clin Ultrasound 1993; 21(5):303-308.
66. Yu MW, Yeh SH, Chen PJ et al. Hepatitis B virus genotype and DNA level and hepatocellular carcinoma: a prospective study in men. J Natl Cancer Inst 2005; 97(4):265-272.
67. McMahon BJ, Alberts SR, Wainwright RB, Bulkow L, Lanier AP. Hepatitis B-related sequelae. Prospective study in 1400 hepatitis B surface antigen-positive Alaska native carriers. Arch Intern Med 1990; 150(5):1051-1054.
68. McMahon BJ, Holck P, Bulkow L, Snowball M. Serologic and clinical outcomes of 1536 Alaska Natives chronically infected with hepatitis B virus. Ann Intern Med 2001; 135(9):759-768.
69. Yuen MF, Lai CL. Natural history of chronic hepatitis B virus infection. J Gastroenterol Hepatol 2000; 15 Suppl:E20-E24.
70. Liaw YF, Pao CC, Chu CM, Sheen IS, Huang MJ. Changes of serum hepatitis B virus DNA in two types of clinical events preceding spontaneous hepatitis B e antigen seroconversion in chronic type B hepatitis. Hepatology 1987; 7(1):1-3.
71. Maruyama T, Iino S, Koike K, Yasuda K, Milich DR. Serology of acute exacerbation in chronic hepatitis B virus infection. Gastroenterology 1993; 105(4):1141-1151.
72. Moreno-Otero R, Garcia-Monzon C, Garcia-Sanchez A, Garcia BL, Pajares JM, Di Bisceglie AM. Development of cirrhosis after chronic type B hepatitis: a clinicopathologic and follow-up study of 46 HBeAg-positive asymptomatic patients. Am J Gastroenterol 1991; 86(5):560-564.
73. Lok AS, Heathcote EJ, Hoofnagle JH. Management of hepatitis B: 2000--summary of a workshop. Gastroenterology 2001; 120(7):1828-1853.
74. Lok AS, McMahon BJ. Chronic hepatitis B: update of recommendations. Hepatology 2004; 39(3):857-861.
75. Kao JH, Chen PJ, Lai MY, Chen DS. Hepatitis B genotypes correlate with clinical outcomes in patients with chronic hepatitis B. Gastroenterology 2000; 118(3):554-559.
76. Kao JH, Chen PJ, Lai MY, Chen DS. Clinical and virological aspects of blood donors infected with hepatitis B virus genotypes B and C. J Clin Microbiol 2002; 40(1):22-25.
77. Norder H, Hammas B, Lofdahl S, Courouce AM, Magnius LO. Comparison of the amino acid sequences of nine different serotypes of hepatitis B surface antigen and genomic classification of the corresponding hepatitis B virus strains. J Gen Virol 1992; 73 ( Pt 5):1201-1208.
78. Arauz-Ruiz P, Norder H, Robertson BH, Magnius LO. Genotype H: a new Amerindian genotype of hepatitis B virus revealed in Central America. J Gen Virol 2002; 83(Pt 8):2059-2073.
79. Orito E, Ichida T, Sakugawa H et al. Geographic distribution of hepatitis B virus (HBV) genotype in patients with chronic HBV infection in Japan. Hepatology 2001; 34(3):590-594.
80. Chu CJ, Hussain M, Lok AS. Hepatitis B virus genotype B is associated with earlier HBeAg seroconversion compared with hepatitis B virus genotype C. Gastroenterology 2002; 122(7):1756-1762.
81. Sumi H, Yokosuka O, Seki N et al. Influence of hepatitis B virus genotypes on the progression of chronic type B liver disease. Hepatology 2003; 37(1):19-26.
82. Kao JH, Chen PJ, Lai MY, Chen DS. Genotypes and clinical phenotypes of hepatitis B virus in patients with chronic hepatitis B virus infection. J Clin Microbiol 2002; 40(4):1207-1209.
83. Kao JH, Wu NH, Chen PJ, Lai MY, Chen DS. Hepatitis B genotypes and the response to interferon therapy. J Hepatol 2000; 33(6):998-1002.
84. Rokuhara A, Kiyosawa K. Hepatitis B virus: mutations in the precore/basal core promoter and viral replication. J Gastroenterol 2002; 37(4):318-320.
85. Hunt CM, McGill JM, Allen MI, Condreay LD. Clinical relevance of hepatitis B viral mutations. Hepatology 2000; 31(5):1037-1044.
86. Gunther S, Fischer L, Pult I, Sterneck M, Will H. Naturally occurring variants of hepatitis B virus. Adv Virus Res 1999; 52:25-137.
87. Bartholomeusz A, Locarnini S. Hepatitis B virus mutants and fulminant hepatitis B: fitness plus phenotype. Hepatology 2001; 34(2):432-435.
88. Carman WF, Jacyna MR, Hadziyannis S et al. Mutation preventing formation of hepatitis B e antigen in patients with chronic hepatitis B infection. Lancet 1989; 2(8663):588-591.
89. Omata M, Ehata T, Yokosuka O, Hosoda K, Ohto M. Mutations in the precore region of hepatitis B virus DNA in patients with fulminant and severe hepatitis. N Engl J Med 1991; 324(24):1699-1704.
90. Liang TJ, Hasegawa K, Rimon N, Wands JR, Ben Porath E. A hepatitis B virus mutant associated with an epidemic of fulminant hepatitis. N Engl J Med 1991; 324(24):1705-1709.
91. Brunetto MR, Giarin MM, Oliveri F et al. Wild-type and e antigen-minus hepatitis B viruses and course of chronic hepatitis. Proc Natl Acad Sci U S A 1991; 88(10):4186-4190.
92. Okamoto H, Tsuda F, Akahane Y et al. Hepatitis B virus with mutations in the core promoter for an e antigen-negative phenotype in carriers with antibody to e antigen. J Virol 1994; 68(12):8102-8110.
93. Buckwold VE, Xu Z, Chen M, Yen TS, Ou JH. Effects of a naturally occurring mutation in the hepatitis B virus basal core promoter on precore gene expression and viral replication. J Virol 1996; 70(9):5845-5851.
94. Orito E, Mizokami M, Sakugawa H et al. A case-control study for clinical and molecular biological differences between hepatitis B viruses of genotypes B and C. Japan HBV Genotype Research Group. Hepatology 2001; 33(1):218-223.
95. Kao JH, Chen PJ, Lai MY, Chen DS. Basal core promoter mutations of hepatitis B virus increase the risk of hepatocellular carcinoma in hepatitis B carriers. Gastroenterology 2003; 124(2):327-334.
96. Lin CL, Liao LY, Wang CS et al. Basal core-promoter mutant of hepatitis B virus and progression of liver disease in hepatitis B e antigen-negative chronic hepatitis B. Liver Int 2005; 25(3):564-570.
97. Liu CJ, Chen BF, Chen PJ et al. Role of hepatitis B viral load and basal core promoter mutation in hepatocellular carcinoma in hepatitis B carriers. J Infect Dis 2006; 193(9):1258-1265.
98. Kramvis A, Kew MC. Relationship of genotypes of hepatitis B virus to mutations, disease progression and response to antiviral therapy. J Viral Hepat 2005; 12(5):456-464.
99. Yeh SH, Tsai CY, Kao JH et al. Quantification and genotyping of hepatitis B virus in a single reaction by real-time PCR and melting curve analysis. J Hepatol 2004; 41(4):659-666.
100. Chang C, Enders G, Sprengel R, Peters N, Varmus HE, Ganem D. Expression of the precore region of an avian hepatitis B virus is not required for viral replication. J Virol 1987; 61(10):3322-3325.
101. Milich DR, Jones JE, Hughes JL, Price J, Raney AK, McLachlan A. Is a function of the secreted hepatitis B e antigen to induce immunologic tolerance in utero? Proc Natl Acad Sci U S A 1990; 87(17):6599-6603.
102. Milich DR, Chen MK, Hughes JL, Jones JE. The secreted hepatitis B precore antigen can modulate the immune response to the nucleocapsid: a mechanism for persistence. J Immunol 1998; 160(4):2013-2021.
103. Hasegawa K, Huang JK, Wands JR, Obata H, Liang TJ. Association of hepatitis B viral precore mutations with fulminant hepatitis B in Japan. Virology 1991; 185(1):460-463.
104. Lindh M, Horal P, Dhillon AP, Furuta Y, Norkrans G. Hepatitis B virus carriers without precore mutations in hepatitis B e antigen-negative stage show more severe liver damage. Hepatology 1996; 24(3):494-501.
105. Miyakawa Y, Okamoto H, Mayumi M. The molecular basis of hepatitis B e antigen (HBeAg)-negative infections. J Viral Hepat 1997; 4(1):1-8.
106. Takahashi K, Aoyama K, Ohno N et al. The precore/core promoter mutant (T1762A1764) of hepatitis B virus: clinical significance and an easy method for detection. J Gen Virol 1995; 76 ( Pt 12):3159-3164.
107. Scaglioni PP, Melegari M, Wands JR. Biologic properties of hepatitis B viral genomes with mutations in the precore promoter and precore open reading frame. Virology 1997; 233(2):374-381.
108. Tang H, Raney AK, McLachlan A. Replication of the wild type and a natural hepatitis B virus nucleocapsid promoter variant is differentially regulated by nuclear hormone receptors in cell culture. J Virol 2001; 75(19):8937-8948.
109. Yu X, Mertz JE. Distinct modes of regulation of transcription of hepatitis B virus by the nuclear receptors HNF4alpha and COUP-TF1. J Virol 2003; 77(4):2489-2499.
110. Baumert TF, Rogers SA, Hasegawa K, Liang TJ. Two core promotor mutations identified in a hepatitis B virus strain associated with fulminant hepatitis result in enhanced viral replication. J Clin Invest 1996; 98(10):2268-2276.
111. Li J, Buckwold VE, Hon MW, Ou JH. Mechanism of suppression of hepatitis B virus precore RNA transcription by a frequent double mutation. Journal of Virology 1999; 73(2):1239-1244.
112. Baptista M, Kramvis A, Kew MC. High prevalence of 1762(T) 1764(A) mutations in the basic core promoter of hepatitis B virus isolated from black Africans with hepatocellular carcinoma compared with asymptomatic carriers. Hepatology 1999; 29(3):946-953.
113. Kidd-Ljunggren K, Oberg M, Kidd AH. The hepatitis B virus X gene: analysis of functional domain variation and gene phylogeny using multiple sequences. J Gen Virol 1995; 76 ( Pt 9):2119-2130.
114. Koike K. Hepatitis B virus HBx gene and hepatocarcinogenesis. Intervirology 1995; 38(3-4):134-142.
115. Sirma H, Giannini C, Poussin K, Paterlini P, Kremsdorf D, Brechot C. Hepatitis B virus X mutants, present in hepatocellular carcinoma tissue abrogate both the antiproliferative and transactivation effects of HBx. Oncogene 1999; 18(34):4848-4859.
116. Chan HL, Tsang SW, Liew CT et al. Viral genotype and hepatitis B virus DNA levels are correlated with histological liver damage in HBeAg-negative chronic hepatitis B virus infection. Am J Gastroenterol 2002; 97(2):406-412.
117. Sung JJ, Chan HL, Wong ML et al. Relationship of clinical and virological factors with hepatitis activity in hepatitis B e antigen-negative chronic hepatitis B virus-infected patients. J Viral Hepat 2002; 9(3):229-234.
118. Parekh S, Zoulim F, Ahn SH et al. Genome replication, virion secretion, and e antigen expression of naturally occurring hepatitis B virus core promoter mutants. J Virol 2003; 77(12):6601-6612.
119. Tong S, Kim KH, Chante C, Wands J, Li J. Hepatitis B Virus e Antigen Variants. Int J Med Sci 2005; 2(1):2-7.
120. Khan N, Guarnieri M, Ahn SH et al. Modulation of hepatitis B virus secretion by naturally occurring mutations in the S gene. J Virol 2004; 78(7):3262-3270.
121. Kao JH, Chen PJ, Lai MY, Chen DS. Hepatitis B virus genotypes and spontaneous hepatitis B e antigen seroconversion in Taiwanese hepatitis B carriers. J Med Virol 2004; 72(3):363-369.
122. Yuen MF, Tanaka Y, Mizokami M et al. Role of hepatitis B virus genotypes Ba and C, core promoter and precore mutations on hepatocellular carcinoma: a case control study. Carcinogenesis 2004; 25(9):1593-1598.
123. Schaefer S. Hepatitis B virus: significance of genotypes. J Viral Hepat 2005; 12(2):111-124.
124. Yu MW, Cheng SW, Lin MW et al. Androgen-receptor gene CAG repeats, plasma testosterone levels, and risk of hepatitis B-related hepatocellular carcinoma. J Natl Cancer Inst 2000; 92(24):2023-2028.
125. Yu MW, Yang YC, Yang SY et al. Hormonal markers and hepatitis B virus-related hepatocellular carcinoma risk: a nested case-control study among men. J Natl Cancer Inst 2001; 93(21):1644-1651.
126. Yu MW, Yang YC, Yang SY et al. Androgen receptor exon 1 CAG repeat length and risk of hepatocellular carcinoma in women. Hepatology 2002; 36(1):156-163.
127. Yeh SH, Chang CF, Shau WY et al. Dominance of functional androgen receptor allele with longer CAG repeat in hepatitis B virus-related female hepatocarcinogenesis. Cancer Res 2002; 62(15):4346-4351.
128. Liaw YF. Prevention and surveillance of hepatitis B virus-related hepatocellular carcinoma. Semin Liver Dis 2005; 25 Suppl 1:40-47.
129. McCormack JP, Levine M, Rangno RE. Primary prevention of heart disease and stroke: a simplified approach to estimating risk of events and making drug treatment decisions. CMAJ 1997; 157(4):422-428.
130. Kalbfleish J, Prentice R. The statistical analysis of failure time data. New York, NY: John Wiley and Sons; 1980.
131. Harrell FE, Jr., Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 1996; 15(4):361-387.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32015-
dc.description.abstract本論文以下列五個子研究探討B型肝炎病毒因子與肝癌及肝硬化危險性之相關。
研究一:B型肝炎病毒e抗原與肝細胞癌之長期追蹤研究
背景 B型肝炎病毒e抗原陽性是人體內B型肝炎病毒的複製活躍的指標之一,本研究乃利用前瞻性的長期追蹤世代研究釐清此指標對於肝細胞癌發生風險之重要性。
方法 本研究於1991至1992年間,針對台灣七個鄉鎮市區30至65歲共11,893名無肝癌既往史之男性居民,進行收案追蹤研究。每名研究個案於進入研究時,均被採集血液以放射免疫法進行B型肝炎表面抗原及e抗原的檢測。研究世代並與癌症登記檔及死亡檔進行資料連結以確認肝癌的發生。
結果 截至2000年9月30日止,總共追蹤92,359人年,其中有111名個案新發生肝細胞癌。根據收案時的血清標記來分析,B型肝炎表面抗原及e抗原皆呈陰性、表面抗原陽性但e抗原陰性及兩者皆呈陽性的個案,肝細胞癌的發生率分別為每十萬人年39.1、324.3及1169.4。在調整年齡、C型肝炎病毒血清抗體狀態、抽煙及喝酒習慣等危險因子的干擾作用後,表面抗原陽性但e抗原陰性的個案,發生肝細胞癌的相對危險性,是兩種抗原皆陰性者的9.6倍(95%信賴區間:6.0-15.2);兩種抗原皆陽性的個案發生肝細胞癌的相對危險性更高達60.2倍(95%信賴區間:35.5-102.1)。
結論 B型肝炎病毒e抗原血清標記可預測肝細胞癌的發生風險,B型肝炎病毒的持續活躍複製,是造成肝癌的主要原因。
研究二:血中B型肝炎病毒量與罹患肝細胞癌之風險
背景 血中B型肝炎病毒量是慢性B型肝炎患者病毒複製與抗病毒治療效益的指標,本世代追蹤研究旨在探討血中B型肝炎病毒量與肝細胞癌風險的相關。
方法 本研究係以3,653名B型肝炎表面抗原陽性、C型肝炎抗體陰性之世代成員為研究個案,利用Roche COBAS Amplicor檢驗試劑進行血中B型肝炎病毒量之檢測,肝癌的確認乃經由追蹤檢查以及與癌症登記檔和死亡檔之資料連結。
結果 經由41,779人年(平均每人11.4年)之追蹤,共有164名個案新發生肝細胞癌。研究個案進入研究時血液中B型肝炎病毒量與肝癌發生率呈現劑量效應關係,由病毒量<300 copies/mL的每十萬人年108升高到病毒量&sup3;106 copies/mL的每十萬人年1150。調整了性別、年齡、抽煙、喝酒、B型肝炎e抗原、血中丙胺酸轉胺脢以及進入研究時的肝硬化狀態,此劑量效應關係仍然存在。血液中B型肝炎病毒量與肝癌風險的劑量效應關係在e抗原陰性、血中丙胺酸轉胺脢正常且進入研究時無肝硬化的個案最為顯著。在追蹤過程中維持血中B型肝炎高病毒量的個案有最高的肝細胞癌危險性。
結論 血液中帶有高的B型肝炎病毒量(&sup3;10,000 copies/mL)是一個獨立於B型肝炎e抗原、血中丙胺酸轉胺脢以及肝硬化的肝細胞癌重要預測因子。
研究三:以血中B型肝炎病毒量預測肝硬化之發生風險
背景 慢性B型肝炎患者的肝硬化源自於肝臟的發炎及纖維化,本研究乃以世代研究法探討血中B型肝炎病毒量與肝硬化的相關。
方法 本研究以3,582名未經過抗病毒藥物治療之長期追蹤世代成員為研究個案,進行進入研究時血液中B型肝炎病毒量之檢測,並以腹部超音波診斷肝硬化。
結果 3,582名研究個案共追蹤了40,038人年,期間共有365名個案被診斷出肝硬化。發生肝硬化的累積危險性在血中病毒量為<300 copies/mL及&sup3;106 copies/mL的個案分別為4.5%及36.2% (P<0.001)。調整了B型肝炎e抗原、血中丙胺酸轉胺脢以及其他變項之後,B型肝炎病毒量為最重要的肝硬化預測因子,以B型肝炎病毒量<300 copies/mL為參考組,病毒量為&sup3;104-<105;&sup3;105-<106;&sup3;106 copies/mL的個案,其相對危險性(95%信賴區間)分別為2.5 (1.6-3.8);5.6 (3.7-8.5);及6.5 (4.1-10.2)。
結論 本研究顯示慢性B型肝炎患者之B型肝炎病毒量與進展至肝硬化的風險有很強的相關,B型肝炎病毒量較高者有較高的肝硬化危險性。
研究四:B型肝炎病毒基因型和突變體與肝細胞癌危險性之相關
背景 B型肝炎病毒基因型和突變體在肝細胞致癌機轉中扮演的角色尚待釐清,本研究乃利用世代研究法評估B型肝炎病毒基因型、precore stop codon突變(G1896A)以及basal core promoter突變(A1762T/G1764A)對肝細胞癌發生危險性造成的影響。
方法 本研究以3,644名B型肝炎表面抗原陽性、C型肝炎抗體陰性之世代成員為研究個案,檢測了進入研究時的血中B型肝炎病毒量(以real-time PCR方法)和基因型,1,526名進入研究時病毒量為&sup3;104 copies/mL的個案則另外檢測B型肝炎病毒的G1896A與A1762T/G1764A突變。
結果 截至2004年6月30日止,共追蹤了41,695人年,期間共有162名肝細胞癌個案新發生。B型肝炎病毒B與C基因型之肝癌發生率(每十萬人年)分別為305.6及785.8;帶有G1896A突變體及其野生型的發生率為269.4及955.5;而帶有A1762T/G1764A突變體及其野生型的發生率則分別為1149.2與358.7。調整了性別、年齡、B型肝炎病毒量、抽煙與喝酒後,基因型C相對於基因型B發生肝癌的相對危險性為2.7(95%信賴區間:1.9-3.7);帶有G1896A突變體相對其野生型的相對危險性為0.2(95%信賴區間:0.1-0.4);而帶有A1762T/G1764A突變體相對其野生型的相對危險性為2.7(95%信賴區間:1.8-4.1)。
結論 本研究顯示B型肝炎病毒C基因型及A1762T/G1764A突變體是肝癌的危險因子,而G1896A突變體的出現對肝癌的發生具有保護作用,此保護作用在B型肝炎e抗原陰性的個案中特別顯著。
研究五:慢性B型肝炎患者罹患肝細胞癌的預測模式
背景 目前尚無預測個別慢性B型肝炎患者未來發生肝細胞癌機率的統計模式可資使用,本研究乃根據目前可得的臨床資料來發展預測個人肝癌發生機率的模式。
方法 本研究使用與研究四相同的資料檔,總共有11個候選危險因子可納入統計模式。我們使用Cox氏比例危害複迴歸方法根據不同的危險因子集合來發展模式,將得到的迴歸係數轉換為整數的風險計分,然後預測各種風險計分下5年及10年內發生肝癌的機率,並將計分系統及其預測的肝癌發生機率轉成列線圖(Nomogram)以利使用。模式的預測準確性以兩個面向來評估,包括:鑑別能力(Discrimination ability)以ROC曲線及曲線下面積來估算;及校準能力(Calibration ability)以校準圖(Calibration chart)來量測。計分與模式預測風險的比較則以散佈圖來闡明。
結果 我們總計發展了8個風險預測模式及列線圖,這些模式具有良好的鑑別及校準能力,所有模式的ROC曲線下面積都大於80%,且校準圖顯示所預測的5年及10年肝癌風險皆相當接近實際的風險。計分系統的預測結果與模式所預測的風險有很高的相關。
結論 本研究所發展的模式及列線圖可幫助臨床醫師評估及解釋慢性B型肝炎患者的肝癌發生風險,並可用來協助討論抗病毒治療的可能效益。
zh_TW
dc.description.abstractThis thesis consists of five component studies to investigate hepatitis B virus (HBV) related factors and the risk of liver cirrhosis and hepatocellular carcinoma (HCC).
Study 1: Hepatitis B e antigen (HBeAg) and the risk of HCC
Background The presence of HBeAg in serum indicates active viral replication in hepatocytes. HBeAg is thus a surrogate marker for the presence of HBV DNA. We conducted a prospective study to determine the relation between positivity for hepatitis B surface antigen (HBsAg) and HBeAg and the development of HCC.
Methods In 1991 and 1992, we enrolled 11,893 men without evidence of HCC (age range, 30-65 years) from seven townships in Taiwan. Serum samples obtained at the time of enrollment were tested for HBsAg and HBeAg by radioimmunoassay. The diagnosis of HCC was ascertained through data linkage with the computerized National Cancer Registry in Taiwan and with death certificates. We performed a multiple regression analysis to determine the hazard ratio of HCC among men who were positive for HBsAg alone or for HBsAg and HBeAg, as compared with those who were negative for both.
Results There were 111 cases of newly diagnosed HCC during 92,359 person-years of follow-up. The incidence rate of HCC was 1169 cases per 100,000 person-years among men who were positive for both HBsAg and HBeAg, 324 per 100,000 person-years for those who were positive for HBsAg only, and 39 per 100,000 person-years for those who were negative for both. After adjustment for age, the presence or absence of antibodies against hepatitis C virus (anti-HCV), cigarette-smoking status, and use or nonuse of alcohol, the hazard ratio of HCC was 9.6 (95% CI, 6.0 to 15.2) among men who were positive for HBsAg alone and 60.2 (95% CI, 35.5 to 102.1) among those who were positive for both HBsAg and HBeAg, as compared with men who were negative for both.
Conclusions Positivity for HBeAg is associated with an increased risk of HCC.
Study 2: Risk of HCC across a biological gradient of serum HBV DNA level
Background Serum HBV DNA level is a marker of viral replication and efficacy of antiviral treatment in individuals with chronic hepatitis B. This study aimed to evaluate the relationship between serum HBV DNA level and risk of HCC.
Methods This is a prospective cohort study of 3,653 participants (aged 30-65 years), who were seropositive for HBsAg and seronegative for anti-HCV, recruited to a community-based cancer screening program in Taiwan between 1991 and 1992. The main outcome measure was incidence of HCC during follow-up examination and by data linkage with the national cancer registry and the death certification systems.
Results There were 164 incident cases of HCC and 346 deaths during a mean follow-up of 11.4 years and 41,779 person-years of follow-up. The incidence of HCC increased with serum HBV DNA level at study entry in a dose-response relationship ranging from 108 per 100,000 person-years for an HBV DNA level of <300 copies/mL to 1150 per 100,000 person-years for and HBV DNA level of &sup3;1 million copies/mL. The corresponding cumulative incidence rates of HCC were 1.3% and 14.9%, respectively. The biological gradient of HCC by serum HBV DNA levels remained significant (P<0.001) after adjustment for sex, age, cigarette smoking, alcohol consumption, serostatus for HBeAg, serum alanine aminotransferase (ALT) level, and liver cirrhosis at study entry. The dose-response relationship was most prominent for participants who were seronegative for HBeAg with normal serum ALT levels and no liver cirrhosis at study entry. Participants with persistent elevation of serum HBV DNA level during follow-up had the highest HCC risk.
Conclusion Elevated serum HBV DNA level (&sup3;10,000 copies/mL) is a strong risk predictor of HCC independent of HBeAg, serum ALT level and liver cirrhosis.
Study 3: Predicting cirrhosis risk based on the level of circulating hepatitis B viral load
Background Cirrhosis develops as a result of hepatic inflammation and subsequent fibrosis in chronic hepatitis B infection. We report on the relationship between hepatitis B viremia and progression to cirrhosis in chronic hepatitis B infection.
Methods This was a population-based prospective cohort study of 3,582 untreated hepatitis B-infected patients established in Taiwan from 1991 to 1992. Serum samples were tested for HBV DNA on cohort entry serum samples and the diagnosis of cirrhosis was by ultrasound.
Results During a mean follow-up time of 11 years, the 3,582 patients contributed 40,038 person-years of follow-up evaluation and 365 patients were newly diagnosed with cirrhosis. The cumulative incidence of cirrhosis increased with the HBV DNA level and ranged from 4.5% to 36.2% for patients with a hepatitis B viral load of <300 copies/mL and &sup3;106 copies/mL, respectively (P<0.001). In a Cox proportional hazards model adjusting for HBeAg status and serum ALT level among other variables, hepatitis B viral load was the strongest predictor of progression to cirrhosis. Hazard ratio (95% CI) was 2.5 (1.6-3.8); 5.6 (3.7-8.5); and 6.5 (4.1-10.2) for HBV DNA levels &sup3;104-<105; &sup3;105-<106; &sup3;106 copies/mL, respectively.
Conclusions These data show that progression to cirrhosis in hepatitis B-infected persons is correlated strongly with the level of circulating virus. The risk of cirrhosis increases significantly with increasing HBV DNA levels and is independent of HBeAg status and serum ALT level.
Study 4: Risk of HCC associated with genotypes and mutants of HBV
Background The roles of genotypes and mutants of HBV in hepatocarcinogenesis remain to be elucidated. The specific aim of this study was to assess the risk of HCC associated with HBV genotypes, precore stop codon mutant (G1896A) and basal core promoter mutant (A1762T/G1764A).
Methods A cohort of 3,644 adult residents who were HBsAg-seropositive and anti-HCV-seronegative was enrolled from seven townships in Taiwan between 1991 and 1992. Blood samples at cohort entry were tested for HBV viral load and genotype. Baseline blood samples of 1,526 participants with a serum HBV DNA level &sup3;104 copies/mL were further tested for HBV mutants of G1896A and A1762T/G1764A. Newly developed HCC was ascertained through follow-up health examinations and computerized data linkage to national cancer registry and death certification profiles.
Results By June 30 2004, there were 162 HCC cases occurred during 41,695 person-years of follow-up. The incidence rate per 100,000 person-years were 305.6 and 785.8, respectively, for participants infected with HBV genotype B and C; 269.4 and 955.5, respectively, for participants infected with G1896A mutant and wild-typed HBV; as well as 1149.2 and 358.7, respectively, for participants infected with A1762T/G1764A mutants and wild-typed HBV. The hazard ratio of HCC after adjustment for gender, age, HBV viral load, cigarette smoking, and alcohol drinking was 2.7 (95% CI, 1.9-3.7) for HBV genotype C compared with genotype B, 0.2 (95% CI, 0.1-0.4) for G1896A mutant compared with its wild type, and 2.7 (95% CI, 1.8-4.1) for A1762T/G1764A mutants compared with their wild types.
Conclusions Our data suggest that HBV genotype C and A1762T/G1764A mutants were independent risk factors for HCC. While the emergence of G1896A mutant conferred a protective effect on HCC, especially in HBeAg-seronegative participants.
Study 5: Model to predict HCC in patients with chronic hepatitis B infection
Background The risk of developing HCC for a particular individual with chronic hepatitis B over a specific period remained to be determined. The objective of this study was to develop models that can be used to predict HCC risk in an individual based on readily available clinical information.
Methods Information of 3,644 subjects as described in Study 4 was used in this analysis. Eleven baseline variables had a priori plausibility as risk factors were available in the dataset. Cox proportional hazards models were used to train models, for different sets of profiles selected from candidate risk factors, with HCC development and person-year of follow-up as outcomes. The regression coefficients derived from the Cox models were converted into integer risk scores and the predicted risks of HCC within 5 or 10 years were calculated for various risk scores. The score system and the predicted 5- and 10-year HCC risks were further translated into nomograms. The predictive accuracy was evaluated in terms of discrimination and calibration abilities with the use of Receiver Operator Characteristic (ROC) curve and area under the ROC curve; and the calibration chart. The comparison of predicted HCC risk by score and by model was illustrated using scatter plot.
Results Eight risk prediction models and nomograms were generated. These models demonstrated nice discrimination and calibration abilities. All areas under the ROC curves were greater than 0.8 and the predicted 5- and 10-year risks approximated to the corresponding actual risks in calibration charts. The HCC risk predicted by score correlated well with the risk predicted by model.
Conclusion The model and nomograms in this study may help clinicians in evaluating and explaining to patients their risk of HCC and may simplify the discussion of potential benefits from anti-viral therapies.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:28:06Z (GMT). No. of bitstreams: 1
ntu-95-F87842002-1.pdf: 1033198 bytes, checksum: eddc97cde893c7e1e440ef70fe0248b5 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsCONTENTS
LIST OF TABLES III
LIST OF FIGURES V
中文摘要 VII
ABSTRACT XI
LIST OF ABBREVIATIONS XVI
PREFACE 1
CHAPTER 1 Hepatitis B e Antigen and the Risk of HCC 4
1.1 Introduction 4
1.2 Methods 5
1.2.1 Study Cohort 5
1.2.2 Data Collection and Blood Tests 5
1.2.3 Follow-up for HCC 6
1.2.4 Statistical Analysis 7
1.3 Results 8
1.4 Discussion 9
CHAPTER 2 Risk of HCC Across a Biological Gradient of Serum HBV DNA Level 19
2.1 Introduction 19
2.2 Methods 21
2.2.1 Cohort Recruitment and Follow-up 21
2.2.2 Interview and Blood Collection 21
2.2.3 Laboratory Examinations 22
2.2.4 Ascertainment of Newly Developed HCC 22
2.2.5 Statistical Analysis 23
2.3 Results 24
2.3.1 Incidence Rates of HCC by Serum HBV DNA Level at Cohort Entry 24
2.3.2 Cumulative Incidence of HCC by Serum HBV DNA Level at Cohort Entry 25
2.3.3 Dose-response Relationship between HCC Risk and Serum HBV DNA Level at Cohort Entry 26
2.3.4 Biological Gradient of HCC Risk in Subgroups Analysis 27
2.3.5 Multivariate-adjusted Relative HCC Risk by Serum HBV DNA Levels at Both Cohort Entry and Follow-up Examinations 27
2.4 Discussion 28
CHAPTER 3 Predicting Cirrhosis Risk Based on the Level of Circulating Hepatitis B Viral Load 41
3.1 Introduction 41
3.2 Methods 42
3.2.1 Subject Selection for the Analysis on HBV DNA and Cirrhosis 43
3.2.2 Ascertainment of Cirrhosis 43
3.2.3 Statistical Analysis 43
3.3 Results 44
3.4 Discussion 46
CHAPTER 4 Risk of HCC Associated with Genotypes and Mutants of HBV 57
4.1 Introduction 57
4.2 Methods 59
4.2.1 Laboratory Tests 59
4.2.2 Statistical Analysis 61
4.3 Results 61
4.3.1 Gender and Age-Specific Prevalence of HBV Genotype and Mutants 62
4.3.2 Correlation Between HBV Markers 62
4.3.3 Incidence Rates 63
4.3.4 Multivariable-Adjusted Hazard Ratios 63
4.3.5 Subgroup Analysis 64
4.3.6 Combined Effect of Precore and BCP Mutations 65
4.3.7 Gender Difference 65
4.4 Discussion 66
CHAPTER 5 Model to Predict HCC in Patients with Chronic Hepatitis B Infection 86
5.1 Introduction 86
5.2 Methods 87
5.3 Results 88
5.4 Discussion 90
FUTURE PERSPECTIVES 119
REFERENCES 121
LIST OF TABLES
Table 1-1. Prevalence of HBsAg and HBeAg in 11,893 Men in Taiwan 13
Table 1-2. Incidence of HCC during Follow-up 14
Table 1-3. Adjusted Hazard Ratio of HCC According to Various Risk Factors 15
Table 1-4. Adjusted Hazard Ratio of HCC, with Stratification According to Age, Cigarette-Smoking Status, and Use or Nonuse of Alcohol 16
Table 1-5. Level of HBV DNA in Men with HCC and Matched Controls Who Were Positive for HBsAg and Negative for HBeAg at Enrollment 17
Table 2-1. Serum Level of HBV DNA and HBeAg Serostatus at Study Entry 31
Table 2-2. Incidence Rate and Adjusted Hazard Ratio of HCC According to HBV DNA Level 32
Table 2-3. Cumulative Incidence of HCC by HBV DNA Level at Study Entry 33
Table 2-4. Regression Analysis of Risk Factors Associated With HCC 34
Table 2-5. HCC by Serum HBV DNA Levels at Study Entry and at Last Follow-up 35
Table 3-1. Demographic Characteristics of Different Subsets of the Study Population 50
Table 3-2. Incidence of Cirrhosis by HBV DNA Level (N=3582) 51
Table 3-3. Association Between HBV DNA Level and Cirrhosis Risk Stratified by Several Variables (N=3582) 52
Table 3-4. Multiple Cox Proportional Hazards Regression Analyses of Risk Facotrs Associated With Cirrhosis Among Those Chronically Infected With HBV and Negative for Anti-HCV (N=3582) 53
Table 3-5. Multiple Cox Proportional Hazards Regression Analyses of Risk Factors Associated With Cirrhosis Among Those Chronically Infected With HBV and Negative for Anti-HCV Excluding 100 Cirrhosis Cases Diagnosed on the Basis of 1 Ultrasound Test (N=3482) 54
Table 4-1. Basic Characteristics of the Study Cohort (N=3644) 71
Table 4-2. Distribution of Precore and BCP Mutants in Subjects with HBV DNA ≥104 copies/mL (N=1526) 72
Table 4-3. Gender and Age-Specific Prevalence of HBV Genotype, Precore 1896 and BCP 1762/1764 mutants 73
Table 4-4. Incidence Rate and Adjusted Hazard Ratio of HCC for HBV Genotype and Mutants 74
Table 4-5. Multivariable-Adjusted Cox’s Regression Analysis for Risk of HCC 75
Table 4-6. Multivariable-Adjusted Regression Analysis in Subjects with HBV DNA ≥104 Copies/mL at Baseline (N=1526) 76
Table 4-7. Subgroup Analysis of HCC Risk for HBV Genotype 77
Table 4-8. Subgroup Analyses of HCC Risk for HBV Genotype, Precore and BCP Mutants in Subjects with HBV DNA ≥104 Copies/mL at Baseline (N=1526) 78
Table 4-9. Combinations of Precore and BCP Mutants Stratified by Age 79
Table 4-10. Adjusted Hazard Ratio of HCC for the Combinations of Precore and BCP Mutants 80
Table 4-11. Incidence Rate and Adjusted Hazard Ratio of HCC for Gender Stratified by HBV DNA Level, Genotype, Precore and BCP Mutants 81
Table 4-12. Multivariable-adjusted Cox Regression Models for Female and Male Subjects 82
Table 5-1. Multiple Cox Proportional Hazards Model for Gender, Age, Alcohol Consumption, ALT, and HBeAg (Model 1) 93
Table 5-2. Multiple Cox Proportional Hazards Model for Gender, Age, Alcohol Consumption, ALT, HBeAg, and HBV DNA Level (Model 2) 94
Table 5-3. Multiple Cox Proportional Hazards Model for Gender, Age, Alcohol Consumption, ALT, and the Combinations of HBeAg and HBV DNA Level (Model 3) 95
Table 5-4. Multiple Cox Proportional Hazards Model for Gender, Age, Alcohol Consumption, ALT, HBeAg, and the Combinations of HBV DNA and Genotype (Model 4) 96
Table 5-5. Multiple Cox Proportional Hazards Model for Gender, Age, Alcohol Consumption, ALT, HBeAg, and the Combinations of HBV DNA and Genotype (Model 5) 97
Table 5-6. Multiple Cox Proportional Hazards Model for Gender, Age, Alcohol Consumption, ALT, HBeAg, and the Combinations of Genotype, HBV DNA and Precore Mutnats (Model 6) 98
Table 5-7. Multiple Cox Proportional Hazards Model for Gender, Age, Alcohol Consumption, ALT, HBeAg, and the Combinations of Genotype, HBV DNA and BCP Mutnats (Model 7) 99
Table 5-8. Multiple Cox Proportional Hazards Model for Gender, Age, Alcohol Consumption, ALT, HBeAg, and the Combinations of Genotype, HBV DNA, Precore and BCP Mutnats (Model 8) 100
LIST OF FIGURES
Figure 1-1. Cumulative Incidence of HCC during Follow-up among 11,893 Men in Taiwan, according to the Presence or Absence of HBsAg and HBeAg at enrollment. 18
Figure 2-1. Flow of Study Participants in the Study on Serum HBV DNA and HCC 36
Figure 2-2. Cumulative Incidence of HCC by Serum HBV DNA Level at Study Entry. (A) A Cohort of 3,653 Participants Who Were Seropositive on HBsAg and Seronegative on Anti-HCV; (B) A Sub-cohort of 2,925 Participants Who Were Seronegative on HBeAg With a Normal Serum Level of ALT and No Liver Cirrhosis 38
Figure 2-3. Multivariable-adjusted Hazard Ratio of HCC by Serum Level of HBV DNA at Cohort Entry examination Stratified by Gender, Age, and Habits of Cigarette Smoking and Alcohol Consumption. (A) A Cohort of 3,653 Participants Who Were Seropositive on HBsAg and Seronegative on Anti-HCV; (B) A Sub-cohort of 2,925 Participants Who Were Seronegative on HBeAg With a Normal Serum Level of ALT and No Liver Cirrhosis 40
Figure 3-1. Flow of Study Participants in the Study on Serum HBV DNA and Cirrhosis 55
Figure 3-2. Cumulative Incidence of Cirrhosis (N=3582) 56
Figure 4-1. Flow of participants in the study on genotype and mutants of HBV and risk of HCC 83
Figure 4-2. Inter-Correlation between HBV Markers: (A) Correlation between HBeAg Status and Genotype, Precore and BCP Mutants; (B) Correlation between Genotype and Precore and BCP Mutants; (C) Correlation between Precore Mutant and HBV DNA Level Stratified by Genotype; (D) Correlation between BCP Mutant and HBV DNA Level Stratified by Genotype 85
Figure 5-1. (A) to (H) HCC Risk Prediction Nomograms for Models 1 to 8 as Presented in Table 5-1 through Table 5-8 108
Figure 5-2. (A) ROC Curves for 5-Year HCC Risk; (B) ROC Curves for 10-year HCC Risk Predicted by Model 1 to Model 8 110
Figure 5-3. (A) to (H) Calibration Charts for Model 1 to Model 8 114
Figure 5-4. (A) to (H) HCC Risk Predicted by Score Versus by Model for Model 1 to Model 8 118
dc.language.isoen
dc.subject肝細胞癌zh_TW
dc.subject病毒因子zh_TW
dc.subjectB型肝炎病毒zh_TW
dc.subjectB型肝炎病毒突變zh_TW
dc.subjectPrecorezh_TW
dc.subjectBasal Core Promoterzh_TW
dc.subjectB型肝炎病毒DNAzh_TW
dc.subject風險預測模式zh_TW
dc.subjectB型肝炎e抗原zh_TW
dc.subjectB型肝炎病毒量zh_TW
dc.subject肝硬化zh_TW
dc.subjectB型肝炎病毒基因型zh_TW
dc.subjectLiver Cirrhosisen
dc.subjectHepatitis B Virusen
dc.subjectVirus Factoren
dc.subjectHepatocellular Carcinomaen
dc.subjectHepatitis B e Antigenen
dc.subject HBV DNAen
dc.subjectViral Loaden
dc.subjectHBV Genotypeen
dc.subjectHBV Mutantsen
dc.subjectPrecoreen
dc.subjectBasal Core Promotoren
dc.subjectRisk Prediction Modelen
dc.titleB型肝炎病毒因子與肝癌肝硬化之流行病學研究zh_TW
dc.titleHepatitis B Virus Related Factors and the Risks of Liver Cirrhosis and Hepatocellular Carcinomaen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree博士
dc.contributor.coadvisor蕭朱杏
dc.contributor.oralexamcommittee廖運範,陳培哲,王豊裕
dc.subject.keywordB型肝炎病毒,病毒因子,肝細胞癌,肝硬化,B型肝炎e抗原,B型肝炎病毒DNA,B型肝炎病毒量,B型肝炎病毒基因型,B型肝炎病毒突變,Precore,Basal Core Promoter,風險預測模式,zh_TW
dc.subject.keywordHepatitis B Virus,Virus Factor,Liver Cirrhosis,Hepatocellular Carcinoma,Hepatitis B e Antigen, HBV DNA,Viral Load,HBV Genotype,HBV Mutants,Precore,Basal Core Promotor,Risk Prediction Model,en
dc.relation.page133
dc.rights.note有償授權
dc.date.accepted2006-07-28
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved