Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32008
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何弘能
dc.contributor.authorTzu-Yun Kuoen
dc.contributor.author郭子筠zh_TW
dc.date.accessioned2021-06-13T03:27:49Z-
dc.date.available2008-08-04
dc.date.copyright2006-08-04
dc.date.issued2006
dc.date.submitted2006-07-28
dc.identifier.citationAsseman, C., Mauze, S., Leach, M. W., Coffman, R. L., and Powrie, F. (1999). An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 190, 995-1004.
Bach, J. F. (2003). Regulatory T cells under scrutiny. Nat Rev Immunol 3, 189-198.
Baecher-Allan, C., Brown, J. A., Freeman, G. J., and Hafler, D. A. (2001). CD4+CD25high regulatory cells in human peripheral blood. J Immunol 167, 1245-1253.
Baecher-Allan, C., Viglietta, V., and Hafler, D. A. (2004). Human CD4+CD25+ regulatory T cells. Semin Immunol 16, 89-98.
Bell, M. C., Edwards, R. P., Partridge, E. E., Kuykendall, K., Conner, W., Gore, H., Turbat-Herrara, E., and Crowley-Nowick, P. A. (1995). CD8+ T lymphocytes are recruited to neoplastic cervix. J Clin Immunol 15, 130-136.
Bennett, M. W., O'Connell, J., O'Sullivan, G. C., Brady, C., Roche, D., Collins, J. K., and Shanahan, F. (1998). The Fas counterattack in vivo: apoptotic depletion of tumor-infiltrating lymphocytes associated with Fas ligand expression by human esophageal carcinoma. J Immunol 160, 5669-5675.
Berendt, M. J., and North, R. J. (1980). T-cell-mediated suppression of anti-tumor immunity. An explanation for progressive growth of an immunogenic tumor. J Exp Med 151, 69-80.
Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T. B., Oukka, M., Weiner, H. L., and Kuchroo, V. K. (2006). Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235-238.
Bursuker, I., and North, R. J. (1984). Generation and decay of the immune response to a progressive fibrosarcoma. II. Failure to demonstrate postexcision immunity after the onset of T cell-mediated suppression of immunity. J Exp Med 159, 1312-1321.
Cannistra, S. A., and Niloff, J. M. (1996). Cancer of the uterine cervix. N Engl J Med 334, 1030-1038.
Chatenoud, L., Salomon, B., and Bluestone, J. A. (2001). Suppressor T cells--they're back and critical for regulation of autoimmunity! Immunol Rev 182, 149-163.
Chen, W., Jin, W., Hardegen, N., Lei, K. J., Li, L., Marinos, N., McGrady, G., and Wahl, S. M. (2003). Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198, 1875-1886.
Curiel, T. J., Coukos, G., Zou, L., Alvarez, X., Cheng, P., Mottram, P., Evdemon-Hogan, M., Conejo-Garcia, J. R., Zhang, L., Burow, M., et al. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10, 942-949.
Curotto de Lafaille, M. A., Lino, A. C., Kutchukhidze, N., and Lafaille, J. J. (2004). CD25- T cells generate CD25+Foxp3+ regulatory T cells by peripheral expansion. J Immunol 173, 7259-7268.
Fantini, M. C., Becker, C., Monteleone, G., Pallone, F., Galle, P. R., and Neurath, M. F. (2004). Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 172, 5149-5153.
Fontenot, J. D., Gavin, M. A., and Rudensky, A. Y. (2003). Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4, 330-336.
Fujimoto, S., Greene, M., and Sehon, A. H. (1975). Immunosuppressor T cells in tumor bearing host. Immunol Commun 4, 201-217.
Gershon, R. K., and Kondo, K. (1970). Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 18, 723-737.
Gershon, R. K., and Kondo, K. (1971). Infectious immunological tolerance. Immunology 21, 903-914.
Ghiringhelli, F., Puig, P. E., Roux, S., Parcellier, A., Schmitt, E., Solary, E., Kroemer, G., Martin, F., Chauffert, B., and Zitvogel, L. (2005). Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med 202, 919-929.
Ghosh, A. K., and Moore, M. (1992). Tumour-infiltrating lymphocytes in cervical carcinoma. Eur J Cancer 28A, 1910-1916.
Gondek, D. C., Lu, L. F., Quezada, S. A., Sakaguchi, S., and Noelle, R. J. (2005). Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol 174, 1783-1786.
Gray, C. P., Arosio, P., and Hersey, P. (2003). Association of increased levels of heavy-chain ferritin with increased CD4+ CD25+ regulatory T-cell levels in patients with melanoma. Clin Cancer Res 9, 2551-2559.
Grossman, W. J., Verbsky, J. W., Barchet, W., Colonna, M., Atkinson, J. P., and Ley, T. J. (2004). Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21, 589-601.
Hilders, C. G., Ras, L., van Eendenburg, J. D., Nooyen, Y., and Fleuren, G. J. (1994). Isolation and characterization of tumor-infiltrating lymphocytes from cervical carcinoma. Int J Cancer 57, 805-813.
Hori, S., Nomura, T., and Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057-1061.
Ibrahim, R., Frederickson, H., Parr, A., Ward, Y., Moncur, J., and Khleif, S. N. (2006). Expression of FasL in squamous cell carcinomas of the cervix and cervical intraepithelial neoplasia and its role in tumor escape mechanism. Cancer 106, 1065-1077.
Ichihara, F., Kono, K., Takahashi, A., Kawaida, H., Sugai, H., and Fujii, H. (2003). Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res 9, 4404-4408.
Karube, K., Ohshima, K., Tsuchiya, T., Yamaguchi, T., Kawano, R., Suzumiya, J., Utsunomiya, A., Harada, M., and Kikuchi, M. (2004). Expression of FoxP3, a key molecule in CD4CD25 regulatory T cells, in adult T-cell leukaemia/lymphoma cells. Br J Haematol 126, 81-84.
Khar, A., Varalakshmi, C., Pardhasaradhi, B. V., Mubarak Ali, A., and Kumari, A. L. (1998). Depletion of the natural killer cell population in the peritoneum by AK-5 tumor cells overexpressing fas-ligand: a mechanism of immune evasion. Cell Immunol 189, 85-91.
Khattri, R., Cox, T., Yasayko, S. A., and Ramsdell, F. (2003). An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4, 337-342.
Kobayashi, A., Greenblatt, R. M., Anastos, K., Minkoff, H., Massad, L. S., Young, M., Levine, A. M., Darragh, T. M., Weinberg, V., and Smith-McCune, K. K. (2004). Functional attributes of mucosal immunity in cervical intraepithelial neoplasia and effects of HIV infection. Cancer Res 64, 6766-6774.
Liang, S., Alard, P., Zhao, Y., Parnell, S., Clark, S. L., and Kosiewicz, M. M. (2005). Conversion of CD4+ CD25- cells into CD4+ CD25+ regulatory T cells in vivo requires B7 costimulation, but not the thymus. J Exp Med 201, 127-137.
Liyanage, U. K., Moore, T. T., Joo, H. G., Tanaka, Y., Herrmann, V., Doherty, G., Drebin, J. A., Strasberg, S. M., Eberlein, T. J., Goedegebuure, P. S., and Linehan, D. C. (2002). Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169, 2756-2761.
Marshall, N. A., Christie, L. E., Munro, L. R., Culligan, D. J., Johnston, P. W., Barker, R. N., and Vickers, M. A. (2004). Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood 103, 1755-1762.
Munakata, S., Enomoto, T., Tsujimoto, M., Otsuki, Y., Miwa, H., Kanno, H., and Aozasa, K. (2000). Expressions of Fas ligand and other apoptosis-related genes and their prognostic significance in epithelial ovarian neoplasms. Br J Cancer 82, 1446-1452.
Nagarkatti, N. (2000). Tumor-derived Fas ligand induces toxicity in lymphoid organs and plays an important role in successful chemotherapy. Cancer Immunol Immunother 49, 46-55.
North, R. J., and Bursuker, I. (1984). Generation and decay of the immune response to a progressive fibrosarcoma. I. Ly-1+2- suppressor T cells down-regulate the generation of Ly-1-2+ effector T cells. J Exp Med 159, 1295-1311.
O'Connell, J., Bennett, M. W., O'Sullivan, G. C., Collins, J. K., and Shanahan, F. (1999). The Fas counterattack: cancer as a site of immune privilege. Immunol Today 20, 46-52.
Okada, K., Komuta, K., Hashimoto, S., Matsuzaki, S., Kanematsu, T., and Koji, T. (2000). Frequency of apoptosis of tumor-infiltrating lymphocytes induced by fas counterattack in human colorectal carcinoma and its correlation with prognosis. Clin Cancer Res 6, 3560-3564.
Ormandy, L. A., Hillemann, T., Wedemeyer, H., Manns, M. P., Greten, T. F., and Korangy, F. (2005). Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res 65, 2457-2464.
Paust, S., Lu, L., McCarty, N., and Cantor, H. (2004). Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. Proc Natl Acad Sci U S A 101, 10398-10403.
Roncador, G., Brown, P. J., Maestre, L., Hue, S., Martinez-Torrecuadrada, J. L., Ling, K. L., Pratap, S., Toms, C., Fox, B. C., Cerundolo, V., et al. (2005). Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. Eur J Immunol 35, 1681-1691.
Sakaguchi, S. (2005). Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6, 345-352.
Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M., and Toda, M. (1995). Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155, 1151-1164.
Sasada, T., Kimura, M., Yoshida, Y., Kanai, M., and Takabayashi, A. (2003). CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer 98, 1089-1099.
Sheu, B. C., Chiou, S. H., Lin, H. H., Chow, S. N., Huang, S. C., Ho, H. N., and Hsu, S. M. (2005). Up-regulation of inhibitory natural killer receptors CD94/NKG2A with suppressed intracellular perforin expression of tumor-infiltrating CD8+ T lymphocytes in human cervical carcinoma. Cancer Res 65, 2921-2929.
Sheu, B. C., Lin, R. H., Lien, H. C., Ho, H. N., Hsu, S. M., and Huang, S. C. (2001). Predominant Th2/Tc2 polarity of tumor-infiltrating lymphocytes in human cervical cancer. J Immunol 167, 2972-2978.
Shevach, E. M. (2002). CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2, 389-400.
Shibakita, M., Tachibana, M., Dhar, D. K., Kotoh, T., Kinugasa, S., Kubota, H., Masunaga, R., and Nagasue, N. (1999). Prognostic significance of Fas and Fas ligand expressions in human esophageal cancer. Clin Cancer Res 5, 2464-2469.
Shimizu, J., Yamazaki, S., and Sakaguchi, S. (1999). Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163, 5211-5218.
Somasundaram, R., Jacob, L., Swoboda, R., Caputo, L., Song, H., Basak, S., Monos, D., Peritt, D., Marincola, F., Cai, D., et al. (2002). Inhibition of cytolytic T lymphocyte proliferation by autologous CD4+/CD25+ regulatory T cells in a colorectal carcinoma patient is mediated by transforming growth factor-beta. Cancer Res 62, 5267-5272.
Steitz, J., Bruck, J., Lenz, J., Knop, J., and Tuting, T. (2001). Depletion of CD25(+) CD4(+) T cells and treatment with tyrosinase-related protein 2-transduced dendritic cells enhance the interferon alpha-induced, CD8(+) T-cell-dependent immune defense of B16 melanoma. Cancer Res 61, 8643-8646.
Takahashi, T., Tagami, T., Yamazaki, S., Uede, T., Shimizu, J., Sakaguchi, N., Mak, T. W., and Sakaguchi, S. (2000). Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192, 303-310.
Tang, Q., Boden, E. K., Henriksen, K. J., Bour-Jordan, H., Bi, M., and Bluestone, J. A. (2004). Distinct roles of CTLA-4 and TGF-beta in CD4+CD25+ regulatory T cell function. Eur J Immunol 34, 2996-3005.
Tarbell, K. V., Yamazaki, S., Olson, K., Toy, P., and Steinman, R. M. (2004). CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med 199, 1467-1477.
Viguier, M., Lemaitre, F., Verola, O., Cho, M. S., Gorochov, G., Dubertret, L., Bachelez, H., Kourilsky, P., and Ferradini, L. (2004). Foxp3 expressing CD4+CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J Immunol 173, 1444-1453.
von Boehmer, H. (2005). Mechanisms of suppression by suppressor T cells. Nat Immunol 6, 338-344.
von Herrath, M. G., and Harrison, L. C. (2003). Antigen-induced regulatory T cells in autoimmunity. Nat Rev Immunol 3, 223-232.
Wang, H. Y., Lee, D. A., Peng, G., Guo, Z., Li, Y., Kiniwa, Y., Shevach, E. M., and Wang, R. F. (2004). Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy. Immunity 20, 107-118.
Wing, K., Larsson, P., Sandstrom, K., Lundin, S. B., Suri-Payer, E., and Rudin, A. (2005). CD4+ CD25+ FOXP3+ regulatory T cells from human thymus and cord blood suppress antigen-specific T cell responses. Immunology 115, 516-525.
Wolfe, J. A. (1990). Palaeobotanical evidence for a marked temperature increase following the Cretaceous/Tertiary boundary. Nature 343, 153-156.
Woo, E. Y., Chu, C. S., Goletz, T. J., Schlienger, K., Yeh, H., Coukos, G., Rubin, S. C., Kaiser, L. R., and June, C. H. (2001). Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 61, 4766-4772.
Woo, E. Y., Yeh, H., Chu, C. S., Schlienger, K., Carroll, R. G., Riley, J. L., Kaiser, L. R., and June, C. H. (2002). Cutting edge: Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 168, 4272-4276.
Wood, K. J., and Sakaguchi, S. (2003). Regulatory T cells in transplantation tolerance. Nat Rev Immunol 3, 199-210.
Yamazaki, S., Iyoda, T., Tarbell, K., Olson, K., Velinzon, K., Inaba, K., and Steinman, R. M. (2003). Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J Exp Med 198, 235-247.
Ziegler, S. F. (2006). FOXP3: of mice and men. Annu Rev Immunol 24, 209-226.
Zou, W. (2006). Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6, 295-307.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32008-
dc.description.abstract子宮頸癌的形成是經由一連串上皮細胞病變的癌前兆所轉變而來,這一系列子宮頸上皮內的異常增生,稱為子宮頸上皮內贅瘤。 先前的研究發現存在於子宮頸癌之腫瘤浸潤淋巴球次群發生改變而且無法執行其正常的免疫功能。 癌症病人之免疫系統異常的原因有很多,其中包含了具有抑制性功能之調節性T淋巴球,其數量發生改變所造成。FOXP3向來被認定為主要控制CD4+CD25+調節性T淋巴球次群之發育和功能上最主要的基因。本論文中,首先針對腫瘤浸潤淋巴球在子宮頸癌的分佈做探討,結果顯示了腫瘤浸潤淋巴球的分布主要位於腫瘤周圍,而不是浸潤入整個腫瘤。進一步分析腫瘤浸潤淋巴球的特徵發現,表現FOXP3之淋巴球次群其主要細胞型為CD4+CD25+。
為了探討調節性T淋巴球在子宮頸癌的進展及惡化上所扮演的可能角色,我們利用比較不同時期之子宮頸病變其表現FOXP3+ 細胞次群在T淋巴球中所佔的比例,來推論在腫瘤生長的過程中 ,調節性T淋巴球是否參與在抑制免疫反應的角色。 利用免疫螢光染色的方法, 使用共軛焦顯微鏡來做觀察,再透過影像軟體的計算,來對表現FOXP3蛋白的細胞作量化。得到的結果顯示在越後期的子宮頸癌病人,其T淋巴球中表現FOXP3+次群的比例就越高。此外,此群細胞可分泌Granzyme B蛋白,推測可能經由Granzyme B蛋白的分泌來執行其調節性T淋巴球之免疫抑制功能。研究結果顯示,在不同時期之子宮頸病變其表現FOXP3+ 細胞次群顯著的差異下,表示調節性T淋巴球在子宮頸癌的惡化上可能佔有極重要的角色。
zh_TW
dc.description.abstractCervical cancer (CC) is preceded by well-defined precancerous changes in the epithelium known as cervical intraepithelial neoplasm (CIN). Our previous studies have revealed that the subpopulations and functions of tumor- infiltrating lymphocytes (TIL) from CC are altered. Dysfunction of the host immune system in cancer patients can be due to a number of reasons including the inhibitory functions of regulatory T (Treg) cells. FOXP3 has been shown to be a master control gene for the development and function of CD4+CD25+ Treg cells. In the present study, I first focused on the distribution of TILs in cervical cancer tissues and cervical intraepithelial neoplasm. The data showed that TILs located around the tumor cells and barely presence inside the tumor. Next, I characterized the phenotype of FOXP3+ T cells. By using the double-staining analysis, the CD4+CD25+FOXP3+ phenotype of tumor-associated Treg cells have accumulated around the tumor cells.
To characterize the pathophysiological role of Treg cells in the progression of CC, I compared samples from four groups: CIN I/II, CIN III, CC with and without lymph node metastasis. By using the immunofluorescence staining and confocal-based image quantitative analysis in paraffin-embedded tissue sections, excess in the presence of FOXP3+ cells is observed from CC compared to that from CIN. Moreover, these FOXP3+ cells can express Granzyme B, indicated that Granzyme B secretion might involved in the inhibitory function of Treg cells. The significant increase in these CD4+CD25+FOXP3+ cells in CC indicates that Treg might play an important role in the progression of CC.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:27:49Z (GMT). No. of bitstreams: 1
ntu-95-R93449012-1.pdf: 1271155 bytes, checksum: 438a753be7ad8781ea406e9661a31713 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsTable of Contents
Abstract i
摘要 ii
Table of Contents iii
Figure of Contents iv
Chapter I Introduction - 2 -
Part 1 Regulatory T cells and human tumors - 3 -
Part 2 Cancer of the uterine cervix - 4 -
Part 3 The immunological response of cervical cancer - 5 -
Part 4 Specific discriminatory features of Treg populations - 6 -
Part 5 Characterization of FOXP3 - 7 -
Part 6 Suppression mechanisms of regulatory T cells - 8 -
Part 7 Perforin and granzyme pathway and Treg-cell-mediated direct killing - 9 -
Chapter II Materials and Methods - 12 -
Part 1 Clinical Specimens - 12 -
Part 2 Immunohistochemistry - 12 -
Part 3 Confocal microscopic Analysis - 13 -
Chapter III Results - 15 -
Part 1 The distribution of TILs in cervical cancer tissues and cervical intraepithelial neoplasm - 15 -
Part 2 Phenotype of tumor-associated FOXP3+ T cells - 16 -
Part 3 Physical contact between FOXP3+ T cells and CD8+ T cells
- 16 -
Part 4 The role of FOXP3+ Treg in tumor progression - 17 -
Part 5 The suppression mechanism of Treg cells in cervical cancer
- 18 -
Chapter IV Discussion - 21 -
References - 28 -
Figure of Contents
Figure 1. Immunohistochemical staining for CD4, CD8 and FOXP3 - 35 -
Figure 2. Phenotype of tumor-associated FOXP3+ T cells. - 37 -
Figure 3. Physical contact between FOXP3+ T cells and CD8+ cytotoxic T cells. - 39 -
Figure 4. Expression of FOXP3+ T cells in cervical cancer and cervical intraepithelial neoplasia. - 41 -
Figure 5. Percentage of tumor mass FOXP3+CD3+ cells in CD3+ cells population is quantified by confocal microscopic analysis. - 43 -
Figure 6. FOXP3+ cells rarely express Granzyme A in cervical cancer tissues. - 45 -
Figure 7. FOXP3+ cells express Granzyme B in cervical cancer tissues.
- 47 -
dc.language.isoen
dc.subject子宮頸癌zh_TW
dc.subject腫瘤浸潤淋巴球zh_TW
dc.subject調節性T細胞zh_TW
dc.subjecttumor-infiltrating lymphocytesen
dc.subjectcervical canceren
dc.subjectTILsen
dc.subjectTregen
dc.subjectregulatory T cellen
dc.subjectFOXP3en
dc.title腫瘤浸潤T淋巴球其表現FOXP3次群的比例隨子宮頸癌的嚴重度增加zh_TW
dc.titleTumor-infiltrating lymphocytes contain higher proportion of FOXP3+ T lymphocytes from cervical cancer than that from cervical intraepithelial neoplasmen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee伍安怡,李建國,江伯倫
dc.subject.keyword子宮頸癌,腫瘤浸潤淋巴球,調節性T細胞,zh_TW
dc.subject.keywordcervical cancer,TILs,Treg,regulatory T cell,FOXP3,tumor-infiltrating lymphocytes,en
dc.relation.page49
dc.rights.note有償授權
dc.date.accepted2006-07-28
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved