請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32006完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳宏(Hung Chen 陳宏) | |
| dc.contributor.author | Miao-Hui Zeng | en |
| dc.contributor.author | 曾妙卉 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:27:44Z | - |
| dc.date.available | 2011-07-31 | |
| dc.date.copyright | 2006-07-31 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-27 | |
| dc.identifier.citation | [1] Ahn S.N., Bollich C.N. and Mcclung A.M. (1993). RFLP analysis of genomic regions associated with cooked-kernel
elongation in rice Theoretical and Applied Genetics 87 ,27-32. [2] Assuncao A.G.L., Pieper B., Vromans J. (2006). Construction of a genetic map of Thlaspi caerulescens and quantitative trait loci analysis of Zinc accumulation New Phytologist 170, 21-32. [3] Darvasi, A., and Soller, M. (1995). Advanced intercross lines, an experimental population for fine genetic mapping Genetics 141, 1199-1207. [4] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society 39,1-38. [5] Doerge, R.W. and Churchill, G.A. (1996). Permutation test for multiple loci affecting a quantitative character. Genetics 142, 284-294. [6] Haldane, J. B. S. (1919). The combination of linkage values and the calculation quantitative trait loci of distance between the loci of linked factor. J. Genet. 8, 299-309. [7] Haley, C. S. and Knott, S. A. (1992). A simple regression method for mapping quantitative trait loci in line crosses using franking markers. Heredity 69, 315-324. [8] Jansen, R. C. (1993). Interval mapping of multiple quantitative trait loci. Genetics 135, 205-211. [9] Kao, C.-H., Z-B. Zeng (1997). General formulas for obtaining the MLE and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm. Biometrics 53, 653-665. [10] Kao, C.-H., Z-B. Zeng and R. D. Teasdale (1999). Multiple interval mapping for quantitative trait loci. Genetics 152, 1203-1216. [11] Kao, C.-H. (2000). On the difference between maximum likelihood and regression interval mapping in the analysis of quantitative trait loci. Genetics 156, 855-865. [12]Kao, C.-H., Z-B. Zeng (2002). Modeling epistasis of quantitative trait loci using Cockerham's model. Genetics 160, 1243-1261. [13]Krakowsky M.D., Brinkman M.J., Woodman-Clikeman W.L. (2002). Genetic components of resistance to stalk tunneling by the European corn borer in maize Crop Science 42, 1309-1315. [14]Lander, E. S. and Botstein, D. (1989). Mapping Mendelian factors underlying quantitative traits using RFLP linkage. Genetics 121, 185-199. [15]Little, R. J. A. and Rubin, D. B. (1987). Statistical Analysis with Missing Data. New York: John Wiley. [16]Satagopan, J. M., Yandell, B. S., Newton, A and Osbone, T.C. (1996). A Bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics 144, 805-816. [17]Sillanpaa, M. J. and Arjars, E. (1999). Bayesian mapping of multiple quantitative trait loci from incomplete outbred offspring data. Genetics 151, 1605-1619. [18] Thoday, J. H. (1961). Location of polygenes. Nature 191, 368-370. [19] Xu, S. (1995). A comment on the simple regression method for interval mapping. Genetics 141, 1657-1659. [20] Xu, S. (1998). Iteratively reweighted least squares mapping for quantitative trait loci. Behavior Genetics 28, 341-355. [21] Yi, N. (2004). A unified Markov vhain Monte Carlo framework for mapping multiple quantitative trait loci. Genetics 167, 967-975. [22] Zeng, Z.-B. (1993). Theoretical basis for separation of multiple linked gene effects in mapping of quantitative trait loci. Proceedings of the National Academy of Science 90, 10972-10976. [23] Zeng, Z.-B. (1994). Precision mapping of quantitative trait loci. Genetics 136, 1457-1468. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32006 | - |
| dc.description.abstract | 用來研究數量性狀基因座(Quantitative trait loci, QTL) 的定位之族群大多為回交與自交族群, 而本文提出一針對互交F3族群的QTL 定位統計模式, 並且討論其定位之效率與估計。由於數量性狀基因座的基因型態未知, 故統計模式為一個混合常態的模型。將混合常態模型視為不完整資料問題, 可以採用EM 演算法求出QTL 的作用與位置的估計值。由於F3提供更多的重組訊息, 所以此種族群的定位有可能會比F2來的精準。因此, 本文藉由所提之統計模式研究F3族群在QTL 定位上的性質, 並在控制樣本個數、遺傳率與兩基因座之間的距離來做模擬研究, 比較F2和F3族群在QTL 定位上的效率, 我們發現在針對兩連鎖QTL 的偵測和估計方面, 一般而言F3族群都比F2族群容易同時偵查出兩個連鎖的QTL, 並且估計值較為準確, 尤其是在小樣本, 基因座距離很靠近或是遺傳率很低的時候, 其偵測的效果差異更為顯著。本研究可做為針對利用Advanced intercross populations 來進行QTL 定位研究的基礎同時對於改善QTL 的定位有莫大的幫助。 | zh_TW |
| dc.description.abstract | Most of the current statistical methods of QTL mapping are developed for the backcross and F2 populations. The inter-crossed F3 population is also a popular experimental population for QTL study. As the F3 population can provide more recombinants than the backcross and F2 populations, it could be more efficient in mapping for closely linked QTL. We propose a statistical model to estimate the effects and
positions of two closely linked QTL for the F3 population. As the genotypes of QTL are usually unknown, the tatistical model is a finite mixture model. By treating the mixture model as an incomplete data problem, the EM lgorithm is implemented to obtain the maximum likelihood estimates of the parameters. Simulations were used to illustrate the performance of the proposed statistical QTL mapping model in the F3 population and evaluate the relative efficiency in the F3 population (as comparing to that of the F2 population) in QTL mapping under several factors, such as sample size, genetic distance between QTL (and markers), the proportion of trait variance contributed by QTL (i.e. heritability). It is found that the QTL mapping by using the F3 population is more powerful and precise in separating two closely linked QTL and estimating the parameters than the use of the F2 population under those controlled factors, especially for small sample size, close genetic distance and low heritability. The paper can help outlining a strategy of detecting tightly linked QTL for the advanced intercross populations to improve the resolution of genetic architecture of quantitative traits. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:27:44Z (GMT). No. of bitstreams: 1 ntu-95-R92221032-1.pdf: 1051131 bytes, checksum: e21c9778c313d6e2b4188635e43ae82c (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Table of Contents iv
Abstract v Abstract (in Chinese) vii Acknowledgements viii 1 Introduction 1 2 Experimental Populations 4 3 Genetic Model 8 4 Statistical Model for QTL Mapping and Likelihood Function 10 5 EM Algorithm for Obtaining the MLEs 12 6 Hypothesis Testing 15 7 Simulation 17 8 Conclusion and Discussion 27 Bibliography 29 | |
| dc.language.iso | en | |
| dc.subject | 最大概式估計 | zh_TW |
| dc.subject | 混合常態模型 | zh_TW |
| dc.subject | EM演算法 | zh_TW |
| dc.subject | 區間定位法 | zh_TW |
| dc.subject | 互交F3族群 | zh_TW |
| dc.subject | 定位數量性狀基因座 | zh_TW |
| dc.subject | Advanced intercross populations | en |
| dc.subject | EM algorithm | en |
| dc.subject | Maximum likelihood | en |
| dc.subject | Normal Mixture model | en |
| dc.subject | QTL mapping | en |
| dc.subject | Interval mapping | en |
| dc.subject | Inter-crossed F3 population | en |
| dc.title | 對F3族群定位數量性狀基因座的統計方法研究 | zh_TW |
| dc.title | Mapping Quantitative Trait Loci Using
Inter-crossed F3 Populations | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 高振宏(Chen- Hung Kao 高振宏) | |
| dc.contributor.oralexamcommittee | 廖振鐸(Chen-Tuo Liao 廖振鐸),謝文萍(Wen-Ping Hsieh 謝文萍) | |
| dc.subject.keyword | EM演算法,最大概式估計,混合常態模型,定位數量性狀基因座,區間定位法,互交F3族群, | zh_TW |
| dc.subject.keyword | EM algorithm,Maximum likelihood,Normal Mixture model,QTL mapping,Interval mapping,Inter-crossed F3 population,Advanced intercross populations, | en |
| dc.relation.page | 31 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-28 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
