Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32002
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李芳仁(Fang-Jen Lee)
dc.contributor.authorHsiao-Chuan Huangen
dc.contributor.author黃小娟zh_TW
dc.date.accessioned2021-06-13T03:27:35Z-
dc.date.available2009-08-03
dc.date.copyright2006-08-03
dc.date.issued2006
dc.date.submitted2006-07-28
dc.identifier.citationAmes, J. B., Ishima, R., Tanaka, T., Gordon, J. I., Stryer, L. and Ikura, M. (1997). Molecular mechanics of calcium-myristoyl switches. Nature 389, 198-202.
Aoe, T., Cukierman, E., Lee, A., Cassel, D., Peters, P. J. and Hsu, V. W. (1997). The KDEL receptor, ERD2, regulates intracellular traffic by recruiting a GTPase-activating protein for ARF1. Embo J 16, 7305-16.
Behnia, R., Panic, B., Whyte, J. R. and Munro, S. (2004). Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p. Nat Cell Biol 6, 405-13.
Bernards, A. and Settleman, J. (2004). GAP control: regulating the regulators of small GTPases. Trends Cell Biol 14, 377-85.
Blader, I. J., Cope, M. J., Jackson, T. R., Profit, A. A., Greenwood, A. F., Drubin, D. G., Prestwich, G. D. and Theibert, A. B. (1999). GCS1, an Arf guanosine triphosphatase-activating protein in Saccharomyces cerevisiae, is required for normal actin cytoskeletal organization in vivo and stimulates actin polymerization in vitro. Mol Biol Cell 10, 581-96.
Blazejczyk, M., Wojda, U., Sobczak, A., Spilker, C., Bernstein, H. G., Gundelfinger, E. D., Kreutz, M. R. and Kuznicki, J. (2006). Ca2+-independent binding and cellular expression profiles question a significant role of calmyrin in transduction of Ca2+-signals to Alzheimer's disease-related presenilin 2 in forebrain. Biochim Biophys Acta 1762, 66-72.
Bonifacino, J. S. and Glick, B. S. (2004). The mechanisms of vesicle budding and fusion. Cell 116, 153-66.
Burd, C. G., Strochlic, T. I. and Gangi Setty, S. R. (2004). Arf-like GTPases: not so Arf-like after all. Trends Cell Biol 14, 687-94.
Burgoyne, R. D. and Clague, M. J. (2003). Calcium and calmodulin in membrane fusion. Biochim Biophys Acta 1641, 137-43.
Chen, J. L., Ahluwalia, J. P. and Stamnes, M. (2002). Selective effects of calcium chelators on anterograde and retrograde protein transport in the cell. J Biol Chem 277, 35682-7.
Claude, A., Zhao, B. P., Kuziemsky, C. E., Dahan, S., Berger, S. J., Yan, J. P., Armold, A. D., Sullivan, E. M. and Melancon, P. (1999). GBF1: A novel Golgi-associated BFA-resistant guanine nucleotide exchange factor that displays specificity for ADP-ribosylation factor 5. J Cell Biol 146, 71-84.
Cockcroft, S., Thomas, G. M., Fensome, A., Geny, B., Cunningham, E., Gout, I., Hiles, I., Totty, N. F., Truong, O. and Hsuan, J. J. (1994). Phospholipase D: a downstream effector of ARF in granulocytes. Science 263, 523-6.
Cukierman, E., Huber, I., Rotman, M. and Cassel, D. (1995). The ARF1 GTPase-activating protein: zinc finger motif and Golgi complex localization. Science 270, 1999-2002.
Dascher, C. and Balch, W. E. (1994). Dominant inhibitory mutants of ARF1 block endoplasmic reticulum to Golgi transport and trigger disassembly of the Golgi apparatus. J Biol Chem 269, 1437-48.
Donaldson, J. G. (2003). Multiple roles for Arf6: sorting, structuring, and signaling at the plasma membrane. J Biol Chem 278, 41573-6.
Etienne-Manneville, S. and Hall, A. (2002). Rho GTPases in cell biology. Nature 420, 629-35.
Fang, X., Chen, C., Wang, Q., Gu, J. and Chi, C. (2001). The interaction of the calcium- and integrin-binding protein (CIBP) with the coagulation factor VIII. Thromb Res 102, 177-85.
Garcia-Mata, R., Bebok, Z., Sorscher, E. J. and Sztul, E. S. (1999). Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera. J Cell Biol 146, 1239-54.
Gentry, H. R., Singer, A. U., Betts, L., Yang, C., Ferrara, J. D., Sondek, J. and Parise, L. V. (2005). Structural and biochemical characterization of CIB1 delineates a new family of EF-hand-containing proteins. J Biol Chem 280, 8407-15.
Griffith, J. P., Kim, J. L., Kim, E. E., Sintchak, M. D., Thomson, J. A., Fitzgibbon, M. J., Fleming, M. A., Caron, P. R., Hsiao, K. and Navia, M. A. (1995). X-ray structure of calcineurin inhibited by the immunophilin-immunosuppressant FKBP12-FK506 complex. Cell 82, 507-22.
Haataja, L., Kaartinen, V., Groffen, J. and Heisterkamp, N. (2002). The small GTPase Rac3 interacts with the integrin-binding protein CIB and promotes integrin alpha(IIb)beta(3)-mediated adhesion and spreading. J Biol Chem 277, 8321-8.
Henderson, M. J., Russell, A. J., Hird, S., Munoz, M., Clancy, J. L., Lehrbach, G. M., Calanni, S. T., Jans, D. A., Sutherland, R. L. and Watts, C. K. (2002). EDD, the human hyperplastic discs protein, has a role in progesterone receptor coactivation and potential involvement in DNA damage response. J Biol Chem 277, 26468-78.
Hollenbach, A. D., McPherson, C. J., Lagutina, I. and Grosveld, G. (2002). The EF-hand calcium-binding protein calmyrin inhibits the transcriptional and DNA-binding activity of Pax3. Biochim Biophys Acta 1574, 321-8.
Hwang, P. M. and Vogel, H. J. (2000). Structures of the platelet calcium- and integrin-binding protein and the alphaIIb-integrin cytoplasmic domain suggest a mechanism for calcium-regulated recognition; homology modelling and NMR studies. J Mol Recognit 13, 83-92.
Ingley, E., Williams, J. H., Walker, C. E., Tsai, S., Colley, S., Sayer, M. S., Tilbrook, P. A., Sarna, M., Beaumont, J. G. and Klinken, S. P. (1999). A novel ADP-ribosylation like factor (ARL-6), interacts with the protein-conducting channel SEC61beta subunit. FEBS Lett 459, 69-74.
Ito, A., Uehara, T. and Nomura, Y. (2000). Isolation of Ich-1S (caspase-2S)-binding protein that partially inhibits caspase activity. FEBS Lett 470, 360-4.
Jackson, C. L. (2003). Membrane traffic: Arl GTPases get a GRIP on the Golgi. Curr Biol 13, R174-6.
Johnston, J. A., Ward, C. L. and Kopito, R. R. (1998). Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143, 1883-98.
Kahn, R. A., Cherfils, J., Elias, M., Lovering, R. C., Munro, S. and Schurmann, A. (2006). Nomenclature for the human Arf family of GTP-binding proteins: ARF, ARL, and SAR proteins. J Cell Biol 172, 645-50.
Kahn, R. A. and Gilman, A. G. (1984). Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin. J Biol Chem 259, 6228-34.
Kahn, R. A. and Gilman, A. G. (1986). The protein cofactor necessary for ADP-ribosylation of Gs by cholera toxin is itself a GTP binding protein. J Biol Chem 261, 7906-11.
Kauselmann, G., Weiler, M., Wulff, P., Jessberger, S., Konietzko, U., Scafidi, J., Staubli, U., Bereiter-Hahn, J., Strebhardt, K. and Kuhl, D. (1999). The polo-like protein kinases Fnk and Snk associate with a Ca(2+)- and integrin-binding protein and are regulated dynamically with synaptic plasticity. Embo J 18, 5528-39.
Klausner, R. D., Donaldson, J. G. and Lippincott-Schwartz, J. (1992). Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol 116, 1071-80.
Kopito, R. R. and Ron, D. (2000). Conformational disease. Nat Cell Biol 2, E207-9.
Lee, F. J., Huang, C. F., Yu, W. L., Buu, L. M., Lin, C. Y., Huang, M. C., Moss, J. and Vaughan, M. (1997). Characterization of an ADP-ribosylation factor-like 1 protein in Saccharomyces cerevisiae. J Biol Chem 272, 30998-1005.
Lee, G. E., Yu, E. Y., Cho, C. H., Lee, J., Muller, M. T. and Chung, I. K. (2004). DNA-protein kinase catalytic subunit-interacting protein KIP binds telomerase by interacting with human telomerase reverse transcriptase. J Biol Chem 279, 34750-5.
Leisner, T. M., Liu, M., Jaffer, Z. M., Chernoff, J. and Parise, L. V. (2005). Essential role of CIB1 in regulating PAK1 activation and cell migration. J Cell Biol 170, 465-76.
Lin, C. Y., Huang, P. H., Liao, W. L., Cheng, H. J., Huang, C. F., Kuo, J. C., Patton, W. A., Massenburg, D., Moss, J. and Lee, F. J. (2000). ARL4, an ARF-like protein that is developmentally regulated and localized to nuclei and nucleoli. J Biol Chem 275, 37815-23.
Lin, C. Y., Li, C. C., Huang, P. H. and Lee, F. J. (2002). A developmentally regulated ARF-like 5 protein (ARL5), localized to nuclei and nucleoli, interacts with heterochromatin protein 1. J Cell Sci 115, 4433-45.
Liu, Y. W., Huang, C. F., Huang, K. B. and Lee, F. J. (2005). Role for Gcs1p in regulation of Arl1p at trans-Golgi compartments. Mol Biol Cell 16, 4024-33.
Lu, L. and Hong, W. (2003). Interaction of Arl1-GTP with GRIP domains recruits autoantigens Golgin-97 and Golgin-245/p230 onto the Golgi. Mol Biol Cell 14, 3767-81.
Lu, L., Horstmann, H., Ng, C. and Hong, W. (2001). Regulation of Golgi structure and function by ARF-like protein 1 (Arl1). J Cell Sci 114, 4543-55.
Lu, L., Tai, G. and Hong, W. (2004). Autoantigen Golgin-97, an effector of Arl1 GTPase, participates in traffic from the endosome to the trans-golgi network. Mol Biol Cell 15, 4426-43.
Lupashin, V. and Sztul, E. (2005). Golgi tethering factors. Biochim Biophys Acta 1744, 325-39.
Macia, E., Luton, F., Partisani, M., Cherfils, J., Chardin, P. and Franco, M. (2004). The GDP-bound form of Arf6 is located at the plasma membrane. J Cell Sci 117, 2389-98.
Miura, K., Jacques, K. M., Stauffer, S., Kubosaki, A., Zhu, K., Hirsch, D. S., Resau, J., Zheng, Y. and Randazzo, P. A. (2002). ARAP1: a point of convergence for Arf and Rho signaling. Mol Cell 9, 109-19.
Naik, U. P., Patel, P. M. and Parise, L. V. (1997). Identification of a novel calcium-binding protein that interacts with the integrin alphaIIb cytoplasmic domain. J Biol Chem 272, 4651-4.
Nie, Z., Hirsch, D. S. and Randazzo, P. A. (2003). Arf and its many interactors. Curr Opin Cell Biol 15, 396-404.
Olshevskaya, E. V., Hughes, R. E., Hurley, J. B. and Dizhoor, A. M. (1997). Calcium binding, but not a calcium-myristoyl switch, controls the ability of guanylyl cyclase-activating protein GCAP-2 to regulate photoreceptor guanylyl cyclase. J Biol Chem 272, 14327-33.
Panic, B., Perisic, O., Veprintsev, D. B., Williams, R. L. and Munro, S. (2003). Structural basis for Arl1-dependent targeting of homodimeric GRIP domains to the Golgi apparatus. Mol Cell 12, 863-74.
Pasqualato, S., Renault, L. and Cherfils, J. (2002). Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for 'front-back' communication. EMBO Rep 3, 1035-41.
Pinton, P., Pozzan, T. and Rizzuto, R. (1998). The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca2+ store, with functional properties distinct from those of the endoplasmic reticulum. In Embo J, vol. 17, pp. 5298-308.
Porat, A. and Elazar, Z. (2000). Regulation of intra-Golgi membrane transport by calcium. J Biol Chem 275, 29233-7.
Rajan, R. S., Illing, M. E., Bence, N. F. and Kopito, R. R. (2001). Specificity in intracellular protein aggregation and inclusion body formation. Proc Natl Acad Sci U S A 98, 13060-5.
Randazzo, P. A. and Hirsch, D. S. (2004). Arf GAPs: multifunctional proteins that regulate membrane traffic and actin remodelling. Cell Signal 16, 401-13.
Randazzo, P. A., Terui, T., Sturch, S., Fales, H. M., Ferrige, A. G. and Kahn, R. A. (1995). The myristoylated amino terminus of ADP-ribosylation factor 1 is a phospholipid- and GTP-sensitive switch. J Biol Chem 270, 14809-15.
Rosenwald, A. G., Rhodes, M. A., Van Valkenburgh, H., Palanivel, V., Chapman, G., Boman, A., Zhang, C. J. and Kahn, R. A. (2002). ARL1 and membrane traffic in Saccharomyces cerevisiae. Yeast 19, 1039-56.
Schmidt, A. and Hall, A. (2002). Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev 16, 1587-609.
Shin, D. M., Zhao, X. S., Zeng, W., Mozhayeva, M. and Muallem, S. (2000). The mammalian Sec6/8 complex interacts with Ca(2+) signaling complexes and regulates their activity. J Cell Biol 150, 1101-12.
Shock, D. D., Naik, U. P., Brittain, J. E., Alahari, S. K., Sondek, J. and Parise, L. V. (1999). Calcium-dependent properties of CIB binding to the integrin alphaIIb cytoplasmic domain and translocation to the platelet cytoskeleton. Biochem J 342 Pt 3, 729-35.
Stabler, S. M., Ostrowski, L. L., Janicki, S. M. and Monteiro, M. J. (1999). A myristoylated calcium-binding protein that preferentially interacts with the Alzheimer's disease presenilin 2 protein. J Cell Biol 145, 1277-92.
Subramaniam, V. N., Peter, F., Philp, R., Wong, S. H. and Hong, W. (1996). GS28, a 28-kilodalton Golgi SNARE that participates in ER-Golgi transport. Science 272, 1161-3.
Takatsu, H., Yoshino, K., Toda, K. and Nakayama, K. (2002). GGA proteins associate with Golgi membranes through interaction between their GGAH domains and ADP-ribosylation factors. Biochem J 365, 369-78.
Tamkun, J. W., Kahn, R. A., Kissinger, M., Brizuela, B. J., Rulka, C., Scott, M. P. and Kennison, J. A. (1991). The arflike gene encodes an essential GTP-binding protein in Drosophila. Proc Natl Acad Sci U S A 88, 3120-4.
Van Valkenburgh, H., Shern, J. F., Sharer, J. D., Zhu, X. and Kahn, R. A. (2001). ADP-ribosylation factors (ARFs) and ARF-like 1 (ARL1) have both specific and shared effectors: characterizing ARL1-binding proteins. J Biol Chem 276, 22826-37.
Venkateswarlu, K., Brandom, K. G. and Lawrence, J. L. (2004). Centaurin-alpha1 is an in vivo phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating protein for ARF6 that is involved in actin cytoskeleton organization. J Biol Chem 279, 6205-8.
Venkateswarlu, K., Oatey, P. B., Tavare, J. M., Jackson, T. R. and Cullen, P. J. (1999). Identification of centaurin-alpha1 as a potential in vivo phosphatidylinositol 3,4,5-trisphosphate-binding protein that is functionally homologous to the yeast ADP-ribosylation factor (ARF) GTPase-activating protein, Gcs1. Biochem J 340 ( Pt 2), 359-63.
Waelter, S., Boeddrich, A., Lurz, R., Scherzinger, E., Lueder, G., Lehrach, H. and Wanker, E. E. (2001). Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Mol Biol Cell 12, 1393-407.
Weis, K. (2003). Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112, 441-51.
White, C., Yang, J., Monteiro, M. J. and Foskett, J. K. (2006). CIB1, a ubiquitously-expressed Ca2+-binding protein-ligand of the InsP3 receptor Ca2+-release channel. J Biol Chem in press.
Wu, M., Lu, L., Hong, W. and Song, H. (2004). Structural basis for recruitment of GRIP domain golgin-245 by small GTPase Arl1. Nat Struct Mol Biol 11, 86-94.
Yang, J. S., Lee, S. Y., Gao, M., Bourgoin, S., Randazzo, P. A., Premont, R. T. and Hsu, V. W. (2002). ARFGAP1 promotes the formation of COPI vesicles, suggesting function as a component of the coat. J Cell Biol 159, 69-78.
Yoshino, A., Bieler, B. M., Harper, D. C., Cowan, D. A., Sutterwala, S., Gay, D. M., Cole, N. B., McCaffery, J. M. and Marks, M. S. (2003). A role for GRIP domain proteins and/or their ligands in structure and function of the trans Golgi network. J Cell Sci 116, 4441-54.
Zerial, M. and McBride, H. (2001). Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2, 107-17.
Zhou, C., Cunningham, L., Marcus, A. I., Li, Y. and Kahn, R. A. (2006). Arl2 and Arl3 regulate different microtubule-dependent processes. Mol Biol Cell 17, 2476-87.
Zhou, W., Qian, Y., Kunjilwar, K., Pfaffinger, P. J. and Choe, S. (2004). Structural insights into the functional interaction of KChIP1 with Shal-type K(+) channels. Neuron 41, 573-86.
Zhu, J., Stabler, S. M., Ames, J. B., Baskakov, I. and Monteiro, M. J. (2004). Calcium binding sequences in calmyrin regulates interaction with presenilin-2. Exp Cell Res 300, 440-54.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32002-
dc.description.abstract腺嘌呤核苷二磷酸核醣化因子(ARF)與腺嘌呤核苷二磷酸核醣化因子相似蛋白(ARL)為參與細胞內運輸之ARF家族成員,這些蛋白受到鳥糞嘌呤核苷酸轉換因子(GEF)與鳥糞核苷三磷酸水解脢活化蛋白(GAP)的調控而循環在鳥糞核苷三磷酸(GTP)結合活化態與鳥糞核苷二磷酸(GDP)結合去活化態之間。ARL蛋白之間或與ARF蛋白之序列相同程度大約在40~60%左右。儘管ARL與ARF蛋白有高相似度,其中卻只有ARL1的功能被發現與液泡輸送有關。ARL1位於高基氏體且參與從反式高基氏網(TGN)至細胞膜及從內小體(endosome)至反式高基氏網之蛋白質運輸。在本論文共分為三部份,第一部分主要是利用活化(Q71L)與去活化突變型(T31N)來探討ARL1之功能。與過去研究不同的是,我們發現當大量表現活化型ARL1時,會使Golgin-245於高基氏體的訊號消失。當大量表現去活化型ARL1時,只會影響位於反式高基氏體之蛋白質而不影響位於順式(cis/medial)高基氏體上之蛋白。此外,當大量表現活化型ARL1時,水泡性口炎病毒醣蛋白(VSVG)之運輸會受到阻礙,但這種現象在ARL1弱化(knockdown)的細胞中卻不存在。這意謂著ARL1本身可能不直接參與VSVG的運輸。在第二部份,我們嘗試找尋ARL1的GAP。在三個可能的GAP中,利用酵母菌雙雜交系統(yeast two-hybrid),ARFGAP1不會與ARL1有相互作用;但在細胞中大量表現ARFGAP1會影響ARL1之位置,而我們認為這種影響是因為整個高基氏體都受到破壞的結果所致。Centaurin α1既不會與ARL1作用也不影響ARL1在細胞內之位置。ARAP1會與ARL1Q71LdN作用,但大量表現ARAP1卻看不到ARL1受到影響,ARAP1是否可能為ARL1之GAP需進一歩釐清。在第三部份,我們確認一個活化型ARL1之作用蛋白CIB1且顯示出它們之間的結合可能是仰賴鈣離子的作用。再者,CIB1廣泛分佈於細胞中,尤其在某種狀態下,CIB1在高基氏體的位置與ARL1有明顯重疊的情形。但CIB1位於高基氏體與ARL1之存在與否並無相關,反之亦然。很遺憾地,雖然發現這兩個蛋白之間會相互作用且在細胞中之位置有重疊的情形,目前為止,我們仍無法找出它們在功能上的相關性。zh_TW
dc.description.abstractADP-ribosylation factors (ARFs) and ARF-like proteins (ARLs) are members of the ARF family, which play essential roles in intracellular membrane trafficking. These proteins are regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) to cycle between active GTP-bound form and inactive GDP-bound form. ARLs are ~40–60 % identical to each other and to ARFs. Despite their high similarity to ARFs, only ARL1 has been shown to be involved in vesicular transport. ARL1 is localized in the Golgi complex and may participate in trans-Golgi network (TGN) to plasma membrane or endosome to TGN trafficking pathway. In the first part, we investigated the function of ARL1 by using constitutively active (Q71L) or inactive (T31N) ARL1. Discrepant with previous studies, we found that overexpressed ARL1Q71L specifically disperses Golgin-245 from Golgi apparatus. Over-expressed ARL1T31N disrupted trans-Golgi proteins but not cis/medial Golgi and endosome proteins. Moreover, VSVG transport was blocked in ARL1Q71L overexpressed but not in ARL1 knockdown cells which implied that ARL1 itself may not directly participate in the VSVG transport. In the second part, we attempted to find possible GAP for ARL1. Among our three candidates, ARFGAP1 did not interact with ARL1 in yeast two-hybrid assay but endogenous ARL1 were dissociated from the Golgi in cells with overexpressed ARFGAP1, which we considered an indirect consequence of general effect on Golgi proteins. Centaurin α1 neither interacted with ARL1 nor affected ARL1 localization. ARAP1 interacted with ARL1Q71LdN, but we could not detect the change of ARL1 localization when ARAP1 overexpressed. Whether ARAP1 could be GAP for ARL1 needs to be investigated further. In the third part, we identified an ARL1Q71L interacting protein, CIB1. We showed that ARL1 interacted with CIB1 in a Ca2+-dependent manner. Furthermore, CIB1 was ubiquitously expressed in cells especially colocalized with ARL1 in the Golgi apparatus in particular conditions. In addition, Golgi localization of CIB1 was not dependent on ARL1, and vice versa. Unfortunately, even though the interaction and colocalization of ARL1 and CIB1 were observed, we could not demonstrate the functional relevance between these two proteins.en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:27:35Z (GMT). No. of bitstreams: 1
ntu-95-R93448011-1.pdf: 2360758 bytes, checksum: 8e47a7f44a2262473ae9f9d14aa5e899 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsTable of Contents 1
中文摘要 2
Abstract 3
Abbreviations 4
Introduction 5
Material and Methods 11
Results 17
Part I. Functional characterization of ARL1 17
Part II. To search the candidate GAPs for ARL1. 20
Part III. To identify ARL1 interacting protein, CIB1 23
Discussion 26
References 33
Figure legends 41
Table 1. Primers used in this study 46
Table 2. Sequences of siRNA oligonucleotides 47
Table 3. Antibodies used in this study 48
Figures 49
dc.language.isoen
dc.title人類第一腺嘌呤核苷二磷酸核糖化相似因子與其結合蛋白之功能性探討zh_TW
dc.titleFunctional characterization of human ADP-ribosylation factor like-1(ARL1) and its interacting proteinsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee嚴仲陽(Jong-Young Yen),周祖述(Tzuu-Shuh Jou),陳瑞華(Ruey-Hwa Chen)
dc.subject.keyword腺嘌呤核&#33527,二磷酸核醣化因子,高基氏體,zh_TW
dc.subject.keywordARF,ARL1,CIB1,GAP,Golgi,en
dc.relation.page73
dc.rights.note有償授權
dc.date.accepted2006-07-28
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
2.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved