Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31996
標題: 輔助學習式多標籤主動學習演算法
Multi-label Active Learning with Auxiliary Learner
作者: Chen-Wei Hung
洪琛洧
指導教授: 林軒田(Hsuan-Tien Lin)
關鍵字: 機器學習,主動學習,多標籤分類,支持向量機,
Active Learning,Collaborative Learning,Multi-label Classi&#64257,cation,Support Vector Machine,Query criteria,
出版年 : 2011
學位: 碩士
摘要: 在多標籤分類的應用中,由於標籤費用高昂的關係,使得多標籤主動學習開始成為一個熱門的研究領域,而其中一個最新被提出來的演算法 MMC (maximum loss reduction with maximum confidence),無論是在學習還是詢問的步驟中,都高度依賴著一個特定的多標籤分類器:一對多支持向量機 (binary relevance support vector machine) ,但是MMC的這種高度依賴性並不明確是否是必要的,在本論文中,我們提出了一個一般性的多標籤主動學習框架,這個框架移除了MMC的高度依賴性,並且擁有可參數化的三個元件:用來做決策的主要學習者;用來輔助詢問的次要學習者;以及一個詢問的策略。MMC以及許多其他的演算法都可以被視為這個框架的特例。而基於這個框架,我們提出了兩個不同於以往的詢問策略,HLR (Hamming loss reduction) 和SHLR (soft Hamming loss reduction),並在許多不同的主要/次要學習者的組合上測試了這些詢問的策略的好壞。在許多的實驗中都顯示,我們所提出的SHLR,無論是在何種衡量基準以及主要/次要學習者的組合上都擁有最穩定良好的表現。
Multi-label active learning is an important problem because of the expensive labeling cost in multi-label classification applications. A state-of-the-art approach for multi-label active learning, maximum loss reduction with maximum confidence (MMC), heavily depends on the binary relevance support vector machine in both learning and querying. Nevertheless, it is not clear whether the heavy dependence is necessary or unrivaled. In this work, we extend MMC to a more general framework that removes the heavy dependence and clarifies the roles of each component in MMC. In particular, the framework is characterized by a major learner for making predictions, an auxiliary learner for helping with query decisions and a query criterion based on the disagreement between the two learners. The framework takes MMC and several baseline multi-label active learning algorithms as special cases. With the flexibility of the general framework, we design two criteria other than the one used by MMC. We also explore the possibility of using learners other than the binary relevance support vector machine for multi-label active learning. Experimental results demonstrate that a new criterion, soft Hamming loss reduction, is usually better than the original MMC criterion across different pairs of major/auxiliary learners, and validate the usefulness of the proposed framework.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31996
全文授權: 有償授權
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
728.14 kBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved