Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31952Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 李瑞庭(J. T. Lee) | |
| dc.contributor.author | Tzu-Wei Lo | en |
| dc.contributor.author | 羅子威 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:25:41Z | - |
| dc.date.available | 2006-08-01 | |
| dc.date.copyright | 2006-08-01 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-27 | |
| dc.identifier.citation | [1] R. Agrawal and R. Srikant, Mining sequential patterns, In Proceedings of International Conference on Data Engineering, Taipei, Taiwan, Mar. 1995, pp.3-14.
[2] R. Agrawal and R. Strikant, Fast algorithms for mining association rules, In Proceedings of International Conference on Very Large DataBases, Santiago, Chile, Sept. 1994, pp. 487-499. [3] J. Ayres, J. E.Gehrke, T. Yiu, and J. Flannick, Sequential pattern mining using bitmaps, In Proceedings of ACM SIGMOD International Conference on Knowledge Discovery in Databases, Edmonton, Canada, July 2002, pp. 429-435. [4] D. Burdick, M. Calimlim, and J. Gehrke, MAFIA: A maximal frequent itemset algorithm for transactional database, In Proceedings of the 17th International Conference on Data Engineering, Heidelberg, Germany, April 2001, pp. 443-452. [5] Carl Claunch, Top-10 strategy technologies for 2006, Gartner Symposium/ITxpo 2005. [6] Jonathan Collins, RFID Journal, http://www.rfidjournal.com/, March 29, 2004. [7] J. Han, J. Pei, and Y. Yin, Mining frequent patterns without candidate generation, In Proceedings of ACM-SIGMOD International Conference on Management of Data, Dallas, TX, May 2000, pp. 1-12. [8] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu, Freespan: Frequent pattern-projected sequential pattern mining, In Proceedings of International Conference on Knowledge Discovery and Data Mining, Boston, MA, Aug. 2000, pp. 355-359. [9] J. Huan, W. Wang, and J. Prins, Efficient mining of frequent subgraphs in the presence of isomorphism, In Proceedings of International Conference on Data Mining, Melbourne, FL, USA, December 2003, pp. 549-552 [10] A. Inokuchi, T. Washio, and H. Motoda, An Apriori-based algorithm for mining frequent substructures from graph data, In Proceedings of European Conference on Principles and Practice of Knowledge Discovery in Databases, Lyon, France, September 2000, pp. 13-23. [11] M. Kuramochi and G. Karypis, Frequent subgraph discovery, In Proceedings of International Conference on Data Mining, San Jose, Canada, November 2001. [12] M. Leleu, C. Rigotti, Jean-Francois Boulicaut, and G. Euvrard, GO-SPADE: Mining sequential patterns over datasets with consecutive repetitions, In Proceedings of International Conference on Machine Learning and Data Mining, Leipzig, Germany, July 2003, pp. 293-306. [13] J. Pei, J. Han, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.C. Hsu, PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth, In Proceedings of International Conference on Data Engineering, Heidelberg, Germany, April 2001, pp. 215-224. [14] R. Srikant and R. Agrawal, Mining sequential patterns: generalizations and performance improvements, In Proceedings of 5th Inernational. Conference on Extending Database Technology, Avignon, France, Mar. 1996, pp. 3-17. [15] X. Yan and J. Han, gSpan: Graph-based substructure pattern mining, In Proceedings of International Conference on Data Mining, Maebashi City, Japan, December 2002, pp. 721-724. [16] X. Yan and J. Han, CloseGraph: Mining closed frequent graph patterns, In Proceedings of ACM International Conference on Knowledge Discovery and Data Mining, Washington, USA, July, 2003, 286-295. [17] M. J. Zaki, SPADE: An efficient algorithm for mining frequent sequences, Machine Learning, Vol. 1, No. 1~2, 2001, pp. 31-60. [18] United States Department of Defense suppliers’ passive RFID information guide version 1.0, August 31, 2004, pp. 8-18. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31952 | - |
| dc.description.abstract | 隨著無線射頻識別技術的逐漸普及,預料市場上將會產生許多相關應用。因此,我們提出了一個在擁有無線射頻識別技術之商場內的應用。我們收集顧客購物時所走過的路徑以及最後所購買的商品,想要探勘頻繁購物路徑與頻繁商品集合的關聯法則。因此,在本篇論文中,我們提出了一個演算法來探勘頻繁購物路徑與頻繁商品集合的關聯法則。我們的演算法分為兩個階段。第一個階段,我們建立了一個對應圖形來記錄商場的感應器方格配置架構以及交易資料庫。第二階段,我們用深度優先搜尋法來搜尋這個對應圖形以產生頻繁購物路徑與頻繁商品集合的關聯法則。利用這個對應圖形來探勘頻繁購物路徑與頻繁商品集合的關聯法則,不會產生不必要的候選項目,花費更少的資料庫瀏覽次數,以及可以妥善的利用這個問題的特性--『一個感應器相鄰的感應器最多只有四個』。因此,我們所提出的方法較PrefixSpan的方法來的有效率。實驗結果顯示,我們所提出的方法比PrefixSpan的方法快上大約二至十倍。 | zh_TW |
| dc.description.abstract | When the RFID technique is becoming popular, we expect there will be a lot of applications based on it. Thus, we design an application in a hypermarket with an RFID system. We collect the shopping paths and items of customers, and find the RFSPIs (Relationship between Frequent Shopping paths and items). Therefore, in this thesis, we propose an algorithm to mine the RFSPIs. Our proposed method consists of two phases. First, we construct a mapping graph to record the information of a grid sensor structure and a transaction database. Second, we traverse the mapping graph in the DFS manner to find the RFSPIs. By using the mapping graph to mine the RFSPIs, we don’t generate unnecessary candidates, need fewer database scans, and properly utilize the characteristic of the problem that a sensor has at most four neighboring sensors. Therefore, our proposed method is more efficient than the PrefixSpan-based method. The experiment results show that our proposed method outperforms the PrefixSpan-based method by one order of magnitude. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:25:41Z (GMT). No. of bitstreams: 1 ntu-95-R93725027-1.pdf: 406350 bytes, checksum: 7bfb612a8efc508e3fd9572951a41cb1 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Table of Contents i
List of Figures ii Chapter 1 Introduction 1 Chapter 2 Related Work 6 Chapter 3 Problem Definition 8 Chapter 4 Our Proposed Algorithm 10 4.1 Construct the mapping graph 10 4.2 Graph-based mining algorithm 14 4.3 Discussion of cyclic path pattern 24 Chapter 5 Performance Analysis 25 5.1 Synthetic datasets 25 5.2 Performance evaluation 26 Chapter 6 Conclusions and Future Work 33 References 35 | |
| dc.language.iso | en | |
| dc.subject | 資料探勘 | zh_TW |
| dc.subject | 頻繁購物路徑與頻繁商品集合的關聯法則 | zh_TW |
| dc.subject | 關聯法則 | zh_TW |
| dc.subject | 序列型樣 | zh_TW |
| dc.subject | 無線射頻識別技術 | zh_TW |
| dc.subject | 最大頻繁項目集合 | zh_TW |
| dc.subject | RFSPI | en |
| dc.subject | data mining | en |
| dc.subject | association rules | en |
| dc.subject | sequential patterns | en |
| dc.subject | maximal frequent itemset | en |
| dc.subject | RFID | en |
| dc.title | 在RFID商場內探勘購物路徑與購買商品之關聯性 | zh_TW |
| dc.title | Mining Association Rules in the Hypermarket with an RFID System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳良華(Liang-Hua Chen),沈錳坤(Man-Kwan Shan) | |
| dc.subject.keyword | 資料探勘,關聯法則,序列型樣,最大頻繁項目集合,頻繁購物路徑與頻繁商品集合的關聯法則,無線射頻識別技術, | zh_TW |
| dc.subject.keyword | data mining,association rules,sequential patterns,maximal frequent itemset,RFSPI,RFID, | en |
| dc.relation.page | 36 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-29 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| Appears in Collections: | 資訊管理學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-95-1.pdf Restricted Access | 396.83 kB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
