Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31929
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張智芬
dc.contributor.authorSzu-Ying Yehen
dc.contributor.author葉斯尹zh_TW
dc.date.accessioned2021-06-13T03:24:52Z-
dc.date.available2011-10-05
dc.date.copyright2011-10-05
dc.date.issued2011
dc.date.submitted2011-07-29
dc.identifier.citation1 Valentino, M. L. et al. Thymidine and deoxyuridine accumulate in tissues of patients with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). FEBS Lett 581, 3410-3414 (2007).
2 Rampazzo, C. et al. Mitochondrial thymidine kinase and the enzymatic network regulating thymidine triphosphate pools in cultured human cells. J Biol Chem 282, 34758-34769 (2007).
3 Furukawa, T. et al. Angiogenic factor. Nature 356, 668 (1992).
4 Ishikawa, F. et al. Identification of angiogenic activity and the cloning and expression of platelet-derived endothelial cell growth factor. Nature 338, 557-562 (1989).
5 Moghaddam, A. & Bicknell, R. Expression of platelet-derived endothelial cell growth factor in Escherichia coli and confirmation of its thymidine phosphorylase activity. Biochemistry 31, 12141-12146 (1992).
6 Sumizawa, T. et al. Thymidine phosphorylase activity associated with platelet-derived endothelial cell growth factor. J Biochem 114, 9-14 (1993).
7 Yao, Y., Kubota, T., Sato, K. & Kitai, R. Macrophage infiltration-associated thymidine phosphorylase expression correlates with increased microvessel density and poor prognosis in astrocytic tumors. Clin Cancer Res 7, 4021-4026 (2001).
8 Takebayashi, Y. et al. Clinicopathologic and prognostic significance of an angiogenic factor, thymidine phosphorylase, in human colorectal carcinoma. J Natl Cancer Inst 88, 1110-1117 (1996).
9 Reynolds, K. et al. Association of ovarian malignancy with expression of platelet-derived endothelial cell growth factor. J Natl Cancer Inst 86, 1234-1238 (1994).
10 Imazano, Y. et al. Correlation between thymidine phosphorylase expression and prognosis in human renal cell carcinoma. J Clin Oncol 15, 2570-2578 (1997).
11 Takao, S. et al. Expression of thymidine phosphorylase is associated with a poor prognosis in patients with ductal adenocarcinoma of the pancreas. Clin Cancer Res 4, 1619-1624 (1998).
12 Sivridis, E. et al. Thymidine phosphorylase expression in normal, hyperplastic and neoplastic prostates: correlation with tumour associated macrophages, infiltrating lymphocytes, and angiogenesis. Br J Cancer 86, 1465-1471 (2002).
13 Takebayashi, Y. et al. The activity and expression of thymidine phosphorylase in human solid tumours. Eur J Cancer 32A, 1227-1232 (1996).
14 Tanaka, Y., Kobayashi, H., Suzuki, M., Kanayama, N. & Terao, T. Thymidine phosphorylase expression in tumor-infiltrating macrophages may be correlated with poor prognosis in uterine endometrial cancer. Hum Pathol 33, 1105-1113 (2002).
15 Takahashi, Y. et al. Platelet-derived endothelial cell growth factor in human colon cancer angiogenesis: role of infiltrating cells. J Natl Cancer Inst 88, 1146-1151 (1996).
16 Takebayashi, Y. et al. The expression of thymidine phosphorylase and thrombomodulin in human colorectal carcinomas. Cancer Lett 92, 1-7 (1995).
17 Brown, N. S., Jones, A., Fujiyama, C., Harris, A. L. & Bicknell, R. Thymidine phosphorylase induces carcinoma cell oxidative stress and promotes secretion of angiogenic factors. Cancer Res 60, 6298-6302 (2000).
18 Hotchkiss, K. A., Ashton, A. W. & Schwartz, E. L. Thymidine phosphorylase and 2-deoxyribose stimulate human endothelial cell migration by specific activation of the integrins alpha 5 beta 1 and alpha V beta 3. J Biol Chem 278, 19272-19279 (2003).
19 Haraguchi, M. et al. Angiogenic activity of enzymes. Nature 368, 198 (1994).
20 Brown, N. S. & Bicknell, R. Thymidine phosphorylase, 2-deoxy-D-ribose and angiogenesis. Biochem J 334 ( Pt 1), 1-8 (1998).
21 Hotchkiss, K. A. et al. Mechanisms by which tumor cells and monocytes expressing the angiogenic factor thymidine phosphorylase mediate human endothelial cell migration. Cancer Res 63, 527-533 (2003).
22 Mori, S. et al. Thymidine phosphorylase suppresses Fas-induced apoptotic signal transduction independent of its enzymatic activity. Biochem Biophys Res Commun 295, 300-305 (2002).
23 Ikeda, R. et al. Thymidine phosphorylase inhibits apoptosis induced by cisplatin. Biochem Biophys Res Commun 301, 358-363 (2003).
24 Wang, C.-C. The contribution of thymidine phosphorylase in THP-1 cell survival Master thesis, National Taiwan University, (2008).
25 Lee, J. T., Jr. & McCubrey, J. A. The Raf/MEK/ERK signal transduction cascade as a target for chemotherapeutic intervention in leukemia. Leukemia 16, 486-507 (2002).
26 Chang, F. et al. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 17, 1263-1293 (2003).
27 Ye, K. PIKE/nuclear PI 3-kinase signaling in preventing programmed cell death. J Cell Biochem 96, 463-472 (2005).
28 Brazil, D. P., Yang, Z. Z. & Hemmings, B. A. Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 29, 233-242 (2004).
29 Martelli, A. M. et al. Intranuclear 3'-phosphoinositide metabolism and Akt signaling: new mechanisms for tumorigenesis and protection against apoptosis? Cell Signal 18, 1101-1107 (2006).
30 Yap, T. A. et al. Targeting the PI3K-AKT-mTOR pathway: progress, pitfalls, and promises. Curr Opin Pharmacol 8, 393-412 (2008).
31 Cantley, L. C. The phosphoinositide 3-kinase pathway. Science 296, 1655-1657 (2002).
32 Aaronson, D. S. & Horvath, C. M. A road map for those who don't know JAK-STAT. Science 296, 1653-1655 (2002).
33 Adachi, T., Kar, S., Wang, M. & Carr, B. I. Transient and sustained ERK phosphorylation and nuclear translocation in growth control. J Cell Physiol 192, 151-159 (2002).
34 Davis, R. J. Transcriptional regulation by MAP kinases. Mol Reprod Dev 42, 459-467 (1995).
35 McCubrey, J. A., May, W. S., Duronio, V. & Mufson, A. Serine/threonine phosphorylation in cytokine signal transduction. Leukemia 14, 9-21 (2000).
36 Tresini, M., Lorenzini, A., Frisoni, L., Allen, R. G. & Cristofalo, V. J. Lack of Elk-1 phosphorylation and dysregulation of the extracellular regulated kinase signaling pathway in senescent human fibroblast. Exp Cell Res 269, 287-300 (2001).
37 Aplin, A. E., Stewart, S. A., Assoian, R. K. & Juliano, R. L. Integrin-mediated adhesion regulates ERK nuclear translocation and phosphorylation of Elk-1. J Cell Biol 153, 273-282 (2001).
38 Faissner, A., Heck, N., Dobbertin, A. & Garwood, J. DSD-1-Proteoglycan/Phosphacan and receptor protein tyrosine phosphatase-beta isoforms during development and regeneration of neural tissues. Adv Exp Med Biol 557, 25-53 (2006).
39 Blume-Jensen, P., Janknecht, R. & Hunter, T. The kit receptor promotes cell survival via activation of PI 3-kinase and subsequent Akt-mediated phosphorylation of Bad on Ser136. Curr Biol 8, 779-782 (1998).
40 Reich, N. C. & Liu, L. Tracking STAT nuclear traffic. Nat Rev Immunol 6, 602-612 (2006).
41 Wen, Z. & Darnell, J. E., Jr. Mapping of Stat3 serine phosphorylation to a single residue (727) and evidence that serine phosphorylation has no influence on DNA binding of Stat1 and Stat3. Nucleic Acids Res 25, 2062-2067 (1997).
42 Wen, Z., Zhong, Z. & Darnell, J. E., Jr. Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 82, 241-250 (1995).
43 Kroemer, G., Dallaporta, B. & Resche-Rigon, M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60, 619-642 (1998).
44 Zamzami, N. et al. Mitochondrial control of nuclear apoptosis. J Exp Med 183, 1533-1544 (1996).
45 Kroemer, G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med 3, 614-620 (1997).
46 Minn, A. J. et al. Bcl-x(L) forms an ion channel in synthetic lipid membranes. Nature 385, 353-357 (1997).
47 Susin, S. A. et al. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 184, 1331-1341 (1996).
48 Kluck, R. M., Bossy-Wetzel, E., Green, D. R. & Newmeyer, D. D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132-1136 (1997).
49 Yang, J. et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129-1132 (1997).
50 Liu, L., McBride, K. M. & Reich, N. C. STAT3 nuclear import is independent of tyrosine phosphorylation and mediated by importin-alpha3. Proc Natl Acad Sci U S A 102, 8150-8155 (2005).
51 Pyo, H. et al. Coexpression of cyclooxygenase-2 and thymidine phosphorylase as a prognostic indicator in patients with FIGO stage IIB squamous cell carcinoma of uterine cervix treated with radiotherapy and concurrent chemotherapy. Int J Radiat Oncol Biol Phys 62, 725-732 (2005).
52 Yamashita, H., Osaki, M., Ardyanto, T. D., Yoshida, H. & Ito, H. Cyclooxygenase-2 in human malignant fibrous histiocytoma: correlations with intratumoral microvessel density, expression of vascular endothelial growth factor and thymidine phosphorylase. Int J Mol Med 14, 565-570 (2004).
53 Fujiwaki, R. et al. Cyclooxygenase-2 expression in endometrial cancer: correlation with microvessel count and expression of vascular endothelial growth factor and thymidine phosphorylase. Hum Pathol 33, 213-219 (2002).
54 Isobe, A. et al. STAT3-mediated constitutive expression of SOCS3 in an undifferentiated rat trophoblast-like cell line. Placenta 27, 912-918 (2006).
55 Ehlting, C., Haussinger, D. & Bode, J. G. Sp3 is involved in the regulation of SOCS3 gene expression. Biochem J 387, 737-745 (2005).
56 Lehmann, M. H. Recombinant human granulocyte-macrophage colony-stimulating factor triggers interleukin-10 expression in the monocytic cell line U937. Mol Immunol 35, 479-485 (1998).
57 Hamilton, J. A. & Anderson, G. P. GM-CSF Biology. Growth Factors 22, 225-231 (2004).
58 Okuma, E. et al. Induction of apoptosis in human hematopoietic U937 cells by granulocyte-macrophage colony-stimulating factor: possible existence of caspase 3-like pathway. Leukemia 14, 612-619 (2000).
59 Wajant, H., Pfizenmaier, K. & Scheurich, P. Tumor necrosis factor signaling. Cell Death Differ 10, 45-65 (2003).
60 Chen, G. & Goeddel, D. V. TNF-R1 signaling: a beautiful pathway. Science 296, 1634-1635 (2002).
61 Giallongo, A., Feo, S., Moore, R., Croce, C. M. & Showe, L. C. Molecular cloning and nucleotide sequence of a full-length cDNA for human alpha enolase. Proc Natl Acad Sci U S A 83, 6741-6745 (1986).
62 Dickinson, R. E. & Duncan, W. C. The SLIT-ROBO pathway: a regulator of cell function with implications for the reproductive system. Reproduction 139, 697-704 (2010).
63 Dewar, H. et al. Novel proteins linking the actin cytoskeleton to the endocytic machinery in Saccharomyces cerevisiae. Mol Biol Cell 13, 3646-3661 (2002).
64 Aoki, N., Ito, K. & Ito, M. A novel mouse gene, Sh3yl1, is expressed in the anagen hair follicle. J Invest Dermatol 114, 1050-1056 (2000).
65 Shimomura, Y., Aoki, N., Ito, K. & Ito, M. Gene expression of Sh3d19, a novel adaptor protein with five Src homology 3 domains, in anagen mouse hair follicles. J Dermatol Sci 31, 43-51 (2003).
66 Hotchkiss, K. A. et al. Mechanisms by which tumor cells and monocytes expressing the angiogenic factor thymidine phosphorylase mediate human endothelial cell migration. Cancer Res 63, 527-533 (2003).
67 Moghaddam, A. et al. Thymidine phosphorylase is angiogenic and promotes tumor growth. Proc Natl Acad Sci U S A 92, 998-1002 (1995).
68 Miyadera, K. et al. Role of thymidine phosphorylase activity in the angiogenic effect of platelet derived endothelial cell growth factor/thymidine phosphorylase. Cancer Res 55, 1687-1690 (1995).
69 Sumizawa, T. et al. Thymidine phosphorylase activity associated with platelet-derived endothelial cell growth factor. J Biochem 114, 9-14 (1993).
70 Takebayashi, Y. et al. The activity and expression of thymidine phosphorylase in human solid tumours. Eur J Cancer 32A, 1227-1232 (1996).
71 Tanaka, Y., Kobayashi, H., Suzuki, M., Kanayama, N. & Terao, T. Thymidine phosphorylase expression in tumor-infiltrating macrophages may be correlated with poor prognosis in uterine endometrial cancer. Hum Pathol 33, 1105-1113 (2002).
72 Takebayashi, Y. et al. The expression of thymidine phosphorylase and thrombomodulin in human colorectal carcinomas. Cancer Lett 92, 1-7 (1995).
73 Takahashi, Y. et al. Platelet-derived endothelial cell growth factor in human colon cancer angiogenesis: role of infiltrating cells. J Natl Cancer Inst 88, 1146-1151 (1996).
74 Cimmino, A. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102, 13944-13949 (2005).
75 Pardo, O. E. et al. Fibroblast growth factor-2 induces translational regulation of Bcl-XL and Bcl-2 via a MEK-dependent pathway: correlation with resistance to etoposide-induced apoptosis. J Biol Chem 277, 12040-12046 (2002).
76 Lin, S. S. et al. PP2A regulates BCL-2 phosphorylation and proteasome-mediated degradation at the endoplasmic reticulum. J Biol Chem 281, 23003-23012 (2006).
77 Breitschopf, K., Haendeler, J., Malchow, P., Zeiher, A. M. & Dimmeler, S. Posttranslational modification of Bcl-2 facilitates its proteasome-dependent degradation: molecular characterization of the involved signaling pathway. Mol Cell Biol 20, 1886-1896 (2000).
78 Dimmeler, S., Breitschopf, K., Haendeler, J. & Zeiher, A. M. Dephosphorylation targets Bcl-2 for ubiquitin-dependent degradation: a link between the apoptosome and the proteasome pathway. J Exp Med 189, 1815-1822 (1999).
79 Schuringa, J. J., Wierenga, A. T., Kruijer, W. & Vellenga, E. Constitutive Stat3, Tyr705, and Ser727 phosphorylation in acute myeloid leukemia cells caused by the autocrine secretion of interleukin-6. Blood 95, 3765-3770 (2000).
80 Lacronique, V. et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278, 1309-1312 (1997).
81 Bromberg, J. F. et al. Stat3 as an oncogene. Cell 98, 295-303 (1999).
82 Battle, T. E. & Frank, D. A. The role of STATs in apoptosis. Curr Mol Med 2, 381-392 (2002).
83 Oritani, K. et al. Both Stat3-activation and Stat3-independent BCL2 downregulation are important for interleukin-6-induced apoptosis of 1A9-M cells. Blood 93, 1346-1354 (1999).
84 Minami, M. et al. STAT3 activation is a critical step in gp130-mediated terminal differentiation and growth arrest of a myeloid cell line. Proc Natl Acad Sci U S A 93, 3963-3966 (1996).
85 Wiederkehr-Adam, M. et al. Characterization of phosphopeptide motifs specific for the Src homology 2 domains of signal transducer and activator of transcription 1 (STAT1) and STAT3. J Biol Chem 278, 16117-16128 (2003).
86 Ardestani, A., Yazdanparast, R. & Nejad, A. S. 2-Deoxy-D-ribose-induced oxidative stress causes apoptosis in human monocytic cells: prevention by pyridoxal-5'-phosphate. Toxicol In Vitro 22, 968-979 (2008).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31929-
dc.description.abstractThymidine phosphorylase (TP; EC 2.4.2.4), catalyzing the reversible reaction of thymidine to thymine and 2-deoxy-α-D-ribose-1-phosphate, plays roles not only in dTTP metabolism but also angiogenesis and anti-apoptosis. Previously, our laboratory found that depletion of TP in monocytic leukemia cell line U937 and THP-1 cell lines by lentiviral-based small hairpin RNA (shRNA) leads to apoptosis. Interestingly, expression of catalytic dead TP was able to rescue these cells, but not addition of TP catabolites to the culture medium. These results indicate that TP provides a survival signal independent of the catalytic function.
In this study, I further dissect the mechanism of TP-mediated cell survival. Several signal cascades involved in cell survival, such as ERK1/2 and Akt, were found to be reduced by TP depletion. In addition, perturbation of mitochondrial membrane potential is accompanied by a decrease in Bcl-2 expression in cells depleted of TP. Contrarily, STAT3, one of the signals in JAK/STAT cascade involved in cell survival, stayed more active in these cells with the increased levels of COX2, SOCS3 and GM-CSF transcription.
In order to understand the mechanism, I performed yeast two-hybrid screening to search for TP interacting proteins. Despite several proteins were identified capable of interacting with TP in yeast, co-expression of each of these proteins with TP did not form complex in human. Therefore, it remains to learn how TP exerts its biological function in influencing cell survival signal in monocytic leukemia cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:24:52Z (GMT). No. of bitstreams: 1
ntu-100-R98442001-1.pdf: 1512357 bytes, checksum: 0d6d56691e8887d7fa8f123a28b95141 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsAbstract in Chinese i
Abstract ii
Chapter I- Overview and Rational 1
Chapter II- Materials and Methods 5
Chapter III- Results 15
Chapter IV- Discussion 23
Figures and Legends 29
References 48
Tables 60
dc.language.isoen
dc.subject胸腺嘧啶磷解&#37238zh_TW
dc.subjectU937zh_TW
dc.subjectTHP-1zh_TW
dc.subject單核性白血病zh_TW
dc.subject單核性白血球zh_TW
dc.subjectTHP-1en
dc.subjectU937en
dc.subjectmonocytic leukemiaen
dc.subjectmonocyteen
dc.subjectthymidine phosphorylaseen
dc.title單核性白血病細胞仰賴胸腺嘧啶磷解酶存活之分子機制探討zh_TW
dc.titleThe Molecular Mechanisms of Thymidine Phosphorylase in Survival of Monocytic Leukemia Cellen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.coadvisor詹迺立
dc.contributor.oralexamcommittee伍安怡,黃敏銓,張久瑗
dc.subject.keyword胸腺嘧啶磷解&#37238,單核性白血球,單核性白血病,THP-1,U937,zh_TW
dc.subject.keywordthymidine phosphorylase,monocyte,monocytic leukemia,THP-1,U937,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2011-07-29
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
1.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved