Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31925
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾四恭
dc.contributor.authorShun-Ji Huangen
dc.contributor.author黃順吉zh_TW
dc.date.accessioned2021-06-13T03:24:43Z-
dc.date.available2007-07-31
dc.date.copyright2006-07-31
dc.date.issued2006
dc.date.submitted2006-07-27
dc.identifier.citation參考文獻
1. A. L. Robberts, L. A. Totten, W. A. Arnold, D. R. Burris, and T. J. Campbell, 1996. Reductive Elimination of Chlorinated Ethylenes by Zero-Valent Metals. ENVIRONMENTAL SCIENCE & TECHNOLOGY. 30, 2654-2658.
2. A. Wild, R. Hermann and T. Leisinger. 1996. Isolation of an Anaerobic Bacterium which Reductively Dechlorinates Tetrachloroethene and Trichloroethene. Biodegradation. 7: 507-511.
3. B. H. Ballapragade, J. A. Puhakka and J. F. Ferguson, 1997. Effect of Hydrogen on Reductive Dechlorination of Chlorinated Ethenes. Environ. Sci. Technol. 31: 1728-1734.
4. C. C. Chang and S. K. Tseng. 1998. Immobilization of Microorganism Using PVA Crosslinked with Sodium Nitrate. Biotechnol. Tech. 12(12): 865-868.
5. C. C. Chang, S. K. Tseng and Y. J. Chang. 1999. A novel double-membrane system for simultaneous nitrification and de nitrification in a single tank..Letter in Appl. Microlbiol. 28, 452-456.
6. C. Holliger, G. Schraa, A. J. M. Stams and A. J. B. Zehnder. 1993. A Highly Purified Enrichment Culture Couples the Reductive Dechlorination of Tetrachloroethene to Growth. Appl. Environ. Microbiol. 59: 2991-2997.
7. C. Holliger, D. Hahn, H. Hamsen, W. Ludwig, W. Schumacher, B. Tindall, F. Vazquez, N. Weiss. and A.J.B. Zehnder. 1998. Dehalobacter Restricus Gen. Nov. and Sp. Nov., a Strictly Anaerobic Bacterium that Reductively Dechlorinates Tetra- and Trichloroethene in an Anaerobic Respiration. Arch. Microbiol. 169: 313-321.
8. C. Holliger, G. Wohlfarth and G. Diekert. 1999. Reductive Dechlorination in the Energy Metabolism of Anaerobic Bacteria. FEMS Microbiol. Reviews. 22: 383-398.
9. C. J. Clark ΙΙ, P. S. C. Rao, and M. D. Annable. 2003. Degradation of Perchloroethene in Cosolvent Solution by Zero- valent Iron. Journal of Hazardous Materials. B96: 65-78.
10. C. M. Ho, S. K. Tseng and Y. J. chang. 2001. Simulation nitrification and denitrification using an autotrophic membrane-immobilized biofilm reactor. Letters in Appl. Microbiol . 35: 481-485.
11. C. M. Miller, R. L. Valentine, M. E. Roehl and P. J. J. Alvarez. 1996. Chemical and Microbological Assessment of Pendimethalin-Contaminated Soil After Treatment With Fenton's Reagent.” Wat. Res. 30(11): 2579-2586.
12. D. D. Gates, and R. L. Siegrist. 1995. “In-situ Chemical Oxidation of Trichloroethylene Using Hydrogen Peroxide.” Journal of Environmental Engineering, ASCE. 121(9): 639-644.
13. E .Miller, G. Wohlfarth and G. Diekert. 1997. Studies on Tetrachloroethene Respiration in Dehalospirllum Multivorans. Arch. Microbiol. 166: 379-387.
14. G. V. Lowry and M. Reinhard, 2000. Pd-catalyzed TCE Dechlorination in Water: Solute Effect, Biological Control, and Oxidative Catalyst Regeneration. Environ. Sci. Technol. 34:3217-3223.
15. G. V. Lowry and M. Reinhard, 2001. Pd-catalyzed TCE Dechlorination in Water: Effect of [H2](aq) and H2-Utilizing Competitive Solutes on the TCE Dechlorination Rate and Product Distribution. Environ. Sci. Technol. 35:696-702.
16. G. Wohlfarth, and G. Diekert. 1997. Anaerobic Dehalogenases. Environ. Biotechnol. 8: 290-295.
17. G. T. Townsend and J.M. Suflita. 1997. Influence of Sulfur Oxyanions on Reductive Dehaolgenation Activities in Desulfomonile tiedjei. Appl. Environ. Microbiol. 63: 3594-3599.
18. In Situ Remediation Technology Status Report: Thermal Enhancements: EPA 542-K-94-009, Describes Field Demonstrations or Full-Scale Applications of in Situ Abiotic Technologies for Nonaqueous Phase Liquids and Ground-Water Treatment. [clu-in.com]
19. J. P. Fennelly and A. L. Roberts. 1998. Reaction of 1,1,1-Trichloroethane with Zero-Valent Metals and Bimetallic Reductants. Environ. Sci. Technol. 32: 1980-1988.
20. J. R. Cole, B. Z. Fathepure and J. M. Tiedje. 1995. Tetrachloroethene and 3-Chlorobenzoate Dechlorination Activities are Co-Induced in Desulfomonile tiedjei DCB-1. Biodegradation. 6: 167-172.
21. J. F. Ferguson*, J.M.H. Pietari. 2000. Anaerobic transformations and bioremediation of chlorinated solvents. Environmental Pollution 107, 209-215.
22. Johnson, T. L., M. M. Scherer, and P. G. Tratnyek. 1996. Kinetics of Halogenated Organic Compound Degradation by Iron Metal. Environ. Sci. Techn. 30(8), 2634-2640.
23. K. A. Lovelace 1997. Evaluation the Technical Impracticability of Groundwater Cleanup. International conference on groundwater quality protection, Taipei. 165-179.
24. Leah J. Matheson and Paul G. Tratnyek'. 1994. Reductive Dehalogenation of Chlorinated Methanes by Iron Metal. Environ. Sci. Technol. 28, 2045-2053.
25. L. J. Matheson and P. G. Tratnyek 1994. “ Reductive dehalogenation of chlorinated methanes by iron metal. ” Environ. Sci. Technol. 28, 2045-2053.
26. Martina Eisenbeis, Petra Bauer-Kreisel and Heidrun Scholz-Muramatsu. 1997. Studies of the dechlorination of the tetrachloroethene to cis-1,2-dichloroethene by dehalospirillum multivorans in biofilms. Wat. Sci. Technol. 36, 191-198.
27. M. G. Xavier, V. Tandoi, J. M. Gossett and S. H. Zinder. 1995. Characterizatoin of an H2-Utilizing Enrichment Culture That Reductively Dechlorinates Tetrachloroethene to Binyl Chloride and Ethene in the Absene of Methanogenesis and Acetogenesis. Appl. Environ. Microbiol. 61(11): 3928-3933.
28. M. Lee, Ike, M. Fujita. 2002. A Reactor System Combining Reductive Dechlorination with Cometabolic Oxidation for Complete Degradation of Tetrachloroentylene. Journ. Environ. NCES-China, Oct. 4: 445-450.
29. M. M. Lang P. V. Roberts and L. Semprini. 1997. “Model Simulations in Support of Field Scale Design and Operation of Bioremediation Based on Cometabolic Degradation.” Ground Water, 35(4): 565-573.
30. N. Christiansen and B. K. Ahring. 1996. Deslfitobacterium hafniense sp. nov., an Anaerobic, Reductively Dechlorination Bacterium. Int. J. Syst. Bacteriol. 46: 442-448.
31. P. Clement, V. Matus, L. Cadenas, B.Gonzalez. 1995. Degradation of Trichlorlphenols by Alcaligenes eutrophus JMP134. FEMS Microbiol. Letters. 127: 51-55.
32. P. L. McCarty, Goltz, M. N., Hopkins, G. D., Dolan, M. E., Allan, J. P., Kawakami, B. T. and Carrothers, T. J. 1998. “Full-Scale Evaluation of In Situ Cometabolic Degradation of Trichloroethylene in Groundwater through Toluene Injection.” Environ. Sci. Techn. 32(1): 88-100.
33. R. M. Yager, S. E. Bilotta, C. L. Mann and E. L. Madsen. 1997. Metabolic Adaptation and in Situ Attenuation of Chlorinated Ethenes by Naturally Occurring Microorganisms in a Fractured Dolomite Aquifer near Niagara Falls, New York. Environ. Sci. Technol.31: 3138-3147.
34. S. Fetzner. 1998. “ Bacterial Dehalogenation. ” Appl. Microbiol. Biotechnol. 50: 633-657.
35. S. F. Cheng and S. C. Wu. 2000. The Enhancement Methods for the Degradation of TCE by Zero-Valent Metals. Chemosphere. 41: 1263-1270.
36. Scholz-Muramatsu, H., A. Neumann, M. Mebmer, E. Moore and G. Diekert. 1995. Isolation and Characterization of Dehalospirillum Multivorans Gen. Nov. Sp. Nov., a Tetrachloroethene-Utilizing, Strictly Anaerobic Bacterium. Arch. Microbiol. 163: 48-56.
37. S. R. Burris, T. J. Campbell and B. S. Manoranjan. 1995. Sorption of Trichloroethylene and Tetrachloroethylene in a Batch Reactive Metallic Iron-Water System. Environ. Sci. Technol. 29: 2850-2855.
38. T. Lee, T. Tokunaga, A. Suyama, and K. Furukawa. 2001. Efficient Dechlorination of Tetrachloroethene in soil Slurry by Combined Use of an Anaerobic Desulfitobacterium sp. Strain Y-51 and Zero-Valent Iron. J. Biosci. Bioeng. 92: 453-458.
39. William, A. A. and A. L. Roberts. 2000. Pathways and Kinetics of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Fe(0) Particles. Environ. Sci. Technol. 34: 1794-1805.
40. X. Maymo-Gatell, Y.Chen, J. M. Grossett and S. H.Zider. 1997. Characterization of an H2-utilizing Enrichment Culture that Reductively Dechlorinates Tetrachloroethene to Vinyl Chloride and Ethen in the Absence of Methanogenesis and Acetogenesis. Appl. Environ. Microbiol. 61:3982-3933.
41. X. Maymo-Gatell, Y.Chen, J. M. Grossett and S. H.Zider. 1997. Isolation of a Bacterium that Reductively Dechlorinates Tetrachloroethene to Ethen. Science. 276:1568-1571.
42. 行政院環保署,中文毒理資理庫。
43. 行政院環保署,飲用水水質標準,於九十四年五月三十日環署毒字第0940039894 號修正發布。
44. 行政院環保署,土壤污染管制標準,於中華民國九十年十一月二十一日(90)環署水字第○○七三六八四號修正發布。
45. 劉詔文,2004。「生物反應牆袪除地下水中三氯乙烯和氯乙烯之研究」,碩士論文,國立中央大學環境工程研究所,桃園。
46. 杜旻霏,2005。「自營氫細菌與零價鎳金屬結合去除三氯乙烯之研究」,碩士論文,國立台灣大學環境工程學研究所,台北。
47. 程淑芬,2000。「斗閘式現地地下水污染復育技術之探討-含氯有機化合物以零價金屬反應性透水牆還原脫氯之研究」,博士論文,國立台灣大學環境工程學研究所,台北。
48. 張朝謙,2005。「利用供氫之薄膜生物反應槽進行氯酚還原脫氯之研究」,博士論文,國立台灣大學環境工程學研究所,台北。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31925-
dc.description.abstract摘要
含氯有機化合物由於具有特殊物化性質,而被廣泛應用於農業及工業上。三氯乙烯( Trichloroethylene 、TCE )為工業化學使用率最頻繁的含氯有機化合物之一,其應用在電子工業上作為清洗劑、萃取劑、溶劑或去脂劑。使用時若未經適當之處置,不慎進入土壤及地下水層,將形成DNAPL,成為持久性污染源。
本研究結合氫自營微生物與零價金屬-鐵去除技術,利用連續供氫式薄膜反應槽,將氫氣經由矽膠管連續通入反應槽中,來處理TCE,並評估TCE降解效率、探討零價金屬與厭氧微生物個別與合併對TCE降解效率是否有加成作用、並分析中間及最終產物之變化。
也利用血清瓶批次實驗來作為供氫量不足的對照組,比較反應槽與血清瓶試驗之間脫氯效率、產物之異同。
結果顯示, 在TCE濃度40mg/l的情況下,血清瓶批次實驗生物有較佳的還原脫氯反應,且氫自營菌結合零價鐵對還原脫氯作用有加成的效果,在反應時間十天能達到87﹪的去除效率;反應槽試驗也同樣地,結合氫自營菌與零價鐵的反應槽的效率有90﹪的去除效能,也較單獨零價鐵或氫自營菌的佳,因此結合氫自營菌與零價鐵之TCE還原脫氯為一具有可行潛能之方法。反應期間產物主要為乙烯與乙烷,生物以乙烷為主,金屬則是以乙烯為主要產物;血清瓶由於供氫量不足有中間含氯有機物生成現象,而反應槽則無。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-13T03:24:43Z (GMT). No. of bitstreams: 1
ntu-95-R93541118-1.pdf: 3078215 bytes, checksum: ff723ac753d9956bb5446eafe33d756d (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents目錄
目錄………………………………………………………………………I
圖目錄…………………………………………………………………...V
表目錄………………………………………………………………...VIII
第一章 前言…..………………………………………………………....1
1-1研究緣起..…………………………………………………….…...1
1-2研究目的..………………………………………………………....2
1-3實驗內容..…………………………………………………………3
第二章 文獻回顧.…...…………………………………………………..4
2-1 三氯乙烯的相關介紹..…………………………………………..5
2-1-1三氯乙烯之物化特性………………………………………..7
2-1-2 三氯乙烯對人體健康的影響………………….……………8
2-1-3三氯乙烯在飲用水及地下水之管制標準…………………..9
2-2 地下水污染整治技術之研究現況………………….…………..11
2-2-1 地下水污染整治技術之回顧………………….…………...11
2-2-1-1 物理處理方法..…………………………………….….11
2-2-1-1-a 活性碳吸附法…………………………………….11
2-2-1-1-b 抽除處理法……………………………………….12
2-2-1-1-c 注氣吹除法……………………………………….12
2-2-1-1-d 土壤蒸汽萃取法………………………………….12
2-2-1-2 化學處理方法…………………………………………13
2-2-1-2-a 化學氧化法……………………………………….13
2-2-1-2-b 化學還原法……………………………………... 13
2-2-1-3 生物處理方法…………………………………………14
2-2-1-4 透水性反應牆…………………………………………14
2-3 三氯乙烯還原性脫氯之反應機制……………………………..16
2-3-1 三氯乙烯的序列性轉換…………………………………...16
2-3-2 含氯有機物在環境中的轉換……………………………...16
2-3-2-1 好氧生物復育…………………………………………16
2-3-2-2 厭氧生物復育……………………………………… ...17
2-3-3 含氯有機物的生物代謝機制…………………………… ..18
2-3-3-1 共代謝………………………………………………....19
2-3-3-2 含鹵呼吸……………………………………………....19
2-3-4 零價金屬處理技術………………………………………...22
2-3-4-1 零價金屬還原脫氯機制…………………………….. .22
2-4 具還原脫氯能力菌種之相關研究……………………………. 26
2-5 氫自營菌的特性………………………………………………..27
2-6自營氫細菌與零價鐵金屬結合之優點……………………….. 28
2-7 薄膜生物反應槽………………………………………………..30
2-8 固定化擔體之應用……………………………………………..33
第三章 實驗流程與設計………………………………………………35
3-1 實驗設計與流程……………………………….………………..35
3-2菌種來源與馴養…………………………………………………37
3-2-1 菌種來源…………………………………………………...37
3-3氫自營菌及金屬固定化之製作…………………………………40
3-4 反應槽批次實驗……………………………….………….…….41
3-5 血清瓶批次實驗…………………………….…………………..42
3-6 採樣方式………………………………………………………..43
3-6-1 反應槽採樣方式…………………………………………...43
3-6-2 血清瓶採樣方式…………………………………………...44
3-7 分析方法………………………………………………………..45
3-7-1 上部空間氣體分析--氣相層析法……………… ………...45
3-7-2 ORP、pH……………………………………………………46
第四章 實驗結果與分析………………………………………….…...47
4-1 反應槽實驗………………..……………………………….…...47
4-1-1 反應初期結果…………………………………………..…47
4-1-2 300mg/l反應槽實驗結果…………………………………..51
4-1-3 300mg/l反應槽產物分析與比較…………………………..54
4-1-4 120mg/l反應槽實驗結果…………………………………..56
4-1-5 120mg/l反應槽產物分析與比較…………………………..59
4-1-6 40mg/l反應槽實驗結果…………………………………….61
4-1-7 40mg/l反應槽產物分析與比較……………………………64
4-2 血清瓶批次實驗………………………………………………...66
4-2-1 300mg/l血清瓶實驗結果…………………….……………66
4-2-2 300mg/l血清瓶試驗產物分析與比較…………………….69
4-2-3 120mg/l血清瓶實驗結果………………………………….71
4-2-4 120mg/l血清瓶試驗產物分析與比較…………………….74
4-2-5 40mg/l血清瓶實驗結果………………………………..….76
4-2-6 40mg/l血清瓶試驗產物分析與比較……………………….78
4-3 反應槽與血清瓶試驗反應效率及產物之比較……….………..80
4-4 零價鐵及氫自營菌之TCE脫氯反應途徑……………………..87第五章 結論與建議……………………………………………………88
5-1 結論……………………………………………………….……..88
5-2 建議…………………………………………...…………………89
參考文獻………………………………………………………………..91

圖目錄
圖2-1 微生物以氫氣做電子供給者產生ATP之反應機制…………20
圖2-2 利用零價鐵降解TCE可能進行之還原脫氯反應:(a)β-消去還原反應;(b)氫解作用;(c)炔類還原成烯類反應;(d)烯類還原成烷類反應。……………………………………………………………25
圖3-1 本研究之實驗流程設計架構圖………………………………..36
圖3-2 反應槽基本設計架構…………………………………………..38
圖3-3 反應槽水樣採樣示意圖………………………………………..43
圖4-1 各反應槽TCE削減結果比較………………………………….48
圖4-2空白反應槽TCE結果比較……………………………………..50
圖4-3 300mg/l各反應槽pH變化……………………………………..51
圖4-4 300mg/l各反應槽TCE與產物結果…………………………..53
圖4-5 300mg/l各反應槽TCE結果比較……………………………..54
圖4-6 300mg/l各反應槽產物結果…………………………………….55
圖4-7 120mg/l各反應槽pH變化……………………………………..56
圖4-8 120mg/l各反應槽TCE與產物結果………….……………….57
圖4-9 120mg/l各反應槽TCE結果比較………….………………….58
圖4-10 120mg/l各反應槽產物結果………………….………………..60
圖4-11 40mg/l各反應槽pH變化……………………………………..61
圖4-12 40mg/l各反應槽TCE與產物結果………………………….62
圖4-13 40mg/l各反應槽TCE結果比較…………………………….63
圖4-14 40mg/l各反應槽產物結果……………………………………65
圖4-15 300mg/l空白血清瓶試驗TCE結果…………………………66
圖4-16 300mg/l血清瓶批次試驗TCE與產物結果………………….67
圖4-17 300mg/l血清瓶批次試驗TCE比較結果………………………68
圖4-18 300mg/l各血清瓶批次試驗產物結果………………………...70
圖4-19 120mg/l空白血清瓶試驗TCE結果…………………………..71
圖4-20 120mg/l血清瓶批次試驗TCE與產物結果…………………..72
圖4-21 120mg/l血清瓶批次試驗TCE比較結果……………………..73
圖4-22 120mg/l各血清瓶批次試驗產物結果…………………….…..75
圖4-23 40mg/l空白血清瓶試驗TCE結果…………………..………..76
圖4-24 40mg/l血清瓶批次試驗TCE與產物結果……………………77
圖4-25 40mg/l血清瓶批次試驗TCE比較結果………………………78
圖4-26 40mg/l各血清瓶批次試驗產物結果………………………….79
圖4-27 300mg/l反應槽與血清瓶試驗TCE降解曲線之比較………..81
圖4-28 120mg/l反應槽與血清瓶試驗TCE降解曲線之比較………..82
圖4-29 40mg/l反應槽與血清瓶試驗TCE降解曲線之比較………….83
圖4-30 300mg/l反應槽與血清瓶試驗產物生成量之比較…………...84
圖4-31 120mg/l反應槽與血清瓶試驗產物生成量之比較…………...85
圖4-32 40mg/l反應槽與血清瓶試驗產物生成量之比較…………….86















表目錄
表 2-1 USEPA對546個國家常見存在於優先整治場址地下水中之二十種污染物及其所佔比例之調查………………………………………6
表2-2 三氯乙烯之物化特性……………………………………………7
表2-3 三氯乙烯對人體健康的危害……………………………………8
表2-4 飲用水水源水質標準對含氯有機化合物含量之限制標準…..10
表2-5 地下水管制標準對含氯有機化合物含量之限制濃度………..10
表2-6 具有脫氯能力之菌株之脫氯速度比較………………………..21
表3-1 菌種馴養之培養基溶液組成…………………………………..39
表3-2 微量元素溶液組成……………………………………………..39
dc.language.isozh-TW
dc.title利用薄膜供氫生物反應槽結合氫自營菌與零價金屬(Fe0)對水中TCE去除之研究zh_TW
dc.titleStudy of the Dechlorination of TCE by membrane hydrogen feeding bioreacter combined with autotrophic hydrogen-bacteria and zero-valent iron.en
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張育傑,何俊明
dc.subject.keyword三氯乙烯,零價鐵,氫自營菌,薄膜生物反應槽,還原脫氯,zh_TW
dc.subject.keywordtrichloroethylene,zero-valent iron,autotrophic hydrogen-bacteria,Dechlorination,en
dc.relation.page95
dc.rights.note有償授權
dc.date.accepted2006-07-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
3.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved