Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31921Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 徐美玲(Mei-Ling Hsu) | |
| dc.contributor.author | Shou-Hao Chiang | en |
| dc.contributor.author | 姜壽浩 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:24:34Z | - |
| dc.date.available | 2006-07-31 | |
| dc.date.copyright | 2006-07-31 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-28 | |
| dc.identifier.citation | 王鑫(1986)陽明山國家公園地質及地形景觀,內政部營建屬陽明山國家公園管理處,15-26。
王文祥(1991)台灣北部大屯火山群之火山地質及核分裂飛跡定年研究,國立台灣大學地質學研究所碩士論文。 李建堂(1997)土壤沖蝕的量測方法,國立台灣大學地理學系地理學報,23:89-106。 宋聖榮(1994)陽明山國家公園內古火山環境及噴發史研究,內政部營建屬陽明山國家公園管理處,79。 巫宗男(1990)陽明山國家公園之地形分類及其成因,國立台灣大學地理學研究所碩士論文。 徐美玲(1995a)坡地土壤孔隙水壓動態空間分佈預測模式,國立台灣大學地理學系地理學報,18:1-22。 徐美玲(1995b)預測潛在岩屑滑崩的網格式數質地形模式,國立台灣大學地理學系地理學報,19:1-16。 陳宏宇(2002)建置陽明山國家公園地質災害資料庫之調查硏究I,內政部營建屬陽明山國家公園管理處。 陳宏宇(2003)建置陽明山國家公園地質災害資料庫之調查硏究II,內政部營建屬陽明山國家公園管理處。 陳文恭、蔡清彥(1983)陽明山國家公園之氣候,內政部營建屬陽明山國家公園管理處,2-26。 陳益明(1989)陽明山國家公園區內火山植物生態之研究,內政部營建屬陽明山國家公園管理處,86-107。 黃誌川、徐美玲(2003)森林集水區邊坡穩定性之評估:以蒙地卡羅模擬無限邊坡模式之參數,國立台灣大學地理學系地理學報,33:1-18。 黃誌川(2003)集水區降雨逕流時空分佈之模擬─結合地文參數之不確定性分析,國立臺灣大學地理環境資源研究所博士論文,5-77。 張石角(1989)陽明山國家公園環境敏感區及潛在災害地區之調查研究,內政部營建屬陽明山國家公園管理處,11-27。 劉聰桂 (1980) 夢幻湖及附近窪地之剖面分析及定年研究,內政部營建屬陽明山國家公園管理處,21-32。 雷鴻飛(2005)坡腳遭受下切的坡地與風化岩屑剖面的發育,第六屆海峽兩岸研討會論文集,100-108。 蔡呈奇(2002)應用地域分析與地理資訊系統繪製土壤圖:以台灣北部火山灰土壤為例,國立台灣大學農業化學研究所博士論文:11-158。 Ahnert, F.(1967) Ahnert, F.(1970)Functional relationships between denudation, relief, and uplift in large mid-latitude drainage basine, American Journal of Science, 268: 243-263. Beven, K. J. and Kirkby, M. J.(1979) A physically based, variable contributing area model of basin hydrology, Hydrological Science Bulletin, 24(1): 43-69. Braun, J., Heimsath, A. M., and Chappell, J.(2001)Sediment transport mechanisms on soil mantled hillslopes, Geology, 29: 683-686. Braun, J., and Sambridge, M. (1997) Modelling landscape evolution on geological time scales: a new method based on irregular spatial discretization. Basin Research, 9: 27-52. Brubaker, S. C., Jones, A. J., Frank, K. and Lewis, D. T.(1994)Regression models for estimating soil properties by landscape position, Soil Science Society American Journal, 57: 235-239. Brunsden(1999)Some geomorphological consideration for the future development of landslide models. Geomorphology, 30: 13-24. Casadei, M., Dietrich, W. E., and Miller, N. L. (2003) Testing a model for predicting the timing and location of shallow landslide initiation in soil-mantled landscapes, Earth Surface Processes and Landforms, 28(9): 925-950. Carson, M. A. and Kirkby, M. J.(1972)Hillslope Form and Process, Lodon Cambridge University Press. Catter, J. R. (1988) Digital representations of topographic surface, Photogrammetric Engineering and Remote Sensing, 54(11): 1577-1580. Culling, W. E. H.(1960)Analytical theory of erosion, Journal of Geology, 68: 336-344 Culling, W. E. H.(1963)Soil creep and development of hillside slopes, Journal of Geology, 71: 127-161. Dai, F.C. and Lee, C.F. (2003) A spatiotemporal probabilistic modeling of storm-induced shallow landsliding using aerial photographs and logistic regression, Earth Surface Processes and Landforms, 28(5):527-545. Dalrymple, J., Long, R., and Conacher, A. (1968) A hypothetical nine-unit land- surface model. Zeitschrift fur Geomorphologie, 12: 60-76. Dietrich, W. E., Hus, M. L. and Montgomery, D. R.(1995)A process-based model for colluvial soil depth and shallow landsliding using digital elevation data, Hydrological Process, 9: 383-400. Davis, W. M.(1892)The convex profile of bad-land divides, Science, 20: 245. Evans, K. G. and Willgoose, G. R.(2000)Post-mining landform evolution modeling: 2. Effects of vegetation and surface ripping, Earth Surface Processes and Landforms, 25: 803-823. Furbish, D. J. and Fagherazzi, S.(2001)Stability of creeping soil and implications for hillslope evolution, Water Resource Research, 37: 2607-2618. Hansen, A.(1984)Landslide hazard analysis in D. Brunsden and D. B. Prior (eds), Slope Instability, 523-602. Heimsath, A. M., Dirtrich, W. E, Nishiizumi, K. and Finkel, R. C.(1997)The soil production function and landscape equilibrium, Nature, 388: 358-361. Heimsath, A. M., Dirtrich, W. E, Nishiizumi, K. and Finkel, R. C.(1999)Cosmogenic nuclides, topography, and the spatial variation of soil depth, Geomorphology, 27: 151-172. Heimsath, A. M., Chappell, J., Dirtrich, W. E, Nishiizumi, K. and Finkel, R. C.(2000)Soil production on a retreating escarpment in southeastern Australia, Geology, 28: 787-790. Heimsath, A. M., Chappell, J., Dirtrich, W. E, Nishiizumi, K. and Finkel, R. C.(2001a)Late Quaternary erosion in southeastern Astralia: a field example using cosmogenic nuclides radionuclides, Quaternary International, 83-85: 169-185. Heimsath, A. M., Dirtrich, W. E, Nishiizumi, K. and Finkel, R. C.(2001b)Stochastic process of soil production and transport: Erosion rates, topographic variation and cosmogenic nuclides in the Oregon Coast Range, Earth Surface Processes and Landforms, 26: 531-552. Hoeard, A. D. (1997) Badland morphology and evolution: Interpretation using a simulation model. Earth Surface Processes and Landforms, 22: 211-227. Jenny, H.(1941)Factor of soil formation. New York: McGraw-Hill. Kirkby, M. J.(1971)Hillslope process-response models based on the continuity equation, Institute of British Geographers, Special Publication, 3: 15-30. Kirkby, M. J. (1985) A model for the evolution of regolith-mantled slopes. In: Woldenberg M. J. (eds) Models in Geomorphology, London: Allen & Unwin, 213-237. Krezoner, W. R., Olson, K. R., Banwart, W. L. and Johnson, D. L.(1989)Soil, landscape , and erosion relationships in northwest Illinois watershed, Soil Science Society American Journal, 53: 1763-1711. King, L. C.(1953)Canons of landscape evolution, Geological Society of American Bulletin, 64: 721-751 King, G. J., Acton, D, F. and St. Arnaud, R. J.(1983)Soil-landscape analysis in relation to soil distribution and mapping at a site within the Weyburn association, Canada Journal of Soil Science, 63: 657-670. Kooi, H., and Beaumont, C. (1994) Escarpment retreat on high-elevation riftged continental margins: Insights derived from a surface procees model that combines diffusion, reaction, and advection. Journal of Geophysics Research, 99: 12191-12202. Martin, Y.(2000)Modeling hillslope evolution: linear and nonlinear transport relations, Geomorphology, 34: 1-21. McKean, J. A., Dietrich, W. E., Finkel, R. C., Southon, J. R., and Caffee, M.W.(1993)Quantification of soil production and downslope creep rates from cosmogenic 10Be accumulations on a hillslope profile, Geology, 21: 343-346. Marques, M. A. and Mora, E.(1992)The influence of aspect on runoff and soil loss in a Mediterranean burnt forest (Spain). Catena, 19: 333-344. Milne, G.(1935)Some suggested units of classification and mapping particularly for East African soils. Soil Research, 4: 183-198. Montgomery, D.R. and Dietrich, W.E. (1994) A physically-based model for the topographic control on shallow landsliding, Water Resource Research, 30(4):1153-1171. Moore, I. D. and Burch, J. R.(1986)Sediment transport capacity of sheet and rill flow: Application of unit stream power theory: Water Resource Research, 22: 1350-1360. Moore, I. D. and Grayson, R. B.(1991)Terrain-based catchment partioning and runoff prediction using vector elevation data, Water Resource Research, 27:1177-1191. Moore, I. D., Grayson, R. B. and Ladson, A. R.(1993) A review of hydrological, geomorphological and biological applications. In: Beven, K. J. and Moore, I. D. (Eds) Terrain analysis and distributed modelling in hydrology, Chichester, John Wiley and Sons. Prosser, I. and Rustomji, P.(2000)Sediment transport capacity relations for overland flow, Progress in Physical Geography, 24: 179-193. Rahman, S., Munn, L. C., Zhang, R. and Vance G. F.(1996)Wyoming Rocky Mountain forest soil: Evaluating spatial variability using conventional and statistics and geostatistics, Canada Journal of Soil Science, 76: 501-507. Rantz, S. E. (1971) Precipitation depth-duration frequency relations for the San Francisco Bay region, California, U. S. Geological Survey Professional Paper, 750-C: 237-241. Refsgaard, J. C. and Storm, B.(1996)Construction, calibration and validation of hydrological model codes. In: Abbott, M. B. and Refsgaard, J. C. (eds.) Distributed Hydrological Modeling. Kluwer Academic Publishers, Dordrecht: 17-39. Renard, K. G., Foster, G. R., Weesier, G. A. and Porter, G. P.(1991)RUSLE: revised universal soil loss equation, Journal of Soil and Water Conservation, 46(1): 30-33. Renard, K. G., Foster, G. R., Yoder, D. C. and McCool, D. K.(1994)RUSLE revisited: status, questions, answers, and the future, Journal of Soil and Water Conservation, 49(3): 213-220. Reneau, S. L. (1988) Depositional and erosional history of hollows: application to landslide location and frequency, long-term erosion rates, and the effects of climatic change. Ph.D. dissertation, Department of Geography, University of California at Berkeley, 328. Riebe, C. S., Kirchner, J. W., Granger, D. E., and Finkel, R. C.(2000)Erosion equilibrium and disequilibrium in the Sierra Neveda, inferred from cosmogenic A1-26 and Be-10 in alluvial sediment, Geology, 28: 803-806. Roering, J. J., Kirchner J. W., and Dietrich, W. E.(1999) Evidence for nonlinear, diffusive sediment transport on hillslope and implications for landscape morphology, Water Resource Research, 35: 853-870. Roering, J. J., Kirchner, J. W., Sklar, L. S., and Dietrich, W. E.(2001)Hillslope evolution by nonlinear creep and landsliding: An experimental study, Geology, 29: 143-146. Ruhe, R. V. (1975) Geomorphology: Geomorphic Processes and Surficial Geology. Boston: Houghton Mifflin, 246. Selby, M. J.(1993)Hillslope materials and processes, New York: Oxford University Press. Small, E. E, Anderson, R. S., and Hancock, G. S.(1999)Estimates of the rate of regolith production using Be-10 and A1-26 from a alpine slope, Geomorphology: 27, 131-150. Song, S. L., Tsao, S. T. and Lo, H. J.(2000)Characteristics of the Tatun Volcanic eruptions, northen Taiwan: implications for a cauldron formation and volcanic evolution, Journal of Geological Society of Chian, 43: 361-378. Terlien, M.(1998)The determination of statistical and deterministic hydrological landslide-triggering thresholds, Environmental Geology, 35:124-130 Thompson, J. A., Bell, J. C. and Bulter, C. A.(1997)Quantitative soil-landscape modeling for estimating the areal extent of hydromorphic soils, Soil Science Society American Journal, 61: 971-980. Thornes, J. B.(1990)The interaction of erosional and vegetational dynamics in land degradation: spatial outcomes. In: Thornes, J. B.(eds)Vegetation and Erosio. NewYork: Wiley, 41-53. Tucker, G. E. and Bras, R. L.(1998)Hillslope process, drainage density and landscape morphology, Water Resource Research, 34: 2751-2746. Tucker, G. E. and Bras, R. L.(2000)A stochastic approach to modeling the role of rainfall variability in drainage basin evolution, Water Resource Research, 36: 1953-1964. Walker, P. H., Hall, G. F. and Protz, R.(1968)Relation between landform parameters and soil properties, Soil Science Society American Journal, 32: 101-104. Wang, W. H. and Chen, C. H.(1990)The volcanology and fission track age dating of pytroclastic deposits in Tatun Volcano Group, northern Taiwan, Acta Geologica Taiwanica, 28: 1-30. Willgoose, G.R., Bras, R.L., and Rodriguez-Iturbe, I. (1991) A physically based coupled network growth and hillslope evolution model, 1, theory: Water Resources Research, 27: 1671-1684. Young, A. (1972) Slopes. London, Longman Group: 288 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31921 | - |
| dc.description.abstract | 土壤乃集水區地表的基質,土壤厚度更常為各種水文、邊坡模式所需的基本資訊,然而台灣地區關於土壤厚度的預測模式研究卻極少。由於地形扮演著控制各種邊坡作用的主要角色,地形與土壤化育的結果和表徵密切相關,因此本研究以地形演育概念下的作用模式為基礎,結合土壤生成函數(soil production function)與擴散模式(diffusion model)來建構土壤厚度的估測模式,並以陽明山國家公園七星山地區作為試驗區,透過數值高程模型(DEM)來進行土壤厚度的數值模擬。
本研究假設模擬其間地表形貌無明顯改變,且試驗區邊坡土壤的搬運能以簡單潛移(simple creep)概念下的擴散模式來描述,且搬運速率在稜線、山脊等坡頂處與土壤生成速率維持局部穩定平衡狀態(local steady state),並以此條件來率定模式演算所需之相關參數。模擬所得試驗區之土壤厚度分布在0至2公尺之間,土壤厚度在空間分布上有極高的變異性,主要由地形曲率控制。以野外實測之土壤厚度值來驗證模擬結果,發現模式估計的土壤厚度在凸坡、平緩處有較高的準確度,在坡度較陡、集水面積較大的區域有較大的估計誤差,原因可能是來自其他邊坡作用的影響,並非單純由土壤潛移作用所造成。整體而言,利用局部穩定平衡假設所率定之參數,可使模式有效估測部分邊坡的土壤厚度,唯其他類型之邊坡作用的影響,乃是將來應進一步釐清的對象,以期能提高邊坡土壤厚度估測模式的應用層面。 | zh_TW |
| dc.description.abstract | Soil thickness is one of the fundamental components in many hydrological and slope stability models. Since landform critically influences many slope processes, soil thickness which is related to various slope processes is also highly affected by topography. In this study, a soil production function is coupled with a simple diffusion model to form a soil-thickness prediction model. The Yang-Ming-Shan National Park is chosen as a study area to test the validity of the model.
It is assumed that the topography has not had any drastic change during the simulation time period, the soil is moving downhill according to simple creep law, which sets the transport flux equal to a linear function of local slope gradient, and its transport rate is in equilibrium with the soil production rate at ridge lines. Model parameters are calibrated under this local steady-state assumption, and used to estimate the soil thickness within the study area. The results show that soil depth in the study area ranges from 0 to 2 meters, and spatial variation is controlled by topographic curvature. Field verification shows that the model performs well on convex, law gradient, and upper part of hillslopes. It is discovered that in those poorly modeled area, slope processes other than diffusion prevail which bring about the disparity in model prediction. Generally speaking, assuming local steady state facilitates parameter calibration and improves model’s applicability. However, in order to extend the model application to the entire hillslope, it is essential to incorporate other processes in the model. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:24:34Z (GMT). No. of bitstreams: 1 ntu-95-R93228007-1.pdf: 2473259 bytes, checksum: 3b11555c3e95ee5af697b726de0e24c0 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 謝誌 Ⅰ
中文摘要 Ⅱ 英文摘要 Ⅲ 目錄 Ⅳ 圖目錄 Ⅵ 表目錄 Ⅶ 第一章 緒論 1 第一節 研究動機 1 第二節 研究目的 3 第二章 文獻回顧 5 第一節 土壤與地形屬性之關連 5 第二節 土壤相關之地形作用模式 7 第三節 穩定土壤厚度與邊坡形貌 9 第四節 土壤厚度模式應用 14 第三章 模式理論 15 第一節 基本概念 15 第二節 土壤生成函數 17 第三節 土壤擴散模式 20 第四節 土壤厚度估測模式 22 第四章 研究方法 23 第一節 研究架構 23 第二節 研究區概況 25 第三節 局部穩定條件下之參數率定 27 第四節 野外測量 30 第五節 模式假設及演算 35 第五章 研究成果 36 第一節 參數率定 36 第二節 模擬之土壤空間分布 39 第三節 模式驗證 42 第六章 討論及建議 49 第一節 模式率定之土壤生成函數 49 第二節 模式率定之擴散模式 52 第三節 其他邊坡作用模式 55 第四節 模式檢討 57 第七章 結論 58 參考文獻 61 | |
| dc.language.iso | zh-TW | |
| dc.subject | 參數率定 | zh_TW |
| dc.subject | 土壤生成函 | zh_TW |
| dc.subject | 擴散模式 | zh_TW |
| dc.subject | 簡單潛移 | zh_TW |
| dc.subject | 局部穩定平衡 | zh_TW |
| dc.subject | diffusion model | en |
| dc.subject | soil production function | en |
| dc.subject | parameter calibration | en |
| dc.subject | local steady state | en |
| dc.subject | simple creep | en |
| dc.title | 以局部穩定條件率定之土壤厚度估測模式 | zh_TW |
| dc.title | Parameter Calibration in A
Process-Based Soil Depth Estimation Model - Assuming Local Steady State | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李建堂(Cheing-Tung Lee),雷鴻飛(Hung-Fei Lei) | |
| dc.subject.keyword | 土壤生成函,擴散模式,簡單潛移,局部穩定平衡,參數率定, | zh_TW |
| dc.subject.keyword | soil production function,diffusion model,simple creep,local steady state,parameter calibration, | en |
| dc.relation.page | 67 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-29 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地理環境資源學研究所 | zh_TW |
| Appears in Collections: | 地理環境資源學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-95-1.pdf Restricted Access | 2.42 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
