Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31904
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陽毅平
dc.contributor.authorChun-Wen Laien
dc.contributor.author賴俊文zh_TW
dc.date.accessioned2021-06-13T03:23:57Z-
dc.date.available2009-07-29
dc.date.copyright2006-07-29
dc.date.issued2006
dc.date.submitted2006-07-29
dc.identifier.citation[1] M. S. Islam, S. Mir, T. Sebastian and S. Underwood, “Design considerations of sinusoidally excited permanent magnet machines for low torque ripple applications,” Industry Applications Conference, Seattle, WA, United States ,Volume 3, 3-7 October 2004, pp.1723-1730.
[2]M. S. Islam, S. Mir and T. Sebastian, “Issues in reducing the cogging torque of mass-produced permanent-magnet brushless DC motor,” IEEE Trans. on Industry Applications, Volume 40, Issue 3, May-June 2004, pp.813-820.
[3]Liang-Yi Hsu and Mi-Ching Tsai, “Tooth shape optimization of brushless permanent magnet motors for reducing torque ripples,” Journal of Magnetism and Magnetic Materials, Volume 282, November 2004, pp.193-197.
[4] Ki-Jin Han, Han-Sam Cho, Dong-Hyeok Cho and Hyun-Kyo Jung, “ Optimal core shape design for cogging torque reduction of brushless DC motor using genetic algorithm,” IEEE Trans. on Magnets, Volume 36, Issue 4, Part 1, July 2000, pp.1927-1931.
[5]Z. Q. Zhu and D. Howe, “Influence of design parameters on cogging torque in permanent magnet machines,” IEEE Trans. on Energy Conversion, Volume 15, Issue 4, December 2000, pp.407-412.
[6] Z.Q. Zhu, S. Ruangsinchaiwanich, D. Ishak and D. Howe, “Analysis of cogging torque in brushless machines having non-uniformly distributed stator slots and stepped rotor magnets,” IEEE Trans. on Magnetics, 4-8 April 2005, pp.95-96.
[7] Tae Heoung Kim, Sung Hong Won, Ki Bong and Ju Lee, “Reduction of cogging torque in flux-reversal machine by rotor teeth pairing,” IEEE Trans. on Magnets, Volume 41, Issue 10, October 2005, pp.3964-3966.
[8]J. K. Kim, S. W. Joo, S. C. Hahn, J, P. Hong, D. H. Kang and D. H. Koo, “Static characteristics of linear BLDC motor using equivalent magnetic circuit and finite element method,” IEEE Transactions on Magnetics, vol. 40, no. 2 II, pp. 742-745, Mar. 2004.
[9] Y.D. Chun, S. Wakao, T.H. Kim, K.B. Jang and J. Lee, “Multiobjective design optimization of brushless permanent magnet motor using 3D equivalent magnetic circuit network method,” IEEE Trans. on Applied Superconductivity, Volume 14, Issue 2, June 2004, pp.1910-1913.
[10]J. T. Li, Z. J. Liu, M. A. Jabbar and X. K. Gao, “Design optimization for cogging torque minimization using response surface methodology,” IEEE Transactions on Magnetics, vol. 40, no. 2 II, pp. 1176-1179, Mar. 2004.
[11] O. A. Mohammed, S. Liu and Z. Liu, “A phase variable model of brushless dc motors based on finite element analysis and its coupling with external circuits,” IEEE Trans. on Magnets, Volume 41, Issue 5, May 2005, pp.1576-1579.
[12] C. L. Chu, M. C. Tsai and H. Y. Chen, “Torque control of brushless DC motors applied to electric vehicles,” Electric Machines and Drives Conference, Cambridge, Massachusetts, 2001 pp.82-87.
[13]S. D. Sudhoff, K. A. Corzine and H. J. Hegner, “A flux-weakening strategy for current-regulated surface-mounted permanent-magnet machine drives,” IEEE Transactions on Energy Conversion, vol. 10, no. 3, pp. 431-437, 1995.
[14] S. Poorani, K. U. Kumar and S. Renganarayanan, “Intelligent controller design for electric vehicle,” Vehicular Technology Conference, Jeju, South Korea, Volume 4, 22-25 April 2003, pp.2447-2450.
[15] P. Crnosija, T. Bjazic and R. Krishnan, “Optimization of PM brushless DC motor drive,” Industrial Technology, 2003 IEEE International Conference, Maribor, Slovenia, Volume 1, 10-12 December 2003, pp.566-569
[16] B. A. Welchko and J. M. Nagashima, “A comparative evaluation of motor drive topologies for low-voltage, high-power EV/HEV propulsion systems,” Industrial Electronics, Volume 1, 9-11 June 2003, pp.379-384.
[17] B. A. Welchko and J. M. Nagashima, “The influence of topology selection on the design of EV/HEV propulsion systems,” Power Electronics Letters, Volume 1, Issue 2, June 2003, pp.36-40.
[18] M. Ehsani, K. M. Rahman, H. A. Toliyat, “Propulsion system design of electric and hybrid vehicles,” IEEE Trans. on Industrial Electronics, Volume 44, Issue 1, February 1997, pp.19-27
[19] M. Ehsani, Gao Yimin, S. Gay, “Characterization of electric motor drives for traction applications,” Industrial Electronics Society, Volume 1, 2-6 November 2003, pp.891-896.
[20] P. L. Chapman and P. T. Krein, “Motor re-rating for traction applications-field weakening revisited,” Electric Machines and Drives Conference, Madison, Wisconsin USA, Volume 3, 1-4 June 2003, pp.1388-1391.
[21]Federico Carichhi, Fabio Crescimbini, Onorato Honorati, Auqusto Di Napoli and Ezio Santini, “Compact wheel direct drive for EVs,” IEEE Industry Applications Magazine, Volume 2, Issue 6, Nov.-Dec. 1996, pp. 25-32.
[22] H. W. V. Chew and R. M Inigo, “Electric wheelchair propulsion by induction motors,” Proceedings of the IEEE on Southeastcon 96. Bringing Together Education, Science and Technology, Tampa, FL, USA, 11-14 April 1996, pp.37-40.
[23] Jun-Uk Chu, In-Hyuk Moon, Gi-Won Choi, Jei-Cheong Ryu and Mu-Seong Mun, “Design of BLDC motor controller for electric power wheelchair,” Proceedings of the IEEE International Conference on Mechatronics, Istanbul, Turkey, 11-14 April 1996, pp.37-40.
[24] E. Takahashi and T. Nogai, “Movement support system for electric wheelchair,
” Proceedings of 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems, Victoria, BC, Canada, Volume 2, 13-17 October 1998, pp. 764-769.
[25]Y. Sawa, “Double PWS type wheelchair,” First IEEE Technical Exhibition Based Conference on Robotics and Automation, Tokyo, Japan, 18-19 November 2004, pp.51-52.
[26]D.C. Hanselman, Brushless Permanent-Magnet Motor Design, McGraw-Hill, New York, 1994
[27]V. Ostovic, Computer-aided Analysis of Electric Machines, Prentice Hall, New York, 1994
[28]Power wheelchair, http://www.pro-walker.com.tw/
[29]Power wheelchair, http://www.nita.com.tw/
[30]Power wheelchair, http://www.genemax.com.tw/
[31]Power wheelchair, http://www.karma.com.tw/
[32]CNS 1376,電動輪椅最大速度、最大加速度及最大減速度測定。
[33]高橋義信, 輪椅之設計及規格制定研討會, 亞太科學技術協會,九十年五月。
[34]Kimberly T. Asato, Rory A. Cooper, Rick N. Robertson, and J. F. Ster, “Development and Testing of a System for Measuring Manual Wheelchair Propulsion Dynamics, ”IEEE Transaction on Biomedical Engineering, vol. 40,no. 12, December 1993, pp.1320-1324.
[35]黃偉禎, 新式電動輪椅馬達之最佳化設計與實現, 國立台灣大學機械工程研究所碩士論文, 93年6月
[36]張崢輝, 直接驅動車輪馬達之分析與最佳化, 國立台灣大學機械工程研究所碩士論文, 89年6月
[37]C.H. Tseng, W.C. Liao and T.C. Tang, Most User’s Manual, National Chiao-Tang University, Taiwan, ROC, Version1.1, Teeh. Rep. ADOL-93-0, 1993.
[38]ANSOFT is a registered trademark of Ansoft Corporation.
[39]李啟經, 直驅式車輪馬達之磁路分析及設計, 國立台灣大學機械工程研究所碩士論文, 91年6月
[40]莊璫旭, 電動汽車直驅式軸向磁通永磁直流無刷馬達最佳化設計, 國立台灣大學機械工程研究所碩士論文, 93年6月
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31904-
dc.description.abstract本篇論文欲設計一個創新的手輪馬達,並將此應用於電動輪椅。不同於傳統的電動輪椅,利用高轉速的馬達搭配減速機構;手輪馬達採直接驅動,不需要減速機構,使得空間可以有效利用,重量大幅降低。手輪馬達不僅是一個馬達,亦有手扶圈的功用,而且轉子就是手扶圈,施力半徑大,力矩與力矩密度高。
本文先對電動輪椅的行駛條件作性能估測,並決定馬達的性能規格,將馬達作靈敏度分析後,再利用最佳化軟體搜尋最佳尺寸,並使用有限元素分析軟體驗證與尺寸修改,期望降低力矩漣波與齒卡力矩。最後將本文設計的馬達作性能測試,並與模擬比較驗證
zh_TW
dc.description.abstractThe traditional electric wheelchairs are equipped with a high speed motor and reduction gears. In general, the structure is space-unefficient and weight-overloded. So the thesis suggests an innovative rim motor for electric wheelchairs. A target of our paper is to design a direct-drive rim motor having high torque without the additional equipment. The novel device could be used to be not only a motor rotor but a hand-rim. This motor has high power, torque, torque density and low weight.
First of all, we should determine the torque, speed and power based on dynamic evaluation. Second, the sensitivity analysis and optimal search method would be used.
Ultimately, the optimal results would be demonstrated by the Finite-Element-Method Analysis (FEMA). Moreover, we would modify the detail dimension to eliminate the cogging torque and torque ripple. The simulation results would be eventually compared with experiments.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T03:23:57Z (GMT). No. of bitstreams: 1
ntu-95-R93522817-1.pdf: 5955306 bytes, checksum: 89699825e8a2a8a54f3c65316963f570 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents誌謝 I
中文摘要 II
ABSTRACT III
圖目錄 VII
表目錄 XII
符號說明 XIV
第ㄧ章 緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧 1
1-3 各章摘要 5
第二章:電磁原理與模型 6
2-1 磁場與磁路 6
2-2 磁性材料介紹 11
2-3 感應電壓與電感 15
2-4 儲能 17
2-4-1 R-L電路系統 17
2-4-2 磁能與輔能 17
2-5 力矩方程式 21
第三章 手輪馬達的介紹與性能估測 25
3-1 前言 25
3-2 手輪馬達結構圖 26
3-3 阻力分析 29
3-4 動力估測 32
3-5 不同行使條件下的負載 33
3-6 馬達力矩與轉速關係 36
3-7規格比較 37
第四章 設計公式與最佳化分析 41
4-1 簡化模型 41
4-2 氣隙磁通分布 42
4-2-1 磁動勢分布 42
4-2-2 氣隙分布 43
4-2-3 磁通分布 45
4-3 輔能與力矩方程式 45
4-3-1 輔能的計算 45
4-3-2 磁動勢修正 46
4-4 銅損、相電感與驅動電壓 50
4-4-1 銅損 50
4-4-2 相電感 52
4-5 馬達基本幾何尺寸 56
4-6 最佳化分析軟體 58
4-7 目標函數與限制條件 61
4-7-1 力矩 61
4-7-2力矩密度 61
4-7-3 最高轉速 62
4-7-4 力矩漣波 62
4-7-5 限制條件 62
4-8 最佳化參數選定 63
4-8-1 設計參數的影響 63
4-8-2 設計參數的靈敏度分析 65
4-8-3 最佳化分析 90
第五章 有限元素分析 93
5-1 有限元素分析軟體 93
5-2 有限元素分析 96
5-2-1 建立模型 97
5-2-2 分析結果 98
5-3 降低齒卡力矩與力矩漣波 101
5-3-1 磁鐵形狀再設計 101
5-3-2 氣隙磁通分布的比較 105
5-3-3 磁鐵形狀的比較 111
5-4 定子的邊緣效應 114
5-5 反電動勢波形 118
5-5-1 磁通分布與反電動勢關係 118
5-5-2 磁通鏈與反電動勢 120
第六章 馬達性能測試與比較 123
6-1 實驗設備 123
6-2 一代手輪馬達模擬與實驗結果 128
6-2-1 反電動勢波形比較 128
6-2-2 暫態分析模擬結果 130
6-2-3 輸出性能表現 131
6-3 二代手輪馬達模擬與實驗結果 135
6-3-1 反電動勢波形比較 135
6-3-2 暫態分析模擬結果 137
6-3-3 輸出性能表現 138
6-4 實驗結果討論 142
6-4-1 一代手輪馬達結果討論 142
6-4-2 二代手輪馬達結果討論 144
第七章 結論與未來展望 147
7-1 結論 147
7-2 遭遇的問題 148
7-3 未來展望 151
參考文獻: 154
附錄A 159
dc.language.isozh-TW
dc.title創新手輪馬達之設計與最佳化分析zh_TW
dc.titleInnovative Rim Motor Design and Optimal Analysisen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃緒哲,蕭明宏
dc.subject.keyword齒卡力矩,力矩漣波,最佳化分析,靈敏度分析,zh_TW
dc.subject.keywordCogging Torque,Torque Ripple,Optimal Design,Sensitivity Analysis,en
dc.relation.page166
dc.rights.note有償授權
dc.date.accepted2006-07-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
5.82 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved