請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31893
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭榮和 | |
dc.contributor.author | Yi-Shung Lin | en |
dc.contributor.author | 林逸祥 | zh_TW |
dc.date.accessioned | 2021-06-13T03:23:35Z | - |
dc.date.available | 2006-07-31 | |
dc.date.copyright | 2006-07-31 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-27 | |
dc.identifier.citation | [1] Amndola, Giova, “The diffusion of synthetic materials in the automobile Industry:
Towards a major breakthrough?” Research Policy 19(6), December, pp. 485-500, 1990. [2] D.R. Cramer and M.M. Brylawski, “Ultralight-Hybrid Vehicle Design:Implications for the Recycling Industry,” Society of Plastics Engineers Recycling Division’s 3rd Annual Recycling Conference Proceeding(Chicago IL) 7-8, November 1996. [3] Moore, C. Timothy,“Ultralight Hybrid Vehicles:Principles and Design,” The 13th International Electric Vehicle Symposium ,Osaka, Japan, 14 October 1996. [4] Lovins, Steffen B, M.M. Brylawski, D.R. Cramer and T.C. Moore, “Hypercars: Materials, Manufacturing, and Policy Implications,” Rocky Mountain Institute publication #T96-8 ,1996. [5] Kerth, Steffen, A. Dehn, M. Ostgathe, and M. Maier, “Experimental Investigation and Numerical Simulation of the Crush Behavior of Composite Structural Parts,” Proceedings of the 41 th International SAMPE Symposium and Exhibition ,41(2), pp. 1397-1408, 1996. [6] G. Behrens, “ The Aluminum Audi A8,” Proceedings of the Conference for Lean Weight Vehicles 11-18, November 1995. [7] R.L. Hughes, “Lightweight Automotive Design:Ultralight Steel Auto Body,” Procs. 1995 Intl. Body Engineering Conf. & Exposition:Body Design and Engineering 19:pp.59-73 , Detroit, MI, 31 October – 2 November 1995. [8] GermanCarFans網頁, http://wwwgermancarfans.com [9] A.E. Mascarin and J.R. Dieffenbach et al., “Costing the Ultralite in Volume Production:Can Advanced Composite Bodies-in-White Be Affordable?” Procs. 1995 Intl. Body Engineering conf. & Exposition:Advanced Technologies & Processes 19, pp.56-69 , Detroit, MI, 31 October – 2 November 1995. [10] M.M. Brylawski and A.B. Lovins, “Advance Composite:The Car is at The Crossroads” [11] S. McBeath, “Competition Car Composites a Practical Handbook,” Haynes Publishing , 2000. [12] J.P. Leiva, L. Wang, Sebastien Recek and Brian C. Watson, “Automobile Design Using the GENESIS Structural Optimization Program,” Vanderplaats Research & Development, inc. [13] C. Reed, “Application of Optostruct Optimization to Body in White Design,” Jaguar Cars Limited Body and trim CAE Engineering Centre Coventry CV3 4LF [14] S.Milton and S.M. Grove, “Composite Sandwich Panel Manufacturing Concept Chassis,” ACMC, University of Plymouth [15] R.G. Boeman and N.L. Johnson, “Development of a Cost Competitive, Composite Intensive, Body-in-White,” Society of Automotive Engineer, inc., 2002. [16] M. Avalle, “Structural Optimization of a Composite Underbody for Racing Cars,” Key Engineering Materials Vol. 144, PP.273-282, 1998. [17] S. Kodiyalam, “Multidisciplinary Design Optimization- Some Formal Methods, Framework Requirements, and Application to Vehicle Design,” HPC Applications & Market Development Server & Supercomputing Business 1600 Amphitheatre Parkway, MS 405 Mountain View, California, 2001. [18] “UltraLight Steel Auto Body Final Engineering Report: Testing and Results,” PORSCHE Engineering Services, inc. [19] B.P. Siegler, L. Butler, A.J. Deakin and D.C. Barton, “The Application of Finite Element Analysis to Composite Racing Car Chassis Design,” Sports engineering 2, pp.245-252, 1999. [20] D.R. Cramer, D.F. Taggart, “Design and Manufacture of an Affordable Advanced- Composite Automotive Body Structure,” the Proceedings of The 19th International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition. Copyright 2002 EVS-19, 2002. [21] M.E. Botkin, “Structural Optimization of Automotive Body Components Based on Parametric Solid Modeling,” Engineering with Computers 18, PP.109-115, 2002. [22] M.E. Botkin, “Modeling and Optimal Design of Carbon Fiber Reinforced Composite Automotive Roof,” Engineering with Computers 16, PP.16-23, 2000. [23] B. Knouff, “Light Weight Composites for Automotive Applicayions,” 48th International SAMPE Symposium May pp.11-15, 2003. [24] M. Bruderick, D. Denton et al., “Carbon Fiber Composite Body Structures for The 2003 DODGE VIPER,” DaimlerChrysler Corporation and Quamtum Composites Inc., 2003. [25] Y.M. Xie and G.P. Steven, “Evolutionary Structural Optimization,” Springer, 1997. [26] D.N. Chu, Y.M. Xie, A. Hira, G.P. Steven, “Evolutionary Structural Optimization for Problems with Stiffness Constraints,” Finite Elements in Analysis and Design 21, pp.239- 251, 1996. [27] K. Suzuki and N. Kikuchi, “A Homogenization Method for Shape and Topology Optimization,” Comput. Struct. 53, pp.885-896 , 1993. [28] S.Y. Hu and J.H. Cheng, “Development of an Object-oriented Optimization Software for Industrial Utilization,” proceedings of the 4th conference of OPTDES, 2004 [29] 鄭榮和、胡斯遠,“新型流道式風力發電機組之研發設計”,國立台灣大學機械工程研究所博士論 文,2005 [30] C393, “Standard Test Method for Flexural Properties of Sandwich Constructions,” Annual Book of ASTM Standards Volume 15.03, 1996 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31893 | - |
dc.description.abstract | 為了減低車輛上能源的消耗,使用先進複合材料製造之輕量化車體結構將有可能成為未來車輛的發展趨勢。本研究提出兩階段的設計方法:(1)修正演化式結構最佳化方法(Modified ESO)與(2)以“剛性效率增量”做為複合材料厚度增減與修正順序判準的設計方法;來解決複雜的複合材料車體結構之設計問題。同時藉由台灣大學機械系—燃料電池混合動力車研發計畫的執行,將本研究提出之設計方法應用於其車體結構設計上,檢驗設計方法之可行性。研究證明,透過此二階段之設計方法確實可以設計出符合需求且性能優異之車體結構。 | zh_TW |
dc.description.abstract | In order to lower the power consumption on the vehicle, using advanced composite light weight car body structure might become the tendency of future vehicle development.
This thesis brings out a two-stage design method in the design of composite auto body structure. Firstly, adopt Modified Evolutionary Structural Optimization (Modified ESO) in the primary design; then apply “stiffness efficiency increment” to be the criterion to revise the thickness and layer orders of composite sheet layout. The method is derived to solve the design problem of the complicated composite car body structure. This two-stage design method is applied to the car body structure of the fuel cell hybrid vehicle of mechanical engineering department of National Taiwan University to verify its feasibility. The result shows the two-stage design method is indeed able to achieve the design goal of rigidity demanded under the vehicle application and still maintains advanced light weight and sporty performance for cars. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T03:23:35Z (GMT). No. of bitstreams: 1 ntu-95-R92522510-1.pdf: 5362116 bytes, checksum: 6d46ee1316af6bca50fce12153dd1fe9 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 誌 謝 一
中文摘要 三 Abstract 四 目錄 五 圖目錄 九 表目錄 一五 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 研究方法 3 1.4 論文內容架構 5 第二章 文獻探討與討論 7 2.1 先進複合材料與車體結構 7 2.1.1 車輛結構材料演進與先進車輛設計概念 7 2.1.2 先進複合材料與車體減重 8 2.1.3 現今應用實例 11 2.1.4 先進複合材料的經濟性 12 2.2 先進複合材料簡介 15 2.3 車體結構最佳化方向與方法 18 2.3.1 結構最佳化方向 18 2.3.2 結構最佳化方法 19 2.4 Ultra Light Steel Auto Body車體剛性測試規範 21 2.4.1 靜態測試方法 22 2.4.2 動態測試方法 25 2.5 其他相關文獻 25 2.6 討論 26 第三章 演化式結構最佳化方法 29 3.1 剛性需求之演化式結構最佳化方法 29 3.1.1 理論背景 29 3.1.2 操作程序 31 3.1.3 分析實例 32 3.2 修正式演化式結構最佳化方法 34 3.3 最佳化分析軟體--- ABAQUEST介紹 35 第四章 使用軟體與車體形狀設計方法之驗證 39 4.1 ABAQUS分析正確性驗證 39 4.1.1 實驗設定 39 4.1.2 ABAQUS模型建構 43 4.1.3 分析驗證一(理論驗證) 45 4.1.4 分析驗證二(三點與四點彎曲實驗) 48 4.1.5 小結 52 4.2 修正演化式結構最佳化方法(Modified ESO)驗證 52 第五章 演化式結構最佳化分析 57 5.1 基本模型建構 57 5.1.1 物件配置及設計空間定義 57 5.1.2 初步外型選擇及模型幾何簡化 59 5.1.3 材料性質設定 60 5.1.4 邊界條件與其他相關設定 61 5.1.5 ABAQUEST參數設定 64 5.2 演化式結構最佳化方法之車體演化過程 65 5.3 演化式結構最佳化分析結果及殼元素模型建立 69 5.3.1 演化式結構最佳化分析結果與探討 69 5.3.2 車體殼元素模型建立 72 第六章 車體複合材料區域厚度設計 77 6.1 車體材料厚度配置設計方法與初始模型分析 77 6.1.1 材料厚度配置設計方法 77 6.1.2 車體複合材料材料性質 79 6.1.3 初步分析與結果 81 6.2 分區方法與分區結果 85 6.3 區域強化差異比較分析 89 6.3.1 區域強化效果比較參數-剛性效率增量 89 6.3.2 強化效果參數分析-彎曲剛性 90 6.3.3 強化效果參數分析-扭轉剛性 93 6.3.4 小結 95 6.4 車體複合材料厚度配置設計 96 6.4.1 區域複合材料厚度變數範圍設定 99 6.4.2 複合材料配置設計-彎曲剛性 99 6.4.3 複合材料配置設計-扭轉設計 103 6.4.4 其他外力荷載分析 107 6.4.5 車體結構動態特性檢驗分析 108 6.4.6 車體複合材料厚度配置結果 109 第七章 結果與討論 111 7.1 結果 111 7.2 討論 112 第八章 結論與未來方向 115 8.1 結論 115 8.2 未來方向 115 參考文獻 117 | |
dc.language.iso | zh-TW | |
dc.title | 燃料電池混合動力車複合材料車體結構設計方法之研究 | zh_TW |
dc.title | The Design Method of CompositeBody Structure for Fuel Cell Hybrid Vehicle | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉霆,吳文方 | |
dc.subject.keyword | 車體結構,複合材料,修正演化式結構最佳化,剛性效率增量,燃料電池混合動力車, | zh_TW |
dc.subject.keyword | Auto Body Structure,Composite,Modified Evolutionary Structural Optimization,Stiffness Efficiency Increment,Fuel cell hybrid vehicle, | en |
dc.relation.page | 121 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-29 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 5.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。